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Abstract—Monitoring the wall and plaque changes in the
carotid artery (CA) can provide useful information for the
assessment of the atherosclerotic disease. Using a motion mode
(M-mode) image, detailed information may be obtained about
wall and lumen dimensions, systolic and diastolic artery
diameter and distension, wall and plaque motion and thickness,
and also their corresponding states (timings). The wall
thickness and the diameter of the CA change during the
cardiac cycle are an indicator of regional contraction and
therefore an indication of a disease. The objective of this work
was to investigate how M-mode state based modeling of the CA
can be derived from a B-mode ultrasound video. Briefly, 10
longitudinal CA ultrasound videos acquired from symptomatic
subjects at risk of atherosclerosis were broken into frames and
their M-mode images were generated. These were then
despeckled and the atherosclerotic carotid plaque was
segmented from each video, in order to extract the states of the
video. By identifying the states of the CA, we can distinguish
between normal and abnormal plaque motion. It was shown in
this work, that M-mode state based modeling derived from B-
mode videos can be used successfully to derive the carotid
states and assess the corresponding wall changes. However,
further work in a larger number of videos is needed for
validating the proposed method and to differentiate between
normal and abnormal state based plaque motion analysis.

I. INTRODUCTION

ARDIOVASCULAR disease (CVD) is the third leading

cause of death and adult disability in the industrial
world after heard attack and cancer. According to [1], 80
million American adults have one or more types of CVD of
whom about half are estimated to be age 65 or older. The
carotid artery (CA) function and its wall motion can be
assessed in real time by ultrasound, when recording
sequences of images. One approach for quantifying the wall
changes would be to quantitatively assess wall motion in the
images as they are acquired [2]. The objective of this work
was to investigate how M-mode state based modeling of the
CA can be derived from B-mode ultrasound video that will
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subsequently facilitate the assessment of states and wall
changes of the carotid. In this paper we focus on the states
extraction.

M-mode images also allow for the analysis of regional
wall motion dynamics, which can be used to diagnose
myocardial ischemia [3]. Gradients between velocity values
in different myocardial layers, computed using M-mode
tissue Doppler images have also been shown to provide
diagnostic information [4]. On 2D images, velocity profiles
and their evolution along time can be obtained from any line
of the heart selected by the user, a procedure usually known
as anatomic M-mode [5]. In [6] M-mode images were
generated from echocardiography images by manually
selecting a line over the myocardium. In [7] the states of
echocardiogram videos were modeled and extracted based
on a hierarchical state based modeling by identifying the
views, states and substates of objects. Finally, in [2] the
diastolic and systolic diameters of the CA were estimated by
using B-mode, M-mode and Hough transform and it was
shown that those estimated by Hough transform are more
accurate. The objective of our study was to generate an M-
mode image from its respective CA B-mode video, extract
its states and assess the wall changes.

In M-mode echocardiography images (or videos), high
frequency modulation components are found in the vertical
direction (changes in the images contrast), whereas
frequency modulation in the horizontal direction is less
significant. This observation was also utilized in [8], where
an AM-FM demodulation was proposed, to track the wall
boundaries of the heart. A filter was adaptively selected,
which emphasizes the image’s contrast change level at a
given region of the image, to track the wall’s boundaries.

We hypothesized that converting real time ultrasound
video (see Fig. 1a) to an M-mode representation (see Fig.
le), would allow (a) a simple continuous display of CA wall
function, (b) simplify real time segmentation and automatic
extraction of wall motion parameters such as the
identification of the CA video states, and c¢) differentiate
between normal and abnormal motion.

The paper is organized as follows. In section II materials
and methods are given, in section III the results are
presented, and sections IV and V give the discussion and the
concluding remarks respectively.




Step I: Record and digitize the video of the CA.

Step 2: Load the initial B-mode video and despeckle all frames by applying the Ismv despeckle filter [10].
Step 3: Segment the plaque and the opposite wall (every 5 frames) of the CA by using a snakes
segmentation algorithm [9] (see Fig. 2b, c).

