
Semantically-Secured Message-Key
Trade-Off over Wiretap Channels
with Random Parameters

Invited Paper

Alexander Bunin, Ziv Goldfeld, Haim H. Permuter,
Shlomo Shamai (Shitz), Paul Cuff and Pablo Piantanida

Abstract We study the trade-off between secret message (SM) and secret key (SK)
rates simultaneously achievable over a state-dependent (SD) wiretap channel (WTC)
with non-causal channel state information (CSI) at the encoder. Thismodel subsumes
all other instances of CSI availability as special cases, and calls for an efficient uti-
lization of the state sequence both for reliability and security purposes. An inner
bound on the semantic-security (SS) SM-SK capacity region is derived based on a
novel superposition coding scheme. Our inner bound improves upon the previously
best known SM-SK trade-off result by Prabhakaran et al., and to the best of our
knowledge, upon all other existing lower bounds for either SM or SK for this setup.
The results are derived under the strict semantic-security metric that requires negli-
gible information leakage for all message-key distributions. The achievability proof
uses the strong soft-covering lemma for superposition codes.

A. Bunin · S. Shamai (Shitz) (B)
Technion—Israel Institute of Technology, Haifa, Israel
e-mail: sshlomo@ee.technion.ac.il

A. Bunin
e-mail: albun@tx.technion.ac.il

Z. Goldfeld · H.H. Permuter
Ben-Gurion University of the Negev, Beersheba, Israel
e-mail: gziv@post.bgu.ac.il

H.H. Permuter
e-mail: haimp@bgu.ac.il

P. Cuff
Princeton University, Princeton, US
e-mail: cuff@princeton.edu

P. Piantanida
CentraleSupélec-CNRS-Université, Paris-Sud, France
e-mail: pablo.piantanida@centralesupelec.fr

© Springer International Publishing AG 2018
M. Baldi et al. (eds.), Proceedings of the 2nd Workshop
on Communication Security, Lecture Notes in Electrical Engineering 447,
DOI 10.1007/978-3-319-59265-7_3

33



34 A. Bunin et al.

1 Introduction

Modern communication systems usually present an architectural separation between
error correction and data encryption. The former is typically realized at the physical
layer by transforming the noisy communication channel into a reliable “bit pipe”.
The data encryption is implemented on top of that by applying cryptographic prin-
ciples. The cryptographic approach relies on restricting the computational power of
the eavesdropper. The looming prospect of quantum computers (QCs) (some com-
panies have recently reported a working prototype of a QC with over than 1000
qbits [15, 16]), however, would boost computational abilities, rendering some crit-
ical cryptosystems insecure and weakening others.1 Post-QC cryptography offers
partial solutions that rely on larger keys, but even now considerable efforts are made
to save this expensive resource.

Physical layer security (PLS) [5, 18, 28], rooted in information-theoretic (IT) prin-
ciples, is an alternative approach to provably secure communication that dates back
toWyner’s celebrated 1975 paper on the wiretap channel (WTC) [26]. By harnessing
randomness from the noisy communication channel and combining it with proper
physical layer coding, PLS guarantees protection against computationally-unlimited
eavesdroppers with no requirement that the legitimate parties share a secret key (SK)
in advance. The eavesdropper’s computational abilities are of no consequence here
since the signal he/she observes from the channel carries only negligible information
about the secret data.

1.1 Background

Two fundamental questions in PLS are those of the best achievable transmission rate
of a secret message (SM) over a noisy channel, and the highest attainable SK rate
that distributed parties can agree upon.

1.1.1 Secret-Message Transmission

The basemodel for SM transmission isWyner’sWTC [26], where two legitimate par-
ties communicate over a noisy channel in the presence of an untrusted eavesdropper.
A full characterization of the secrecy capacity of WTCs that are degraded in favor

1More specifically, asymmetric ciphers that rely on the hardness of integer factorization or discrete
logarithms can be completely broken using QCs via Shor’s algorithm (or a variant thereof) [4, 22].
Symmetric encryption, on the other hand, would be weakened by QC attacks but could regain its
strength by increasing the size of the key [20]. This essentially follows since a QC can search
through a space of size 2n in time 2

n
2 , so by doubling the size of the key a symmetric cryptosystem

would offer the same protection versus a QC attack, as the original system did versus a classic
attack.
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of the legitimate parties was derived in [26]. The solution was extended to the not
necessarily degraded case by Csiszár and Körner [7].

A common method used in IT security proofs that dates back to the early days
of Wyner, Csiszàr and Körner, relies on evaluating rather complicated equivocation
terms. Recently, however, distribution approximation arguments emerged as a tool
of choice for proving security. The core result on which this approach relies is called
the soft-covering lemma (SCL), which originated from another 1975 paper byWyner
[25]. Interestingly, while both the WTC and the SCL appear in two works by Wyner
from the same year, he did not seem to make a connection between the two results
(although he must have been aware of a relation).

