
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

DOI : 10.5121/ijcseit.2014.4505 51

ISSUES IN IMPLEMENTATION OF PARALLEL

PARSING ON MULTI-CORE MACHINES

Amit Barve
1
and Brijendra Kumar Joshi

2

1
Asst. Professor,CSE, VIIT Pune,India

2
Professor,MCTE,Mhow

ABSTRACT

The advent of multi-core architecture has highly influenced the area of high performance computing.

Parallel compilation is the area which still needs significant improvement by the use of this architecture.

Recent research has shown some improvement in lexical analysis phase. But it is difficult to implement the

same technique in parsing phase. This paper highlights some issues related to implementation of parallel

parsing on multi-core machines.

KEYWORDS

Syntax Analysis, Parallel Parsing, Multi-core Machines.

1. INTRODUCTION

Compiler is a program that translates a source language into target language. The structure of a

compiler is composed of several phases. The first phase is lexical analysis or scanning. This is the

only phase which interacts with original source code written by the programmer. It takes stream

of characters as input and generates tokens of the form {token name, attribute value} as output.

The task that does this is called lexical analyzer or scanner. Lex [1] and Flex [2] are two popular

tools for automatically generating lexical analyzers from specifications.

The information about tokens is saved in a special data structure called symbol table. These

tokens are then forwarded to the next phase i.e. syntax analysis also known as parsing. Parsing is

an important phase in compilers. This phase takes the stream of tokens as input produced by

lexical analyzer and converts them into parse trees. A parse tree is a structural representation of

grammar being parsed. The tool which performs this task is known as parser. Parser can be

automatically generated by YACC [3] and Bison[4] which take grammar specifications as input

and produce parsers.

Interaction of the lexical analyzer and the syntax analyzer is depicted in Fig. 1. The details of

various phases of a compiler can be found in popular texts [5][6][7][8].

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

52

 Fig. 1. Interaction of Lexical Analyzer with Parser

2. PARSING TECHNIQUES

The parsing algorithms are primarily classified into two categories, top-down parsing and bottom-

up parsing. These refer to the order in which nodes in a parse tree are constructed. In top-down

approach the construction of a tree starts from root and proceeds towards the leaves while in

bottom up approach construction of a parse tree starts with leaves and proceeds towards the root.

Some well known top-down parsing algorithms are recursive decent parsing (also called

predictive parsing) and non-recursive decent parsing. Bottom-up parsing includes some

algorithms like Simple LR (SLR) parsing, Canonical LR (CLR) parsing, and Look Ahead LR

(LALR) parsing.

In LR parsing, parser reads input from left to right and generates a right most derivation in

reverse. The name LR(k) parser is also used, where k refers to the number of unconsumed look

ahead input symbols that are used in making parsing decisions. Depending on how the parsing

table is created, an LR parser can be called SLR, LALR, or CLR Parser. LALR parsers have more

language recognition power than SLR parsers. Canonical LR parsers have more recognition

power than LALR parsers. For comparison of these parsers, refer to Table 1.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

53

Table 1. Comparison of parsing techniques

Parsing

Technique

No. of

Look

Ahead

tokens

No. of

Iterations

Grammar

recognition

Power

Grammar used

SLR 0 Maximum Least Powerful Context Free Grammar

CLR 1 Less than SLR Most powerful

Technique

Context Free Grammar

LALR 1 Less than

LALR

More powerful

than SLR but less

than CLR

Context Free Grammar

3. PARALLEL PARSING

Parallel parsing has been attempted by many in the past. The parallel processing was achieved by

assigning totally different user jobs to different processors. Zosel[9] focused on recognizing

FORTRAN DO-loops that can be collapsed into vector instructions for CDC 7600 machines.

Lincoln [10] first proposed the concept of parallel object code for FORTRAN and COBOL job

cards in an environment that consisted of IBM 704 uniprocessors and CDC 6500 of ILLIAC IV.

Mickunas and Shell[11] recognized the areas in a compilation process where the parallel

processing is inherent. They proposed to divide lexical analysis into scanning and screening.

They also developed a parallel parsing technique based on LR parsing. Hickey and Katcoff[12]

have analyzed parsing algorithms for upper bound on speedup whereas Cohen and Kolodner[13]

have estimated speedup in parallel parsing. Chandwani et al [14] developed a parallel algorithm

for CKY-parsing for context free grammars. Khanna et al[15] proposed the partitioning of

grammar to make it appropriate for parallel compilation. Object Oriented parsing was proposed

by Yonezmva and Oshava[16].

4. MACHINES ARCHITECTURE

Processor is a logic circuitry that responds to and processes the basic instructions that drive a

computer.

Single Core Processor is a processor that has only one core (Processor), so it can only start one

operation at a time. It can however in some situations start a new operation before the previous

one is complete.

