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Abstract—Today, the IoT landscape consists of a large number
of vertical IoT platforms that are rarely interconnected. To enable
creation of applications across platform and domain boundaries
interoperability needs to be established between IoT platforms.
As this is a challenging task, we present in this paper how
to simplify it by utilizing a systematic software development
process based on behavior- and domain-driven development.
Additionally, we illustrate this process using an example of two
indoor navigation platforms based on BLE beacons and the open
source IoT interoperability framework symbIoTe. We show that
developers can actually profit from this approach but existing
IoT interoperability frameworks are still cumbersome to use.

Keywords-Internet of Things, IoT, interoperability, semantic
interoperability, behavior-driven development, domain-driven de-
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I. INTRODUCTION

The landscape of Internet of Things (IoT) platforms is con-
stantly growing. Most of these platforms are highly specialized
on a specific domain or even an application. This results in the
IoT landscape being fragmented into many vertical IoT silos
which are rarely interconnected. However, the key feature of
the IoT is to interconnect things regardless of the way they are
physically connected which means that interoperability should
not only be possible within platforms but also across platforms.

To enable interoperability across IoT platforms multiple
levels of interoperability need to be addressed. The two most
important ones are technical interoperability and semantic in-
teroperability. Technical interoperability enables the exchange
of data. This is well addressed by existing communication
protocols and standards. Thus, it can be treated as more
or less solved. However, exchanging data is not enough as
we also need to understand it. The ability to understand
exchanged data is referred to as semantic interoperability.
Enabling semantic interoperability can be far more complex
than technical interoperability and is still an active area of
research.

In this paper we present by example how to utilize software
development approaches and processes to simplify establishing
interoperability between two existing IoT platforms. Therefore
we will use behavior-driven development (BDD) and domain-
driven design (DDD) together with the open source IoT
interoperability framework symbIoTe.

The remainder of this paper is structured as follows. Sec-
tion II provides background information on BDD, DDD and
the used symbIoTe framework as well as related work on other
IoT interoperability approaches. Furthermore, the example
used throughout the paper is introduced in this section. Sec-
tion III and Section IV present how the software development
approaches and processes are applied to the example in the
analysis and the design phase. In Section V is shown how
(semantic) interoperability is implemented for our example
using the symbIoTe interoperability framework. The paper
closes with conclusions in Section VI.

II. BACKGROUND & RELATED WORK

A. Software Development Approaches

The development process, which we apply in our case study
is based on behavior-driven development (BDD) and domain-
driven design (DDD). Each of the two approaches covers a
different aspect of the application. One first step to merge both
approaches is given in [1]. The authors classify them into a
widely accepted software engineering approach from Brügge
et al. [2].

BDD could be seen as a further development of test-
driven development (TDD) [3]. TDD tries to determine the
correctness of an application with executable acceptance tests,
which are written in the chosen programming language [4].
This is the first difference to BDD, which specifies the accep-
tance tests in the business readable, domain specific language
Gherkin[3]. Gherkin uses the common speech and predefined
keywords for defining its features. This allows practitioners of
BDD to create features directly with the customer, as they are
“understood by everyone” [3]. Further, the philosophy of BDD
is progressing the application from the outside to the inside [3].
The most visible functionality is first specified as a feature and
then implemented directly. During the implementation, new
functions are discovered, defined as features and implemented.
North characterizes this approach as “code-by-example” [5].

According to Evans, the main reason why applications do
not meet the customer’s expectations and needs is the lack
of knowledge from the developers of the customer’s domain
[6]. To address this problem, Evans introduced the DDD
approach with various patterns and principals in his book
“Domain-Driven Design: Tackling Complexity in the Hearth of



Software” . With DDD, the customer’s domain is analysed and
the results—or the so-called domain knowledge–are stated in
a domain model. By establishing a “ubiquitous language”, the
development team and the customer speak the same language.
An essential principal of DDD is, that the source code of the
application reflects the structure of the domain model.

B. symbIoTe

symbIoTe (symbiosis of smart objects across IoT
environments) [7] is an H2020 EU project. Its main
objective is to provide an open source interoperability and
mediation framework for collaboration and federation of
vertical IoT platforms. symbIoTe provides interoperability
on four so-called interoperability levels (L1-L4): syntactic
and semantic interoperability (L1), platform federations (L2),
dynamic smart spaces (L3) and roaming devices (L4). In
our example, we are going to make the platforms only
L1-compliant as L1 already covers our needs (syntactic and
semantic interoperability).
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Fig. 1. High-level overview of symbIoTe L1 functionality.