The SCL states the distribution induced by randomly selecting a codeword from
an appropriately chosen codebook and passing it through a discrete memoryless
channel (DMC) will be asymptotically indistinguishable from the distribution of
random noise. Wyner’s original result was sharpened throughout the years to hold
under stricter proximity measure between distributions [10, 11, 13, 14]. Based on
these sharper versions, one canmake the channel output observedby the eavesdropper
in the WTC look like noise and, in particular, be approximately independent of the
confidential data. More specifically, a wiretap code assigns a sub-codebook that
satisfies the soft-covering phenomenon to each confidential message. To transmit a
certain secretmessage, a codeword from its associated sub-codebook is randomly and
uniformly chosen and is fed into theWTC. Consequently, the distribution induced on
the output sequence observed by the eavesdropper given each confidential message
is indistinguishable from the distribution of random noise. This, in particular, implies
that the eavesdropper’s observation is asymptotically independent of the confidential
data,which implies security. The notion of soft-covering is key for deriving the results
of this work.

1.1.2 Secret-Key Agreement

The study of SK agreement was pioneered by Maurer [19], and independently by
Ahlswede and Csiszár [1], who studied the achievable SK rates based on correlated
observations at the terminals who may communicate via a noiseless and rate unlim-
ited public link. A characterization of the SK capacity was found in [1] for the case
where only one-way public communication is allowed. If the eavesdropper does not
observe a correlated source, thus having access only to the public communication,
the optimal SK agreement protocol uses Slepian-Wolf coding [23] for lossless recon-
struction with side information. When the eavesdropper also observes a correlated
source, a superposition coding scheme combined with Wyner-Ziv coding [27] is
needed to achieve optimality. The inner layer of the code carries no secret infor-
mation. It is designed to glut the eavesdropper with redundant information, thereby
wasting his/hers resources. The confidential data is encoded in the outer layer of the
superposition code and is protected by virtue of random binning. A generalization to
the case where the public link is of finite capacity is due to Csiszár and Narayan [8].
If the encoder controls its source (rather than just observing it), this source becomes
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a channel input and the setup evolves to aWTC. This is a special case of the so called
SK channel-type model that was also studied in [1].

1.2 Model and Contributions

A more general framework to consider is a state-dependent (SD) WTC with non-
causal encoder channel state information (CSI) (sometimes referred to as the Gelfand
and Pinsker (GP) WTC, due to the study of the corresponding point-to-point sce-
nario by the aforementioned authors [9]). The dependence of the channel on the
state accounts for the possible availability of correlated sources observations at the
terminals.

The similarity between the SM transmission and the SK agreement tasks makes
their integration in a single model only natural. Adhering to the most general frame-
work,we study the trade-off between theSM-SK rates that are simultaneously achiev-
able over a SD-WTC with non-causal encoder CSI. The scenario where there is only
a SM was considered in [6], where an achievable SM rate formula was established.
This result was recently improved upon in [12] based on a novel superposition coding
scheme. SK agreement over the GP-WTC was the focus of [17], and more recently
was also studied in [2] (see also references therein). The combined model was con-
sidered by Prabhakaran et al. [21], who derived a benchmark inner bound on the
SK-SM capacity region. The result from [21] was shown to be optimal for various
special cases. We propose a novel superposition coding scheme for the combined
model that not only subsumes [21] as a special case, but also captures [2, 6, 12, 17]
and, to the best of our knowledge, all other existing achievability results for SM
transmission, SK agreement or both.

Our coding scheme uses an over-populated superposition codebook that encodes
the entire confidential message in its outer layer. Using the redundancies in the inner
and outer layers, the transmission is correlated with the state sequence by means of
the likelihood encoder [24]. Although the redundancy indices are chosen as part of
the encoding process (rather than by the user), via the strong soft-covering lemma
(SCL) for superposing codes [12, Lemma 1], we show that their true distribution
is well approximated by a uniform distribution. Consequently, as long as a certain
redundancy index is kept secret (alongwith the confidential message) from the eaves-
dropper, it may be declared as a SK. The security analysis is based on constructing
the inner codebook such that it is better observable by the eavesdropper, making the
inner layer index decodable by him. This enhances the secrecy resources that the
legitimate parties can extract from the outer layer, which they use to secure the SM
and part of the redundancy index of the outer layer. The encoder and decoder then
declare the secured redundancy index as the SK. The agreed SK may be used to
further boost the SM rate by encrypting part of the message using a one-time pad
and transmitting it over the inner (unsecured) layer.
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Our results are derived under the strict metric of semantic-security (SS). The
SS criterion is a cryptographic gold standard that was adapted to the information-
theoretic framework (of computationally unbounded adversaries) in [3]. As was
shown in [3], SS is equivalent to a negligible mutual information (MI) between
the confidential information (in our case, the SM-SK pair) and the eavesdropper’s
observations for all message-key distributions. The proof of SS relies on the strong
SCL for superposition [12, Lemma 1] and the heterogeneous SCL [10, Lemma 1].
Since most of the past secrecy results mentioned above were derived under the weak-
secrecymetric (i.e., a vanishing normalizedMIwith respect to a uniformly distributed
message-key pair), our achievability outperforms the schemes from [2, 6, 17, 21]
for the SD-WTC with non-causal encoder CSI not only in terms of the achievable
rate pairs, but also in the upgraded sense of security it provides.