Multi-core processor is a processing system composed of two or more independent cores. It can

be described as an integrated circuit to which two or more individual processors (called cores in

this sense) have been attached. Fig. 2 and 3 give a simplified view of single and multi-core

machines.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

54

Fig. 2 Single Core Machine

Fig. 3 Multi-Core Machine

Multi-core machines have various advantages like better resource utilization, efficient data

sharing (sharing data through memory is more efficient than massage-passing), increased

performance etc [17].

The major challenges while designing a multi-core compiler are program optimization, making

parallel programming mainstream and development of performance models to support

optimization for parallel code. Compiler should be capable of self improvement [18].

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

55

5. IMPLEMENTATION ISSUES IN PARALLEL PARSING

The efforts cited in reference [11]-[16] to develop parallel parsing algorithms are of theoretical

significance only. Their practical implementations have not been seen so far in real programming

languages for multi-core machines because of issues discussed next.

a) Division of code and Synchronization: Barve and Joshi[19][20][21] developed

some algorithms for doing parallel lexical analysis on multi-core machines. Their

approach is to divide the source code into number of blocks and perform lexical

analysis on individual blocks. Their approach was good for parallel lexical analysis.

If we use the same approach for syntax analysis, building of a common symbol table

is an issue as multiple instances of syntax analyzer would be in action. These syntax

analyzers would generate individual symbol tables corresponding to the source code

at their disposal.

b) Processor Issues: In the past, the researchers assumed that if n processors are

available then task is divided into several parts and is assigned to any of the

available processors that do the job independently. In multi-core machines this task

can be done by the use of processor affinity concept [22][23]. To obtain higher

degree of precision in time consumption, it is required that the underlying operating

environment be attached to a single processor relieving remaining processors for

exclusive use by the parallel parsing algorithm. Binding entire operating system to a

single processor is not straightforward.

c) Threading: Threading is an essential feature of multi-core machines which enables

us to achieve parallelism. Run time libraries like PTherad[24], Thread Building

Blocks(TBB)[25] and OpenMP[26] are used for this purpose. Threading is also

responsible for performance degradation. Some time more threading takes more

times as compared to serial counterpart of the target program. So, it is essential that

threading be used only when it is required and which results in increased

performance.

d) Task Distribution: Task distribution is also an important factor which affects

performance. The distribution of tasks may be done in such way that no processor

will be free after finishing its task. Rajan et al have evaluated the performance of

such distribution on High Performance Computing (HPC) clusters [27][28][29].

e) Context Switching: System has to pay the cost when context switching is done

specially in multi-core systems. Chuanpeng Li. Et al have shown the results of

experimentally quantifying the indirect cost of context switching using a synthetic

workload. They have also measured the impact of program data size and access

stride on context switch cost [30].

6. CONCLUSION

 In this paper various issues in implementation of parallel parsing algorithms on multi-core

machines were discussed. It is imperative to pay attention to synchronization among threads for

shared resources. This point has been addressed numerous times since the decades. The problem

becomes more serious as the number of core per machines and clock speed of processors

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

56

increase. Still a good amount of dedicated efforts is required to explore inherent property of

parallel processing present in multi-core machines targeting parsing.

REFERENCES

[1] M. E. Lesk, E. Schmidt; “Lex- A Lexical Analyzer Generator”; Computing Science Technical Report

No. 39, Bell Laboratories, Murray Hills, New Jersey, 1975.

[2] http://flex.sourceforge.net/

[3] S. C. Johnson; “YACC: Yet Another Compiler Compiler”; Computing Science Technical Report no

32, Bell Laboratories, Murray Hills, New Jersey, 1975.

[4] www.gnu.org/s/bison. (Last accessed on 05-Aug-2014)

[5] Alfred V. Aho, Ravi Sethi, Jeffrey D.Ullman; “Principles of Compiler Design”; Addison Wesley

Publication Company, USA, 1985.

[6] Alfred V. Aho, Ravi Sethi, Jeffrey D.Ullman; “Compilers: Principles, Techniques and

Tools”;Addison Wesley Publication Company, USA, 1986.

[7] Jean Paul Tremblay,Paul G. Sorenson;”The Theory and Practice of Compiler Writing”;McGraw-Hill

Book Company USA 1985

[8] David Gries; “Compiler Construction for digital Computers”; John Wiley & Sons Inc. USA, 1971.

[9] M. Zosel; “A Parallel Approach to Compilation”; Conf. REc. ACM Sysposium on Principles of

Programming Languages, Boston, MA, pp. 59-70, October 1973.

[10] N. Lincoln; “Parallel Compiling Techniques for Compilers”; ACM Sigplan Notices, 10(1970), pp. 18-

31, 1970.

[11] M. D. Mickunas, R. M. Schell; “Parallel Compilation in a Multiprocessor Environment”; Proceedings

of the annual conference of the ACM, Washington, D.C., USA, pp. 241–246, 1978.