Figure 1 shows a high-level overview of symbIoTe’s L1
functionality. To be symbIoTe L1-compliant, a platform must
implement the Interworking Interface. This interface compris-
es different functionality, most importantly resource access,
authentication and authorization. Besides implementing the
Interworking Interface, a platform must register to a symbIoTe
Core instance providing information about the platform, for
example metadata about the platform (e.g. name, owner, URL
of Interworking Interface implementation) and its exposed
resources. Furthermore, a platform must provide its used
information model to the symbIoTe Core (further referred to
as Core) upon registration optionally together with semantic
mappings (further referred to as mappings) between its model
and other models.

The Core is the main entry point for software that uses
symbIoTe and provides a search functionality across all the
registered resources. The user depicted in Figure 1 does not
refer to an end user of an IoT app but rather to a use of
the symbIoTe framework, which can be e.g. mobile apps,

websites, IoT platforms, backend services, etc. Once a user has
discovered a resource he can access it through the Interworking
Interface implementation of the platform the resource belongs
to which will return him the actual data. This way, the
platforms maintain complete control over their data as the Core
only sees the meta data used for registration and search but
never the actual sensor/actuator data.

In the following, we will present in a bit more detail
why this is the case and how exactly syntactic and semantic
interoperability are established.

In symbIoTe, syntactic and semantic interoperability are
partially interlinked. There are multiple possible approaches
to enable semantic interoperability between multiple platfor-
m using different information models as presented in [8].
However, they are all trade-offs between two main contra-
dicting approaches which can be called standardization or
agreement, meaning that all platforms agree on a common
information model and expose their data according to this
standardized model, and mapping, meaning that each platform
uses whatever information model it likes and interoperabil-
ity is only established through semantic mapping between
the models. symbIoTe uses an intermediate approach called
Core Information Model with Extensions. In this approach,
each platform exposes its data based on a Platform-Specific
Information Model (PIM). However, this PIM has to be an
extension of the Core Information Model (CIM), which is
a generic and abstract model shared between all platforms.
This way symbIoTe provides some interoperability between
all platforms out-of-the-box (in terms of the CIM) while
supporting any kind of platform-specific extensions. Semantic
Interoperability between different PIMs can be established
through semantic mappings.

Syntactic interoperability in symbIoTe is realized by ex-
posing the resources of a platform through a REST-based
interface. However, as stated above, syntactic and semantic
interoperability are interlinked. This is because the URLs
exposed for resource access are not statically defined, i.e.
the same for every platform, but depend on the PIM of the
platform. This idea of an information model-agnostic REST-
based interface is the fundamental concept of the OData
protocol 1 which is why a part of the Interworking Interface
dealing with resource access was designed to be very close to
the OData protocol.

Looking again at Figure 1, we now understand why a
platform must provide its used information model (PIM) to
the symbIoTe Core upon registration.

To enable interoperability between two different PIMs,
symbIoTe makes use of the semantic mapping information in
different ways. In the Core, mappings are utilized to perform
query re-writing/translation from one PIM to another, thereby
allowing to find resources of platforms using different PIMs
with one query. Furthermore, symbIoTe provides a client
library that utilizes mappings for data translation, which allows
accessing data from another platforms in a PIM-transparent

1http://www.odata.org/



way. This means, that one platform can access another plat-
form as if it would use the same PIM as long as there is
mapping between both PIMs registered in the Core.

Semantic mapping is a very difficult problem and still an
open research area. symbIoTe provides a prototype implemen-
tation with basic capabilities for this. However, this will be
enough for basic scenarios as in our example.

C. Other IoT interoperability frameworks

There are a lot of research groups and standards addressing
the problem of cross-platform interoperability in the IoT
context. These are for example the IRTF Thing-to-Thing
Resource Group (T2TRG), W3C Web of Things Working
Group (WoT), SensorThingsAPI from the Open Geospatial
Consortium (OGC), iot-schema.org, oneM2M and many more.
However, these are more fundamental activities whereas we
will focus on more hands-on project that are either available
right now or are expected to be available soon.

Therefore, in this section we will present three projects
which are part of the IoT-European Platforms Initiative
(IoT-EPI), all addressing the problem of IoT platform
interoperability. IoT-EPI is a European initiative bringing
together seven EU-funded research and innovation projects
(including symbIoTe) in the area of IoT platform development.

