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Abstract—Genetic differences have been shown to contribute 
to gene expression variability. A complete evaluation of the 
associations between a whole genome scan with 550k Single 
Nucleotide Polymorphisms (SNPs) and 54k detectable 
expression levels (probesets) was performed on 176 human 
peripheral blood samples. The results are presented along with 
visualizations that reveal cis and trans gene expression 
regulatory effects. The algorithmic approach followed utilized a 
distributed computational system. The analysis was performed 
using a linear regression adjusting for all relevant covariates. 
Permutation testing on a random subset of the top results 
provided an indication of the significance levels adjusted for 
multiple testing and the non independence of SNPs due to 
linkage disequilibrium. The database of the produced results 
can be used as a resource to assess the functional impact of 
genetic polymorphisms to gene expression regulation. This 
resource is applicable across all disease areas.  

I. INTRODUCTION 

HE need to identify and understand the functionality of 
biological mechanisms behind genetic diseases has led 

to large studies where samples were genotyped using high 
density whole genome scans [1]. However, even when 
analyses of these studies were successful in identifying 
significant associations between a disease phenotype and 
genetic polymorphism, the functional impact of the 
polymorphism on the biological mechanisms of gene 
expression control remained unknown [1],[2]. Gene 
expression level data quantify the level of expression of 
genes in sampled cells. This type of data has been used to 
discover associations between a disease phenotype and the 
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level of expression of a gene in a specific type of cell.  
In this paper we present an analysis of a study that has 

both genetic polymorphism data (550k single nucleotide 
polymorphisms, SNPs) and gene expression data (54k 
probesets of mRNA expression data) across the whole 
genome on 176 subjects to evaluate associations between 
polymorphisms and gene expression. These results are 
disease independent and are therefore applicable to any 
subject domain where knowledge of the functional impact of 
a polymorphism to gene expression level is required. 

Cis acting elements and trans acting factors can be 
identified from this analysis by considering the distance 
between SNPs and mRNA probesets in significant 
associations. Cis-acting members are DNA sequences in the 
vicinity of the structural portion of a gene expression, while 
trans-acting factors are typically other genes who’s products 
bind to cis-acting sequences to regulate gene expression 
[14]. 

Similar studies as the one presented have been conducted 
in the past [3],[4],[5]. Those were done using different types 
of cells for the gene expression data, and genotyping 
platforms with a significantly smaller number of SNPs. 
However the numbers of samples in each study as well as 
the phenotypic traits of the subjects vary. All previous 
studies were able to discover many statistically significant 
associations between genetic polymorphisms and gene 
expression data.  

II. METHODS AND MATERIAL 

A. Datasets 

The dataset used consisted of 176 subjects of whom 119 
were diagnosed with recurrent Major Depressive Disorder ( 
MDD ) and 57 were healthy individuals. Those individuals 
were extracted from a larger study of 1022 Caucasians 
diagnosed with recurrent MDD and 1000 Caucasians age- 
and gender-matched non-affected controls referred to as 
Sample I in [1] that were genotyped with the  Ilumina 
HumanHap550 array platform. Diagnosis of recurrent 
depression (at least two episodes of depression) was based 
on DSM-IV criteria after administration of the structured 
clinical interview (SCAN) [6]. The SNPs remaining after 
quality control for minor allele frequency threshold greater 
than 0.01, and missing data frequency greater than 0.1  were 
511,525.  

The 176 Subjects used for gene expression profiles were a 
subset of age and gender matched case/controls patients 
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generated after excluding subjects with comorbidities for 
major medical conditions, heavy smokers, subjects sampled 
after a meal or subjects with more than 0.1% missing 
genotypes. Whole blood mRNA expression data were 
generated on these subjects by using Affymetrix HU133 plus 
v.2 GeneChipsTM in two batches, each batch analyzing half 
the samples.  

Samples were randomized prior to processing using the 
NuGEN Ovation RNA Amplification System 2 (NuGEN, 
San Carlos, USA). The resulting fragmented and labeled 
material was hybridized to the human U133plus2 chip for 
sixteen hours. The array was washed and scanned according 
to Affymetrix protocols. Genechip data quality was assessed 
using report files generated in GCOS (GeneChip® 
Operating System) and checked against in house criteria for 
probe and hybridization quality. In addition, gene array data 
quality was assessed for homogeneity of quality control 
metrics by Principal Component Analysis (PCA) using 
Simca by Umetrics. 

The global analysis of gene expression was initially 
processed by normalizing probeset intensity data using 
Rosetta Resolver for the visual assessment of key trends by 
gene expression. Further analysis was undertaken using the 
normalized probeset intensities by performing a General 
Linear Model (GLM) based analysis using SAS v9.1 and 
modeling either for triad or gender and disease.  Post hoc 
testing was then performed to allow comparison of gene 
expression levels between the control versus depressed 
patient groups as well as identification of gene expression 
changes which showed differences between males and 
females. 

B. Methodology 

When choosing a statistical methodology for performing 
the tests the type of data as well as the need to adjust for 
covariates needs to be taken into account. In this project, 
linear regression was used as it allowed for quantitative traits 
and the adjustment of multiple covariates [7]. The covariates 
used were the disease status of the subjects, the batch 
number and their age at the time the blood samples used in 
the mRNA expression data were taken.  