[12] Timothy Hickey, Joel Katcoff; “Upper Bounds for Speedup in Parallel Parsing”; Journal of the ACM

(JACM), Vol. 29, No. 2, pp. 408 – 428, 1982.

[13] J. Cohen, Stuart Kolodner; “Estimating the Speed up in Parallel Parsing”; IEEE Transactions on

Software Engineering, January 1985.

[14] M. Chandwani, M. Puranik , N.S. Chaudhari, “On CKY- Parsing of Context Free Grammars in

Parallel”; Proceedings of the IEEE Region 10 Conference, Tencon 92, Melbourne Australia, pp. 141-

145, 1992.

[15] Sanjay Khanna, ArifGhafoor, AmritGoel; “A Parallel Compilation Technique Based on Grammar

Partitioning”; Proceedings of ACM annual conference on Cooperation, Washington, D.C., USA, pp.

385 – 391, 1990.

[16] Akinori Yonezmva, Ichiro Ohsawa; “Object-Oriented Parallel Parsing for Context-Free Grammars”;

Proceedings of the 12th conference on Computational linguistics – Vol. 2, Budapest, Hungry, pp.

773–778, 1988.

[17] Valeriy Shipunov, Andrey Gavryushenko, Eugene Kuznetsov,” Comparative Analysis of Debugging

Tools in Parallel Programming for Multi-core Processors” CADSM’2007, February 20-24, 2007,

Polyana, UKRAINE IEEE.

[18] Mary Hall, David Padua and Keshav Pingali,”Compiler Research:The Next 50 Years”,

Communication of the ACM Feb 2009,Vol. 2.

[19] Amit Barve and Dr. Brijendra Kumar Joshi;”A Parallel Lexical Analyzer for Multi-core Machine”;

Proceeding of CONSEG-2012,CSI 6th International confernece on software engineering; pp 319-

323;5-7 September 2012 Indore,India.

[20] Amit Barve and Brijendrakumar Joshi, "Parallel lexical analysis on multi-core machines using divide

and conquer," NUiCONE- 2012 Nirma University International Conference on Engineering , pp.1,5,

6-8 Dec. 2012. Ahmedabad, India.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014

57

[21] Amit Barve and Brijendrakumar Joshi; “Parallel lexical analysis of multiple files on multi-core

machines”; International Journal of Computer Applications; Vol. 96, No.8, June 2014.

[22] http://www.linuxjournal.com/article/6799?page=0,1.

[23] http://www.cyberciti.biz/tips/setting-processor-affinity-certain-task-or-process.html

[24] David R. Butenhof, “Programming with POSIX Threads”, Addison-Wesley Longman Publishing Co.,

USA 1997.

[25] http://openmp.org/wp

[26] http://www.threadingbuildingblocks.org.

[27] Rajan, A; Joshi, B.K.; Rawat, A; Jha, R.; Bhachavat, K., "Analysis of process distribution in HPC

cluster using HPL," 2nd IEEE International Conference on Parallel Distributed and Grid Computing

(PDGC), 2012, pp.85,88, 6-8 Dec. 2012 Solan India.

[28] Rajan A., Joshi B.K., Rawat A., Gupta S.”Analyitical Study of HPCC Performance Using

HPL”;International Journal of Computer Science and its Applications, Vol. 2, no. 1, p. 47-49, Apr.

2012.

[29] Rajan A., Joshi Brijendra Kumar, Rawat A.”Critical Analysis of HPL Performance under Different

Process Distribution Patterns”.CSI 6th International Conference on Software Engineering (CONSEG-

2012), DAVV, Indore, Sep., 5-7, 2012

[30] Chuanpeng Li, Chen Ding, Kai Shen;”Quantifying the cost of context switch”,ExpCS’07’ Proceeding

of the 2007 workshop on Experimental computer science; article 2; ACM New York USA;2007.

Authors

Mr. Amit Barve is an Assistant Professor in Computer Engineering at Vishwakarma

Institute of Information Technology, Pune (M.H.) India. He has completed BE in Computer

Science and Engineering from MIT Ujjain; M.Tech. in Computer Engineering from VJTI

Mumbai. His research interests are parallel processing, HPC, and compiler design.

Dr. Brijendra Kumar Joshi is a Professor in Electronics & Telecommunication and

Computer Engineering at Military College of Telecommunication Engineering, Mhow

(M.P.), India. He has obtained BE in Electronics and Telecommunication Engineering from

Govt. Engg. College Jabalpur; ME in Computer Science and Engineering from IISc,

Banglore, and Ph.D. in Electronics and Telecommunication Engineering from Rani Durgavati University,

Jabalpur, and M.Tech in Digital Communication from MANIT, Bhopal. His research interests are

programming languages, compiler design, digital communications, mobile ad hoc and wireless sensor

networks, software engineering and formal methods.