BIG IoT
Main objective of the BIG IoT project [9] (Bridging the
Interoperability Gap of the IoT) is to create an open
marketplace for IoT platforms and services. The marketplace
concept of BIG IoT is very similar to the symbIoTe Core
and also the whole processing of making a platform (L1-)
compliant to the system as well as registering and searching
resources. BIG IoT uses the W3C WoT ThingDescription to
semantically describe resources and allows the usage of any
information model. However, they do not provide any support
to enable interoperability between platforms using different
information models.

bIoTope
The bIoTope project [10] (Building an IoT Open Innovation
Ecosystem For Connected Smart Objects) addresses
interoperability with a Systems-of-Systems approach.
Everything (e.g. apps, devices, platforms, gateways, non-IoT
application and services) has to have a wrapper that exposes
the resource’s data through the Open Message Interface
(O-MI) using the Open Data Format (O-DF). Just like BIG
IoT, bIoTope does allow the use of any information model but
does not provide any tool support for establishing semantic
interoperability.

INTER-IoT
The INTER-IoT project [11] (Interoperability of
heterogeneous IoT platforms) addresses interoperability
on five levels; device, network, middleware, application and
data, and semantics. Besides symbIoTe, INTER-IoT is the
only project in the IoT-EPI explicitly addressing semantic

mapping and providing a tool set to make use of these
mappings. However, in INTER-IoT, semantic mapping is
not done directly between two different platform-specific
information models but always from a platform-specific
information model to a common, shared model [12].

D. Introduction of the Example

Figure 2 shows a schematic representation of the compo-
nents and their deployment of the running example. The initial
position is, that there are two existing IoT platforms, Platform
Campus A and Platform Campus B, one deployed at the KIT,
the other at Fraunhofer IOSB premises and both providing a
a mobile app supporting their offered services. The goal is to
enable interoperability between the platform so that users of
Campus A can use their existing application (e.g. for searching
a room) for the same intention when visiting Campus B. In this
case, the application of Campus A requires data (including IoT
data, such as the current location of the user) of Campus B.
However, as the two platforms may use different information
models (called PIMs in symbIoTe) the exchanged data might
not be understood by the application. Therefore, the data
needs to be provided in a way so that the corresponding
application can process the data. A transformation of the
information model (like schematic mapping) is needed. This
transformation is done by a component of the adapter, as
shown in Figure 2. To establish the connection to symbIoTe,
Campus A and Campus B have to implement the symbIoTe
adapter. For accessing resources from Campus B, the resource
access proxy (RAP) of Campus B must be known. This adapter
offers the required data from Campus B. Therefore, the adapter
registers the platform and provides the information model
in the so-called resource description format (RDF) [13] to
symbIoTe Core. Afterwards, the resources from Campus B can
be searched and found in the Core and are accessible via the
interworking interface. The Interworking Interface is REST-
based [14]. The backend of Campus B provides the needed
data through a plug-in that communicates with the RAP. The
data that Campus A requested from Campus B is received by
the symbIoTe client (which is part of the adapter) of Campus
A. In this stage, the received data is semantically mapped for
the needs of the backend that Campus A provides for their
application. On the left side, Campus A has to implement the
necessary adapter for enabling symbIoTe. On the right side,
Campus B also needs a connection to symbIoTe and has to
implement an adapter as well. One challenge of the semantic
mapping is that the domains of Campus A and Campus B are
not the same. Campus A provides a beacon-based navigation
service while Campus B offers a room reservation service.
The consequence is that the information models are not the
same. However, there are several overlaps like determining the
current location that can be utilized for the application.

III. ANALYSIS PHASE: FEATURE DESCRIPTION

As a member of Campus A, I want to use my application to
show my current location on Campus B. This is an important
requirement in terms of the interoperability that the desired
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Fig. 2. Schematic representation of components and their deployment for
the example use case including the data flow with and without symbIoTe.

application has to fulfil. In order to create a cross-domain
application, it is necessary to discuss the need of the inter-
operability as a requirement. To address this need, behavior-
driven development is used for analysing and specifying the
requirements. Therefore, the requirements are specified as
features. This is the first part of the systematic development
process. Figure 3 shows the feature that describes the desired
goal of the application. A BDD template is used to specify

1. Feature: Show my location on Campus B
2. As a member of Campus A
3. I want to use my well−known application
4. In order to determine my current location on Campus B