1.3 Organization

This paper is organized as follows. Section2 establishes notations and preliminary
definitions. Section3 describes the SD-WTC setting and states an inner bound on
SM-SK optimal trade-off region. In Sect. 4 we discuss past results that are captured
within our framework. An outline of the proof of our main result is the content of
Sect. 5. Finally, Sect. 6 summarizes the main achievements and insights of this work.

2 Preliminaries

We use the following notations. As customaryN is the set of natural numbers (which
does not include 0), while R are the reals. We further define R+ = {x ∈ R|x ≥ 0}.
Given two real numbers a, b, we denote by [a : b] the set of integers {

n ∈ N
∣
∣�a� ≤

n ≤ �b�}. Calligraphic letters denote sets, e.g.,X , while |X | stands for its cardinality.
X n denotes the n-fold Cartesian product of X . An element of X n is denoted by
xn = (x1, x2, . . . , xn); whenever the dimension n is clear from the context, vectors
(or sequences) are denoted by boldface letters, e.g., x.

Let
(
X ,F ,P

)
be a probability space, where X is the sample space, F is the

σ -algebra and P is the probability measure. Random variables over
(
X ,F ,P

)
are

denoted by uppercase letters, e.g., X , with conventions for random vectors similar
to those for deterministic sequences. The probability of an event A ∈ F is denoted
by P(A), while P(A

∣
∣B) denotes conditional probability of A given B. We use 1A

to denote the indicator function of A ∈ F . The set of all probability mass functions
(PMFs) on a finite set X is denoted by P(X ). PMFs are denoted by the letters
such as p or q, with a subscript that identifies the random variable and its possible
conditioning. For example, for a two discrete correlated random variables X and Y
over the same probability space, we use pX , pX,Y and pX |Y to denote, respectively,
the marginal PMF of X , the joint PMF of (X,Y ) and the conditional PMF of X
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given Y . In particular, pX |Y represents the stochastic matrix whose elements are
given by pX |Y (x |y) = P

(
X = x |Y = y

)
. Expressions such as pX,Y = pX pY |X are to

be understood to hold pointwise, i.e., pX,Y (x, y) = pX (x)pY |X (y|x), for all (x, y) ∈
X × Y . Accordingly,when three randomvariables X ,Y and Z satisfy pX |Y,Z = pX |Y ,
they form a Markov chain, which we denote by X − Y − Z . We omit subscripts if
the arguments of a PMF are lowercase versions of the random variables.

For a sequence of random variable Xn , if the entries of Xn are drawn in an iden-
tically and independently distributed (i.i.d.) manner according to pX , then for every
x ∈ X n we have pXn (x) = ∏n

i=1 pX (xi ) and we write pXn (x) = pnX (x). Similarly,
if for every (x, y) ∈ X n × Yn we have pYn |Xn (y|x) = ∏n

i=1 pY |X (yi |xi ), then we
write pYn |Xn (y|x) = pnY |X (y|x). The conditional product PMF pnY |X given a specific
sequence x ∈ X n is denoted by pnY |X=x.

The empirical PMF νx of a sequence x ∈ X n is νx(x) � N (x |x)
n , where N (x |x) =∑n

i=1 1{xi=x}. We use T n
ε (pX ) to denote the set of letter-typical sequences of length

n with respect to the PMF pX and the non-negative number ε, i.e., we have

T n
ε (pX ) =

{
x ∈ X n

∣
∣
∣
∣
∣νx(x) − pX (x)

∣
∣ ≤ εpX (x), ∀x ∈ X

}
. (1)

Definition 1 (Total Variation) Let (X ,F) be a measurable space and p and q be
two probability measures onF . The total variation between p and q is ||p − q||TV =
supA∈F

∣
∣p(A) − q(A)

∣
∣. If the sample space X is countable, the total variation

reduces to ||p − q||TV = 1
2

∑
x∈X

∣
∣p({x}) − q({x})∣∣.