Step 4: Approximate the plaque by an ellipse and identify the minor and major axis. Define rays-lines that
cross the major axis of the plaque, placed at the major axis quintiles (20%, 40%, 60%, and 80%) (see Fig.
2d).

Step 5: Read the same ray-line (one pixel wide) estimated in step 4 for each consecutive video frame

Step 6: Generate the M-mode image by placing these lines (rays) in the Y-axis, and as X-axis each frame of
the video (see Fig. 2e). Four M-mode images are thus generated, one for each ray of Fig. 1d).

Step 7: Manually locate the near and far walls on the M-mode image and binarise the image. Convert both
areas to binary by image thresholding, in order to extract edges more easily. A threshold is calculated from
the despeckled grayscale image according to [11] so that the intraclass variance of the thresholded black
and white pixels is minimized.

Step 8: Dilate the binary image (of step 7) by an 3x3 pixel-structuring element consisting of ones. This
morphological operation is performed to close small gaps and form a continuous boundary.

Step 9: Remove erroneous small edges that might trap the snake. This is carried out by labeling connecting
components in the image where the number of connecting components in a pixel neighborhood was chosen
to be eight. Small segments that are smaller than 20 pixels, and do not belong in the boundary are therefore
removed.

Step 10: Extract both the near and far wall boundaries and construct the corresponding interpolating B-
spline. Sample the interpolating B-splines, in equal distance points, in order to define a number of snake
elements on the contour. The number of snake points was variable and was determined according to the
area chosen by the user.

Step 11: Map the detected contour points from step 10, on the M-mode image of Fig. 2e, to form the initial
snake contours for the near and far walls (see Fig. 2f).

Step 12: Apply the snakes segmentation algorithm [9] to extract and refine the final snake contours for the
near and far walls for the 4 rays of Fig. 1d) (see Fig. 2g).

Step 13: Draw the lumen rate of change (see Fig. 2h), i.e. difference between the near and far wall
boundaries (see Fig. 2g).

Step 14: Compute the average lumen rate of change for the four rays estimated in step 13 of Fig. 2h, see
Fig. 2i. Estimate minima and maxima on the averaged lumen rate of change curve for each cardiac cycle.
Mark each minimum with a cross (+) that indicates minimum carotid diameter during contraction, and each
maximum with an asterisk (*) that indicates maximum carotid diameter during distension. These markings
describe the M-mode states during a cardiac cycle.

Fig. 1. Steps followed in the analysis of ultrasound videos for generating the M-mode state based identification.
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II. MATERIALS AND METHODS

Figure 1 summarizes all the steps followed in the analysis
of ultrasound videos for generating the M-mode state based
identification.

A. Recording of CA Videos (Fig. 1, step 1)

A total of 10 CA digitized videos from B-mode
longitudinal ultrasound segments were recorded by the ATL
HDI-5000 ultrasound scanner (Advanced Technology
Laboratories, Seattle, USA) at a frame size of 576x768
pixels with 256 gray levels, a spatial resolution of 16.6
pixels per mm (i.e. the resolution is 60um), and having a
frame-rate of 20 frames per second. For detailed technical
characteristics of the ultrasound scanner (multi element

aperture, spatial pulse length, axial system resolution, and
transmission focal range) refer to [9].

The videos were recorded at the Cyprus Institute of
Neurology and Genetics, in Nicosia, Cyprus, from 10
(female/male) symptomatic patients aged between 26 and 85
years old, with a mean age of 54 years. These subjects were
at risk of atherosclerosis and they have already developed
clinical symptoms.