5. Scenario: Show my location on Campus B
6. Given I am at Campus B
7. And a beacon from Campus B is available
8. When I open the ‘‘Current Location’’ page
9. Then my current location on Campus B should be displayed

Fig. 3. Campus Interoperability Feature

the feature shown in Figure 3. It consists of two parts; a
feature description part [15], that describes the business value
of the feature and a scenario description part [3], which is
written in natural language. An advantage of the scenarios is
that developers can easily understand and discuss the specified
features with the stakeholders. The scenarios describe how
the application works. In addition, scenarios describe the
acceptance criteria of a feature that allows the automated
testing of the requirement. In order to test the feature shown
in Figure 4, the step definitions have to be implemented.

Before the written tests can pass, the functionality has to be
implemented. To be able to test the feature shown in Figure
3, there must be a connection to symbIoTe. Line 7 of the
scenario given in Figure 3 makes it clear that a beacon from
Campus B must be available. This step delivers an important
hint. Without a connection to symbIoTe, the test cannot pass
because the needed data cannot be acquired from Campus B.
Thus, the systematic development approach delivers important
clues for the developers in terms of interoperability and the
developer knows what needs to be implemented. Features also
contain scenarios that cover errors that may occur. Therefore,
the features provide important clues for the developers in order
to allow cross-domain communication. To test a feature even
further, each feature contains more than one scenario. The set
of scenarios to a feature should also contain scenarios that
describe what happens in an error situation.

In addition to the features which concern the cross-domain
integration, there is also a need for features that describe the
functionality of the application. These features are specified
like the features concerning interoperability. Figure 4 shows

1. Feature: Determine location based on indoor beacons
2. As a user
3. I want to know my relative location in a building
4. So that I have a good orientation in the building

5. Scenario: Determining the location
6. Given my Bluetooth is turned on
7. When I open the ‘‘Current location’’ page
8. Then I see the building and current floor I am on
9. And my location should be marked in the area

10. Scenario: Determining the location with Bluetooth disabled
11. Given my Bluetooth is turned off
12. When I open the ‘‘Current location’’ page
13. Then I should be asked to activate Bluetooth

Fig. 4. Main Feature of NavSG Feature

one of the main features of the indoor navigation application.
For the navigation application, it is important to determine the
current position of a user. The location of the user is displayed.
In addition to the location, further terms like building and floor
are used. These terms and other relevant terms are providing
domain knowledge and they have influence on the domain
model. Therefore, the specified features function as input for
the modelling phase.

IV. DESIGN PHASE: MODELING AND INTEGRATION OF
THE MODELS

To enable semantic interoperability each platform needs to
provide a formally defined model of the domain. In case of
Campus A where we applied BDD and DDD, we automat-
ically get this model as part of the systematic development
process. For Campus B, the model was created manually based
on existing class diagrams. In this section we first introduce
the two different models and then analyse their differences
and how they can be aligned. Please note, that the models
have been simplified to better illustrate the example.



A. Model of Campus A

The creation of the domain model from Campus A is based
on the features. A feature specifies parts of the business logic
from the viewpoint of a user. In addition, each feature specifies
parts of the application logic of the software system. A part
of the business logic is the domain logic, which is application
agnostic. Therefore, a feature contains relevant information
about the domain, which is relevant for understanding the
domain. The approach to understand the domain and the
functionality related to the domain is achieved by reading
every line of the feature and its scenarios and identifying
the presumably relevant terms. Each relevant term becomes
a part of the ubiquitous language, an important concept of
DDD [6]. With each analysed feature, additional and relevant
terms are identified. For example, the feature shown in Figure
4 led to the terms beacon, location, floor and building. In
addition, the relationships between the terms can be derived
from the feature, e.g. a beacon is at a location. Further features,
knowledge crunching and more insight extended the domain
model to the resulting model, as shown in Figure 5.
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Fig. 5. Domain Model of Campus A

The excerpt from the domain model of the NavSG platform
describes the relations of the domain objects. The main
concept of the model is the Area. Three or more Locations
define the vertices of an Area. Each Floor is divided into
several Areas while a Floor is part of a Building. An Area
can be a specific type like Hallway or Office. For navigation
purposes, each Area has at least one PortalGate at a specific
Location. Two or more PortalGates are connected by a Portal.
To determine the position of a user, beacons are placed at a
specific Location in an Area. For this purpose, it is necessary
to distinguish the beacons. Therefore, each beacon has an
universally unique identifier (UUID) which is displayed as
attribute in the model.