3 SM-SK Trade-Off over Wiretap Channels
with Non-Causal Encoder CSI

We study the SD-WTC with non-causal encoder CSI, for which we establish a novel
achievable region of semantically-secured message-key pairs that subsumes the pre-
viously best known coding schemes for this scenario.

3.1 Problem Setup

Let S, X , Y and Z be finite sets. The
(
S,X ,Y,Z,WS,WY,Z |X,S

)
discrete and

memoryless SD-WTC with non-causal encoder CSI is illustrated in Fig. 1. A state
sequence s ∈ Sn is generated in an i.i.d. manner according toWS and is revealed in a
non-causal fashion to the sender, who chooses a message m from the set

[
1 : 2nRM

]
.

The sender then maps the observed state sequence s and the chosen messagem into a
channel input sequence x ∈ X n and a key index k ∈ [

1 : 2nRK
]
(the mapping may be

random). The sequence x is transmitted over the SD-WTCwith transition probability
WY,Z |X,S . The output sequences y ∈ Yn and z ∈ Zn are observed by the receiver and
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M
Encoder fn

X

K

W n
Y,Z|X ,S

Y

Z

Decoder φn

Eavesdropper

(M̂, K̂)

M,K

W n
S

S

Fig. 1 The state-dependent wiretap channel with non-casual encoder channel state information

the eavesdropper, respectively. Based on y, the receiver produces the estimates pair
(m̂, k̂) of (m, k). The eavesdropper tries to glean whatever it can about the message
and the generated key from z.

Remark 1 (MostGeneralModel)Before rigorously defining the setup and stating the
result, we note that the considered model is the most general instance of a SD-WTC
with non-causal CSI known at some or all of the terminals. The broadest model one
may consider is when the SD-WTC WỸ ,Z̃ |X,S1,S2,S3

is driven by a triple of correlated
state random variables (S1, S2, S3) ∼ WS1,S2,S3 , where S1 is known to the transmitter,
S2 is known to the receiver and S3 is available at the eavesdropper’s site. However,
setting S = S1, Y = (Ỹ , S2), Z = (Z̃ , S3) in SD-WTC with non-causal encoder CSI
and defining the channel’s transition probability as

WY,Z |X,S = W(Ỹ ,S2),(Z̃ ,S3)|X,S1
= WS2,S3|S1WỸ ,Z̃ |X,S1,S2,S3

,

one clearly recovers this (prima facie) general SD-WTC from the model with non-
causal encoder CSI only.

Definition 2 (Code) An (n, RM , RK )-code cn for the SD-WTC with non-causal
encoder CSI has a message set Mn �

[
1 : 2nRM

]
, a key set Kn �

[
1 : 2nRK

]
,

a stochastic encoder fn : Mn × Sn → P(Kn × X n) and a decoder φn : Yn →
Mn × Kn .

For any message distribution PM ∈ P(Mn) and any (n, RM , RK )-code cn , the
induced joint PMF is:

p(cn)(s,m, k, x, y, z, m̂, k̂) = Wn
S (s)PM(m) fn(k, x|m, s)Wn

Y,Z |X,S(y, z|x, s)
× 1{

(m̂,k̂)=φn(y)
}. (2)

The performance of cn is evaluated in terms of its rate pair (RM , RK ), its maximal
decoding error probability, the maximal distance of the distribution of K from being
uniform and independent of M , and the SS-metric.
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Definition 3 (Maximal Error Probability) The maximal error probability of an
(n, RM , RK )-code cn is e(cn) = maxm∈Mn em(cn), where:

em(cn) =
∑

(s,k,x)
∈Sn×Kn×X n

Wn
S (s) fn(k, x|m, s)

∑

y∈Yn :
φn(y)�=(m,k)

Wn
Y |X,S(y|x, s)

Definition 4 (Maximal Distance to Key Uniformity) The maximal distance to key
uniformity and independence of the message of an (n, RM , RK )-code cn is δ(cn) =
maxm∈Mn δm(cn), where δm(cn) = ∣

∣
∣
∣p(cn)

K |M=m − p(U )

Kn

∣
∣
∣
∣
TV and p(U )

Kn
is the uniform

PMF over Kn .

Definition 5 (Information Leakage and SS Metric) The information leakage to
the eavesdropper under the (n, RM , RK )-code cn and the message-key PMF pM ∈
P(Mn) is �(pM , cn) = Icn (M, K ;Z), where Icn denotes that the MI is taken with
respect to the marginal p(cn)

M,K ,Z of (2). The SS metric with respect to cn is2

�Sem(cn) = maxpM∈P(Mn) �(pM , cn).