B. Speckle Reduction Filtering (see Fig. 1, step 2)

Due to the presence of speckle noise in ultrasound video,
it is difficult to effectively apply different image processing
and analysis algorithms. Speckle is a multiplicative locally
correlated noise, which limits the contrast resolution in



ultrasound imaging affecting the detectability of small, low
contrast lesions. It was therefore recommended in [9], [10]
to remove speckle noise from the B-mode image prior to
further analysis. In this study, the linear scaling filter (linear
scaling mean variance-/smv) [10] utilizing the mean and the
variance of a pixel neighborhood was used. The filter may
be described by a weighted average calculation using sub
region statistics to estimate statistical measurements over
5x5 pixel windows applied for three iterations [10]. The
filter was applied in each consecutive video frame.

C. Snakes Segmentation (See Fig. 1, step 3)

Segmentation of the CA in the upper and lower walls
(Fig. 2b) in the first frame of the CA video was carried out
after despeckle filtering [10] every 5 frames, using the semi
automated snakes segmentation system proposed and
evaluated on ultrasound images of the CA in [9], which is
based on the Williams & Shah [12] snake. The plaque
(either in the upper or lower wall) was then approximated by
an ellipse and the minor and major axis were identified (see
Fig. 2¢).

D. M-mode Image Generation (See Fig. 1, step 6)

The M-mode image could be generated in such a manner
that it crosses the whole plaque borders having maximum
motion in opposite directions [7]. Perpendicular lines that
cross the major axis of the plaque were placed automatically
at the major axis quintiles (20%, 40, 60%, and 80%) (see
Fig. 2d). By scanning the intensity values along the straight
perpendicular line selected by the user, the M-mode image is
generated, by positioning this line in parallel with the Y-axis
for each consecutive frame of the video that appear in the X-
axis. Four M-mode images were generated for each of the
corresponding four perpendicular lines. The manual
delineations as well as all other measurements were
performed using a system implemented in MATLAB® from
our group.

E. Near and far wall boundary extraction and rate of
change (see Fig. 1, steps 7-12)

The M-mode image, (see Fig. 1, step 6) were converted to
binary, and morphological operators were applied to smooth
the edges (see Fig. 1, steps 7-10). Then, edge detection was
applied on each M-mode image in order to derive the initial
near and far wall boundaries (see Fig. 1 step 11, as
illustrated in Fig. 2f). The snakes segmentation system [9]
was also used to refine the derived snakes contours (see Fig.
1 step 12, as illustrated in Fig. 2g) for the near and far walls
of the CA found on the M-mode image.

F. State identification (see Fig. 1, steps 13-14)

Compute the lumen rate of change (see Fig. 2h), i.e. the
difference between the near and far wall boundaries (of Fig.
2g) (see Sig. 1 step 13). The above procedure is applied for
the 4 rays. Compute the average lumen rate of change for
the four rays estimated in step 13 of Fig. 2h, see Fig. 2i (see
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Fig. 2. Illustration of the M-mode state based identification. (a) Ultrasound
video of the CA (first frame of video). (b) Segmentation of the plaque and
the near wall of the CA by snakes. (c) Extracted plaque. (d) Quintile ray
definition on the segmented plaque (4 rays). (¢) Despeckled M-mode image
generated form the CA video for ray 2. (f) Segmented near and far wall
boundaries for ray 2. (g) Near and far wall boundary movements for the four
rays of Fig. 1 d. The x-axis shows the time in seconds and the y-axis shows
the displacement in micrometers. (h) Lumen rate of change for the 4 rays
(difference between near and far wall boundaries of Fig. 1 g. (i) Average
rate of change for the 4 rays of Fig. 1h. Cross (+) indicates minimum carotid
diameter during contraction, and asterisk (*) indicates maximum carotid
diameter during distension.

. .
. n
) il I3
AR UK ¥ I\ / I
ik gy B \ \ iy
R Rl {1}
\ / AT\ : N /
{ WA / \/f I:A f
. X o \ \ /
W/ / \ + |
f | \ 4
N | L
/ \ f
\ / | \ /
\/ |
1 2 3 5 6 7
Se

(U]




Fig.1 step 14). Estimate minima and maxima on the
averaged lumen rate of change curve for each cardiac cycle.
Mark each minimum with a cross (+) that indicates
minimum carotid diameter during contraction, and each
maximum with an asterisk (*) that indicates maximum
carotid diameter during distension. These markings describe
the M-mode states during a cardiac cycle.