B. Model of Campus B

Figure 6 depicts the domain model of Campus B using the
EduCampus platform. The main concepts are BleBeacons that
are attached to a Thing and BeaconDetection which represents
events generated when a User was close to a beacon at a
certain date and time. Users can also create Reservations for a
room and time interval, including Catering Requests. A Thing

can be either a Room or a MoveableThing, e.g. inventory.
A Room has the properties capacity and roomNo, can have
multiple Features like a projector or a whiteboard and can
contain multiple Workspaces.
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Fig. 6. Domain Model of Campus B.

C. Differences and Integration of the models

Although both models cover more or less the same domain,
they have quite different views of it. This is caused by different
needs of the existing applications resulting in different levels
of detail of the model and by design decisions like using ray
tracing or nearest-neighbour for location. However, they both
provide information about areas/rooms and the functionality to
identify the position of a user based on the beacons in range.
To share this functionality between the platforms, both expose
a service called getPosition taking some beacon information
as input and returning the position. However, they use the
corresponding classes of their domain model to describe the
input and return type. Therefore, the service definition for
Campus A is getPosition(Beacon[]) → Area and
for Campus B getPosition(BleBeacon[]) → Room.
This reduces the problem of semantic interoperability to
mapping the concepts Area and Room as well as Beacon and
BleBeacon. This mapping has to include all the properties and
references of these concepts that are present in both models.

Mapping Beacon and BleBeacon is straightforward by re-
naming the shared properties (UUID ↔ beaconId, Major ↔
major, Minor ↔ minor) and dropping the optional property
Description. To map Area and Room we again start with
renaming the shared properties Name ↔ name, Description
↔ description and RoomNumber ↔ roomNo. The rest of the
mapping, covering features of an area/room and the seating
capacity, is more complex as it involves relations between
objects. If an Area has a Feature of type SeatingCap we map
its property capacity to the property capacity of Room and
the other way round. Further, we map the only shared type
of feature from an instance in the model of Campus A to the
corresponding enumeration value in the model of Campus B.

This mapping needs to be formally defined to be used with
symbIoTe. At the moment of writing, semantic mapping func-
tionality of symbIoTe is still work in progress 2 and therefore
we cannot provide such a formal definition. However, the

2 https://github.com/symbiote-h2020/SemanticMapping



language used to express such a semantic mapping will be very
close to the Expressive and Declarative Ontology Alignment
Language [16] (EDOAL) and most likely compatible to it.

V. IMPLEMENTATION PHASE: CURRENT STATE

The systematic development process is an agile approach
which means that the implementation of the software should
start as soon as possible. Implementation of the domain model
is an early activity of the implementation phase, which is car-
ried out before any architectural design is specified. In addition
to the domain model, the step definitions of the features which
were specified in the analysis phase are implemented and
the technology-independent, microservices-based architecture
[17] is specified. The specification of the API depends on the
domain objects of the domain model that should be exposed.
The implementation of the frontend and backend parts are
based on the technology-independent API specification. In
addition, the adapter required by symbIoTe is implemented.
Therefore, the specified API is close to the domain model and
is used for the data exchange. At this point, the implementation
of the semantic mapping component is still in progress; thus
the API will be available soon. For registering with the core, an
ontology is extracted from the domain model and provides the
domain model in the RDF format. All implementation work
is carried out in a test-driven manner based on unit tests and
user acceptance tests which are defined by the scenarios of the
features.

VI. CONCLUSION

In this paper we have presented a real-life example of how
to establish interoperability between two IoT platforms dealing
with BLE-based indoor localization. We used symbIoTe as an
open source IoT interoperability framework and showed that
using a systematic software development based on BDD and
DDD is helpful in this process. This is because semantic inter-
operability is a very tough problem (besides when standard-
ization is used) and BDD and DDD implicitly output a domain
model, which is needed to achieve semantic interoperability.
It is the authors’ opinion that utilizing/identifying/creating
systematic software development processes can significantly
reduce the complexity of enabling interoperability between
IoT platforms, especially regarding semantic interoperability.

IoT interoperability is a growing area of research and will
even grow faster in the future as the number of internet
connected devices keeps increasing. Even though it is cur-
rently addressed by multiple research projects as described in
Section II-C, further research and standardization is needed to
provide easy-to-use interoperability libraries and frameworks
to be used by non-expert programmers.
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