Definition 6 (Achievability) A pair (RM , RK ) ∈ R
2+ is called an achievable SS

message-key pair for the SD-WTC with non-causal encoder CSI, if for every ε > 0
and sufficiently large n, there exists a (n, RM , RK )-code cn with e(cn) ≤ ε, δ(cn) ≤ ε

and �Sem(cn) ≤ ε.

Definition 7 (SS-Capacity) The SS message-key capacity region CSem of the SD-
WTC with non-causal encoder CSI is the closure of the set of achievable rate pairs.

3.2 Main Results

The main result of this work is a novel inner bound on the SS message-key capacity
region of the SD-WTC with non-causal encoder CSI. Our achievable region is at
least as good as the best known achievability results for the considered problem. To
state our main result, let U and V be finite alphabets and for any qU,V,X |S : S →
P(U × V × X ) define

RA
(
qU,V,X |S

)

�

⎧
⎪⎨

⎪⎩
(RM , RK ) ∈ R

2
+

∣
∣
∣
∣
∣
∣
∣

RM ≤ I (U, V ; Y ) − I (U, V ; S)

RM + RK ≤ I (V ; Y |U ) − I (V ; Z |U ),

RM + RK ≤ I (U, V ; Y ) − I (V ; Z |U ) − I (U ; S)

⎫
⎪⎬

⎪⎭
, (3)

2�Sem(cn) is actually the mutual-information-security (MIS) metric, which is equivalent to SS by
[3]. We use this representation rather than the formal definition of SS (see, e.g., [3, Eq. (4)]) out of
analytical convenience.
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where the MI terms are calculated with respect to the joint PMF WSqU,V,X |S ×
WY,Z |X,S , i.e., where (U, V ) − (X, S) − (Y, Z) forms a Markov chain.

Theorem 1 (Semantic-Security SM-SKCapacity InnerBound)The following inclu-
sion holds:

CSem ⊇ RA �
⋃

qU,V,X |S

RA
(
qU,V,X |S

)
. (4)

An extended outline of the proof of Theorem 1 is given in Sect. 5, and is based on a
secured superposition coding scheme. An over-populated two-layered superposition
codebook is constructed (independently of the state sequence), in which the entire
secretmessage is encoded in the outer layer, meaning no information is carried by the
inner layer. The likelihood encoder [24] uses the redundancies in the inner and outer
codebooks to correlate the transmitted codewords with the observed state sequence.
Upon doing so, part of the correlation index from the outer layer is declared by the
encoder as the key. The inner layer is designed to utilize the part of the channel
which is better observable by the eavesdropper. This saturates the eavesdropper with
redundant information and leaves him/her with insufficient resources to gather any
information on the SM-SK pair from the outer layer. The legitimate decoder, on the
other hand, decodes both layers of the codebook and declares the appropriate indices
as the decoded message-key pair.

Remark 2 (Interpretation of Theorem 1) To get some intuition on the result of Theo-
rem1,we examineRA(qU,V,X |S) from twodifferent perspectives:when the joint PMF
WSqU,V,X |SWY,Z |X,S satisfies I (U ; Y ) ≥ I (U ; S), or when the opposite inequality
holds.

If I (U ; Y ) ≥ I (U ; S), the third rate bound in RA(qU,V,X |S) becomes redundant
and the dominating bounds are

RM ≤ I (U, V ; Y ) − I (U, V ; S) (5a)

RM + RK ≤ I (V ; Y |U ) − I (V ; Z |U ). (5b)

The right-hand side (RHS) of (5a) is the total rate of reliable (secured and unsecured)
communication that our superposition codebook supports. This clearly bounds the
rate of the SM that may be transmitted. For (5b), the MI difference on the RHS
is the total rate of secrecy resources that are produced by the outer layer of the
codebook. Since the security of our SM-SK pair all comes from that outer layer, this
MI difference is an upper bound on the sum of rates.

For the opposite case when I (U ; Y ) < I (U ; S), the second inequality in RA

becomes redundant and we are left with

RM ≤ I (U, V ; Y ) − I (U, V ; S) (6a)

RM + RK ≤ I (V ; Y |U ) − I (V ; Z |U ) − [
I (U ; S) − I (U ; Y )

]
. (6b)
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While the interpretation of (6a) remains as before, to understand (6b), consider the
following. Since I (U ; S) is approximately the rate of the inner codebook, I (U ; Y ) <

I (U ; S) means that looking solely on the inner layer, the decoder is lacking the
resolution to decode it. Yet, the success of our communication protocol relies on
the decoder reliably decoding both layers. Therefore, in this case, some of the rate
from the outer layer is allocated to convey the inner layer index. Recalling that our
security analysis is based on revealing the inner layer to the eavesdropper, this rate
allocation effectively results in a loss of I (U ; S) − I (U ; Y ) in the secrecy resources
of the outer layer, giving rise to the rate bound from (6b).