G. Evaluation metrics

In order to evaluate our algorithm, the following metrics
between the automated and manual state diagram timings
were computed:

1) The randomized mean square error (RMSE):

RMSE= [3[4,-M]] /2N)

where A and M represent the automated and manual state
diagram timings, and N is the number of states (2x the heart
rhythm).
2) The normalized mean square error (NMSE):
NMSE =100 * RMSE / std
with stdy is the standard deviation over all timings.
3) The mean average error (MAE):
MAE=Y|4,-M|/N
4) The mean average randomized error:
A4, -M
M i

MARE=Z‘ H/N -

III. RESULTS

Figure 2 illustrates the M-mode and the states generation
from a CA video. Table I presents the results of the
evaluation metrics between the manual and the automated
state timings (averagetstd) in microseconds, for all 10
videos of the CA. Table II presents the results of the carotid
diameter during contraction (CDC) and the carotid diameter
during distension (CDD) (CDC=5.26+0.52mm,
CDD=5.814+0.59mm), and the percentage of the carotid wall
distension (% CWD=((CDD-CDC)/CDC)*100%), which
was %CWD=9.21+3.88%.

IV. DISCUSSION

The objective of this work was to investigate how M-
mode state based modeling of the CA can be derived from a
B-mode ultrasound video. Briefly, 10 longitudinal CA
ultrasound videos acquired from symptomatic subjects at
risk of atherosclerosis were broken into frames and their M-
mode images were generated. These were then despeckled
and the atherosclerotic carotid plaque was segmented from
each video, in order to extract the states of the video. By
identifying the states of the CA, we can distinguish between
normal and abnormal plaque motion.

We have shown in this paper that state based video
modeling can be used to identify video segments dynamic
behavior in ultrasound videos of the CA.

TABLEI
EVALUATION METRICS BETWEEN THE MANUAL AND THE AUTOMATIC

STATES IN psecs.

Video RMSE  NRMSE MAE MARE
1 200 361 249 5
2 309 408 349 1
3 221 249 208 10
4 184 211 169 6.5
S 212 305 184 6.5
6 279 386 142 6.5
7 190 445 219 8.5
8 391 431 433 11.5
9 159 231 167 13.5
10 143 195.50 111 9.50
Average 228476 322496 222499 7.9+3.5

RMSE: Relative mean square error, NRMSE: Normalized mean square
error, MAE: Mean Absolute error, MARE: Mean absolute relative
error.

TABLEII
CAROTID DIAMETER DURING CONTRACTION (CDC), CAROTID
DIAMETER DURING DISTENSION (CDD) AND % OF CAROTID WALL

DISTENSION (%CWD)
Video CDC CDD %CWD

1 4.59 4.92 7.19

2 6.20 6.53 5.32

3 6.10 6.65 9.02

4 4.78 5.12 7.11

5 4.96 5.12 3.23

6 5.25 6.10 16.19

7 523 5.84 11.66

8 5.10 5.88 15.29

9 5.28 5.89 11.55

10 5.10 5.95 16.67
Average  5.26+0.52mm 5.81£0.59mm  10.32+4.71%

Golemati et al. [13], used block matching-based

techniques to estimate arterial motion from B-mode CA
ultrasound images. They estimated motion at the wall-lumen
interface and within the tissue using block sizes of 3.2x2.5
mm and 6.3x2.5 mm, respectively, and the normalized
correlation coefficient as the matching criterion.
Measurements in 9 normal (nonatherosclerotic) adults
showed that arterial wall distensibility in the radial direction
was significantly higher than distensibility in the
longitudinal direction (10.2+4.5% vs. 2.5+0.89%). Results
in [13] were very similar with our results, where we found in
this study a distensibility of 9.21+3.88% in the radial
direction.