4 Past Results as Special Cases

4.1 Prabhakarn’s SM-SK Trade-Off Region

The result of Theorem 1 recovers the previously best known achievable SM-SK
trade-off region over the SD-WTC with non-causal encoder CSI from [21]. In [21,
Theorem 1] the following region was established as an inner bound on the SM-SK
trade-off capacity region:

RPER �
⋃

qU×qV,X |U,S

RPER
(
qU × qV,X |U,S

)
, (7a)

where for any qU ∈ P(U) and qV,X |U,S : U × S → P(V × X ),

RPER
(
qU × qV,X |U,S

)

�
{
(RM , RK ) ∈ R

2
+

∣
∣
∣
∣
RM ≤ I (U, V ; Y ) − I (U, V ; S)

RM + RK ≤ I (V ; Y |U ) − I (V ; Z |U )

}
, (7b)

and the MI terms are taken with respect to WSqUqV,X |U,SWY,Z |X,S , i.e., U and S are
independent and (U, V ) − (X, S) − (Y, Z) forms a Markov chain.

First note that Theorem 1 recovers RPER by restricting U to be independent
of S in RA. This is since for an independent pair (U, S), we have I (U ; S) = 0,
while I (U, V ; Y ) ≥ I (V ; Y |U ) always holds. This makes the third rate bound in
RA redundant and RPER is recovered.

The result from [21] was derived under the weak-secrecy metric (i.e., a vanish-
ing normalized MI between the SM-SK pair and the eavesdropper’s observation
sequence 1

n I (M, K ;Z) where the message is assumed to be uniformly distributed).
Our achievability, on the other hand, ensures performance with respect to the strin-
gent SS-metric. Since Theorem 1 captures [21, Theorem 1] as a special case, it also
upgrades its result to SS.
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4.2 SM Transmission over SD-WTCs

In [12, Theorem 1] a lower bound on the SS-capacity of a SM transmission over
the considered SD-WTCwas established. The model considered in [12] is recovered
from the one considered here by removing the SK (RK = 0). The SS-capacity of a
SM transmission was shown to be lower bounded as

CSM−Sem ≥ RGCP � max
qU,V,X |S

RGCP
(
qU,V,X |S

)
, (8a)

where for any qU,V,X |S : S → P(U × V × X ),

RGCP
(
qU,V,X |S

)
� min

⎧
⎨

⎩

I (U, V ; Y ) − I (U, V ; S),

I (V ; Y |U ) − I (V ; Z |U ),

I (U, V ; Y ) − I (V ; Z |U ) − I (U ; S)

⎫
⎬

⎭
, (8b)

and the MI terms are taken with respect to WSqU,V,X |SWY,Z |X,S , i.e., (U, V ) −
(X, S) − (Y, Z) forms a Markov chain.

RGCP is the projection in the (RM , RK )-plane of RA from Theorem 1 to the RM

axis when RK = 0. Then main difference between the coding scheme from [12]
and our superposition code is the introduction of the additional index k ∈ Kn in the
outer layer of the codebook (that also encodes the SM m ∈ Mn). Along with the
other redundancy indices, k is used to correlate the transmission with the observed
state sequence via the likelihood encoder [24]. Based on distribution approximation
arguments we show that K is approximately independent of the message M and
approximately uniform. The pair (M, K ) is known to the transmitter (who chooses
them) and is reliably decoded by the receiver. Finally, by securing K along with M
in our analysis, it is established as a SK.

The intuition behind the SK construction is that, unlike the message, the key
does not have to be independent of the state sequence nor it is chosen by the user.
Therefore, the padding that ensures the correlation with the state sequence is a valid
key, as long as it is protected in the security analysis.

4.3 SK Agreement over SD-WTCs

In [2] two achievable schemes were proposed for SK agreement over a wiretap chan-
nel when the terminals have access to correlated sources. The results from [2] do not
imply one another and differ in one scheme being based on source and channel sep-
aration [2, Theorem 2], while in the other the coding is done jointly [2, Theorem 3].

The setup in [2] consists of three correlated sources Sx , Sy and Sz that are observed
by the encoder, decoder and eavesdropper, respectively, and a SD-WTC in which the
triple (Sx , Sy, Sz) plays the role of the state.Our general framework is defined through



44 A. Bunin et al.

the state distribution WS and the SD-WTC WỸ ,Z̃ |X,S . Setting S = Sx , Ỹ = (Sy,Y )

and Z̃ = (Sz, Z) recovers the model from [2] (see Remark 1).
The first scheme from [2, Theorem 2] operates under the assumption that the

SD-WTC decomposes as W(Sy ,Y ),(Sz ,Z)|X,Sx = WSy ,Sz |Sx WY,Z |X into a product of two
WTCs, one being independent of the state, while the other one depends only on
it. Thus, the legitimate receiver (respectively, the eavesdropper) observes not only
the output Y (respectively, Z) of the WTC WY,Z |X , but also Sy (respectively, Sz) - a
noisy version of the state sequence drawn according to the marginal ofWSy ,Sz |S . This
scheme shows that the SK capacity CSK is lower bounded as

CSK ≥ R(Separate)

BPS � max
[
I (T ; Y |Q) − I (T ; Z |Q) + I (Ṽ ; Sy |Ũ ) − I (Ṽ ; Sz|Ũ )

]

(9)

where the maximization is over all qṼ |Sx qŨ |Ṽ : Sx → P(Ṽ × Ũ) and qQ,T qX |T ∈
P(Q × T × X ) that give rise to a joint PMF WSx ,Sy ,Sz qṼ |Sx qŨ |Ṽ × qQ,T qX |TWY,Z |X
satisfying I (Ũ ; Sx |Sy) ≤ I (Q; Y ) and I (Ṽ ; Sx |Sy) ≤ I (T ; Y ). With respect to this
distribution (Sy, Sz) − Sx − V −U and Q − T − X − (Y, Z) form Markov chains
and (Sy, Sz, Sx , V,U ) are independent of (Q, T, X,Y, Z). This independence is the
essence of separation that uses the channel for two purposes: carrying communication
for SKagreement basedon the sources, and securing part of this communication using
wiretap coding.

Setting RM = 0,U = (Q, Ũ ), V = (T, Ṽ ) in Theorem 1, and limiting ourselves
to joint PMFs that satisfy I (U ; SY ,Y ) ≥ I (U ; Sx ), while keeping the above distri-
bution X , recovers (9).

The joint coding scheme from [2, Theorem3] does not require sources and channel
independence. i.e., no factorization property ofW(Sy ,Y ),(Sz ,Z)|X,Sx is assumed. It lower
bounds CSK as

CSK ≥ R(Joint)
BPS � max

[
I (Ṽ ; Sy,Y |Ũ ) − I (Ṽ ; Sz, Z |Ũ )

]
(10)

where themaximization is over all qṼ ,X |Sx qŨ |Ṽ : Sx → P(Ṽ × X × Ũ) that give rise

to a joint PMF WSx qṼ ,X |Sx qŨ |Ṽ W(Sy ,Y ),(Sz ,Z)|Sx ,X satisfying I (Ũ ; Sx ) ≤ I (Ũ ; Sy,Y )

and I (Ṽ ; Sx |Ũ ) ≤ I (Ṽ ; Sy,Y |Ũ ). Inserting into Theorem 1 RM = 0 and (U, V ) =
(Ũ , Ṽ ), where (Ũ , Ṽ ) is a valid auxiliary pair in R(Joint)

BPS , recovers (10). Consequently,
Theorem 1 unifies the schemes from [2], and since the results from [2] are under the
weak-secrecy metric, Theorem 1 also upgrades them to SS (see the discussion from
Sect. 4.1).
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5 Outline of Proof of Theorem 1

We give a detailed description of the codebook construction and of the encoding
and decoding processes. Due to space limitation, the analysis of reliability and SS is
omitted and only the required rate bounds accompanied by broad explenations are
provided. Fix a conditional PMF qU,V,X |S .

Codebook Cn: We use a superposition codebook where the outer layer carries both
the SMand the SK.The codebook is constructed independently ofS, but has sufficient
redundancy to correlate the transmission with S.

Define the index sets In �
[
1 : 2nR1

]
and Jn �

[
1 : 2nR2

]
, and let B(n)

U �{
u(i)

}
i∈In

be an inner layer codebook generated as i.i.d. samples of qn
U . For every i ∈

In , let B(n)
V (i) �

{
v(i, j, k,m)

}
( j,k,m)∈Jn×Kn×Mn

be a collection of |Jn||Kn||Mn|
vectors of length n drawn according to the distribution qn

V |U=u(i). We use Cn to denote
our superposition codebook, i.e., the collection of the inner and all the outer layer
codebooks. The encoder and decoder are described next for a fixed superposition
codebook Cn .
Encoder fn