In [14], a review was attempted regarding the analysis and
quantification of motion of the CA wall from sequences of
B-mode ultrasound images. Motion of the carotid artery wall
and plaque from sequences of ultrasound images has been
estimated using block matching and optical flow techniques.
The main sources of arterial wall motion were also described
and the most common techniques for CA wall motion were
discussed.

In another study [15] it was shown that M-mode
ultrasound analysis of circumferential inter-adventitial strain



is a simple and safe non invasive tool for bed-side
determination of CA mechanics. It proved to be a sensitive
tool for measurements of strain decrease with increasing age
and male sex and strain increase with smoking and obesity
when evaluated on the right CA. Therefore, it might be used
for screening of “unsuccessful vascular aging” and still
potentially reversible subclinical carotid atherosclerosis
thereby lowering the cut-off value of vascular damage
towards the values of unaffected population. It provides
opportunities for introduction of different therapeutic or life-
style change strategies for reduction or retardation of overt
clinical manifestation of cerebrovascular disease.

In a recent study [7], the states of echocardiogram videos
were identified based on a state detector, which first detects
the view boundaries using histogram based comparison and
edge change ratio. Next, a state classifier recognizes each
view type by considering signal properties of different
views. Then, state information is extracted from each view
segment using a new type of M-mode generation method
named as sweep M-mode. Finally, sub-states are extracted
from colour flow Doppler images using Radial M-mode.
The accuracy of the classifier was 97.19% which was higher
than two existing approaches [16], [17]. Misclassification
error of state detection was less than 13% which is
reasonably low.

In [4] gradients between velocity values in different
myocardial layers were computed using M-mode tissue
Doppler images. It was shown that there is a non-uniform
distribution of velocities in the different myocardial layers
under normal conditions. This distribution of velocities
undergoes a significant change in patients with ischemic
myocardial damage. Intramyocardial wall motion analysis
could have therefore, clinical applications in both the early
detection of ischemia and myocardial viability.

In [6] M-mode from echocardiogram videos were
generated, where the user manually selects a line in the first
frame of the video sequence, where the trace was moved
either manually or automatically, by maintaining it in the
middle of the cardiac cavity along the sequence. In [3] a
methodology and a software package developed to quantify
M-mode tissue Doppler imaging, defining a number of
quantitative parameters drawn from velocity and gradient
curves obtained after segmenting the myocardial wall into
anatomical layers was presented. These parameters were
used to provide predictive clinical value to detect motion
abnormalities in the presence of ischemia where 17 healthy
and 18 ischemic patients were compared. It was shown that
any single parameter related to the gradient intensity,
particularly the maximum gradient at the moment of the e-
wave, provides meaningful clinical information, achieving a
rate of correct classification of 79.1% on the same data set
used for the analysis.

Normal and abnormal motion was also investigated in [5],
where it was shown that measurement of systolic thickening
using anatomical M-mode echocardiography offers an
objective method to quantify systolic thickening at

dobutamine echocardiography but has limited clinical
feasibility.

Motion of the CA wall and plaque, which contributes to
plaque rupture and occurrence of vascular symptoms, can be
efficiently estimated from B-mode ultrasound image
sequences using block matching or optical flow. The
existing literature on the analysis of motion of the CA wall
from video ultrasound is relatively limited probably due to
the difficulties inherent in reliable acquisition of image data.
Possible research perspectives in this field may be orientated
towards to the development of new m-mode identification
algorithms, where comparisons of the performance and
results of different algorithms are crucial for our
understanding of the motion field of the arterial wall.
Furthermore, from a physiological viewpoint, the motion
field of the healthy and diseased arterial wall remains to be
studied in detail using one or more appropriate algorithms.

V. CONCLUDING REMARKS

We have shown in this paper that the proposed state-
based video data model can be used efficiently to retrieve
video segments depicting specific dynamic behaviour of the
CA. Further work in more videos is needed to differentiate
between normal and abnormal state based plaque motion
analysis.
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