(Cn): The encoding phase is based on the likelihood-encoder [24], which,
in turn, allows us to approximate the (rather cumbersome) induced joint distribution
by a much simpler distribution which we use for the analysis. Given m ∈ Mn and
s ∈ Sn , the encoder randomly chooses (i, j, k) ∈ In × Jn × Kn according to

p(Cn)

LE (i, j, k|m, s) = qn
S|U,V

(
s
∣
∣u(i), v(i, j, k,m)

)

∑

(i ′, j ′,k ′)
∈In×Jn×Kn

qn
S|U,V

(
s
∣
∣u(i ′), v(i ′, j ′, k ′,m)

) (11)

where qS|U,V is the conditional marginal of qS,U,V defined by qS,U,V (s, u, v) =∑
x∈X WS(s)qU,V,X |S(u, v, x |s), for every (s, u, v) ∈ S × U × V . The encoder

declares the index k ∈ Kn chosen by the by p(Cn)

LE as the key. Furthermore, the channel
input sequence is generated by feeding the chosen u- and v-codewords along with
the state sequence into the DMC qn

X |U,V,S .

Decoder φn
(Cn): Upon observing y ∈ Yn , the decoder searches for a unique tuple

(î, ĵ, k̂, m̂) ∈ In × Jn × Kn × Mn such that
(
u(î), v(î, ĵ, k̂, m̂), y

)
∈ T n

ε (qU,V,Y ).

If such a unique quadruple is found, then setφ(Cn)
n (y) = (

m̂, k̂
)
; otherwise,φ(Bn)

n (y) =
(1, 1).

The quadruple (Mn,Kn, f (Cn)
n , φ(Cn)

n ) defined with respect to the codebook Cn
constitutes an (n, RM , RK )-code cn .

Main ideas for the analysis: The key step is to approximate (in total variation) the
joint PMF induced by the above encoding and decoding scheme, say p(Cn), by a new
distribution Γ (Cn), which lands itself easier for the reliability and security analyses.
For any pM ∈ P(Mn), Γ (Cn) is
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Γ (Cn)(m, i, j, k,u, v, s, x, y, z, m̂) = pM(m)
1

|In||Jn||Kn|1
{
u=u(i),v=v(i, j,k,m)

}

× qn
S|U,V (s|u, v)qn

X |U,V,S(x|u, v, s)Wn
Y,Z |X,S(y, z|x, s)1{

φ
(Cn )
n (y)=(m̂,k̂)

}. (12)

Namely, with respect to Γ (Cn), the indices (i, j, k) ∈ In × Jn × Kn are uniformly
drawn from their respective ranges. Then, the sequence s is generated by feeding the
corresponding u- and v-codewords into the DMC qn

S|U,V . Based on [12, Lemma 1],
it can be shown that with respect to a random superposition codebook Cn , p(Cn) and
Γ (Cn) are close in total variation in several senses (both in expectation and with high
probability), if

R1 > I (U ; S) (13a)

R1 + R2 + RK > I (U, V ; S). (13b)

Having this, standard properties of total variation imply that K is indeed approx-
imately uniform and independent of M . Furthermore, based on the approximation
of p(Cn) with Γ (Cn), both the reliability and the security analysis are executed with
respect to Γ (Cn) rather than p(Cn). Standard joint-typicality decoding arguments for
superposition codes show that reliability follows provided that

R2 + RK + RM < I (V ; Y |U ), (14a)

R1 + R2 + RK + RM < I (U, V ; Y ). (14b)

With the help of the heterogeneous strong SCL from [10, Lemma 1], SS is ensured if

R2 > I (V ; Z |U ). (15)

The rate bound in (15) ensures that the distribution of the eavesdropper’s observation
given the inner layer codeword and each SM-SK pair is asymptotically indistinguish-
able form random noise. This asymptotic independence, in turn, implies semantic
security.

Finally, applying theFourier-MotzkinEliminationon (13), (14) and (15) to remove
R1 and R2, shows that RA

(
qU,V,X |S

)
is achievable.

6 Summary and Concluding Remarks

We studied the trade-off between SM and SK rates simultaneously achievable over
a SD-WTC with non-causal CSI at the encoder. This model subsumes all other
instances ofCSI availability as special cases.An inner boundon the semantic-security
SM-SK capacity region was derived based on a novel superposition coding scheme,
the likelihood encoder and soft-converging arguments. We showed that our inner
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bound recovers the previously best known SM-SK trade-off region by Prabhakaran
et al. [21]. Furthermore, our result recovers the best lower bounds that we are aware
of for either SM or SK rates achievable in this setup [2, 12]. Unlike most of the
previous results that were derived under the weak secrecy metric, our derivations
ensure semantic-security. It would be interesting to demonstrate a strict improvement
of the scheme presented here over the results in [21].
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