The multiple testing problem in this project needed to be 
addressed as the number of tests was high (1013) [8]. 
Bonferoni correction was used to address this issue [9]. This 
approach utilizes a simple heuristic to correct the p-values 
for the number of tests performed. It tends to work well for 
independent tests [9]. However, SNPs are not completely 
independent as some of them may be in Linkage 
Disequilibrium, a non random association of alleles at two or 
more loci [10]. 

The optimal way with regard to the quality of the results 
to address this problem was through permutation testing, a 
computationally intensive approach generating the 
significance levels empirically [8],[11]. One of the many 
merits of this approach is that it preserves the correlation 
structure between SNPs, therefore it is not negatively 
affected by Linkage Disequilibrium between SNPs. 

However, permutation testing is so computationally 
intensive that it was prohibitive to perform on all 1013 tests. 

In order to get a reasonable estimation of the deviation 
between the Bonferoni adjusted p-values for multiple testing 
and the permutation derived p-values for the top results, an 
analysis was conducted on a subset of 18344 of the top 
results with a p-value smaller than 10-5.  

Due to the high number of tests that needed to be 
performed using linear regression, the computational 
capacity needed to complete the analysis within a reasonable 
time frame was very high. Therefore, a computer grid 
composed of 200 processing units was used and a distributed 
computing algorithm was implemented to enable the use of 
all processing cores in parallel to generate the needed 
results.  

In order to reduce the size of the produced data only 
statistically significant results prior to adjustment for 
multiple testing using a threshold of p < 0.01 were recorded. 
However, we expected that the number of results passing 
that threshold would still be too high to be effectively 
visualized. To address this, a database application was 
implemented that was tailored to the needs of this project. It 
is capable of quickly producing subsets of results by 
querying probesets or SNPs’ genomic regions of interest, by 
specifying the number of the most significant results to 
include in the subset, or by querying on the ontology or any 
annotation information of any gene, mRNA probeset or SNP 
in the dataset [11],[12]. 

C. Query and Visualization of Results 

All results included detailed annotation information for the 
genetic regions of both the mRNA expression data and the 
genetic polymorphisms as well as information derived from 
gene ontology [13]. The graphs presented in the paper were 
created using the Spotfire DXP software package.  Any 
other software platform that enables query and visualization 
of large spreadsheet type data could be used; however 
Spotfire DXP has a high capacity in terms of handling large 
data sizes such as the ones generated in this project.  

III. EXPERIMENTAL RESULTS 

The analyses using linear regression of all SNPs against 
all probesets took 12 days and 12 hours while the 
permutation analyses on the subset of top results took 5 days 
and 8 hours on the 200 processing unit system. These times 
were estimated based on the amount of time allocated to this 
project by the distributed computing resource’s job 
scheduler. The actual run times were slightly longer as each 
analysis took 1 extra day due to other programs running for 
short periods of time on the same resource with higher 
priority than this project.  

Out of the 4,981,737 associations that passed a threshold 
of p-value < 10-5, 18344 were randomly selected for 
permutation testing. This was the maximum number of tests 
that could be performed in the allocated time on the 
machines. The number of permutations was set to 1010. 
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However, for 120 of the permuted tests the number of 
permutations was not adequate to accurately estimate a p-
value since the empirically derived signal was stronger than 
10-9. The LOD (-log10 p-value) scores from the remaining 
18224 empirically derived p-values were on average just -
1.73e-1 off from the linear regression derived LOD scores 
with a standard deviation for the difference of 2.89e-1. All 
but one of the empirically tested associations were 
statistically significant. 

Associations with an unadjusted p-value less than e-7 
were plotted and are shown in fig. 1. The y axis represents 
the LOD score derived from the linear regression analyses, 
and the X axis represents the chromosomal location of the 
SNP in the association with the labels representing the 
chromosomes. The statistical significance threshold (p-value 
0.01) after Bonferoni correction for multiple testing is p-
value = 3.62e-13, LOD=12.44, a line identified as Bonferoni 
is ploted to help identify the statistically significant results 
after Bonferoni adjustment.   As can be seen from fig. 1, the 
number of associations that pass the threshold of statistical 
significance 0.01 using Bonferoni correction is very high 
(6104) and they span the entire genome.   

In fig. 2, the results with a p-value less than 10-10 were 
selected. The chromosomal location of the SNP and the 
center of the probeset are on the Y and X axis respectively. 
Probesets that map to more than one location were not 
included. In this graph there seem to be many associations 
across the Y = X diagonal. These associations are between 
SNPs and mRNA sequences that are very close together or 
overlapping. In biological terms, these are called cis-acting 
elements. The associations between polymorphisms and 
probesets derived from mRNA sequences on different 
chromosomes are considered to be trans-acting. These may 
be transcription factors for the mRNA in the association. 
However, for associations where both the SNP and the 
mRNA probeset are on the same chromosome but they are 

not very close together (over 100k base pairs for example) 
deriving a cis or trans acting status is questionable, since the 
level of LD between the SNP and mRNA sequence should 
be taken into account.  

IV. DISCUSSION 

The number of results that passed levels of statistical 
significance after adjusting for multiple testing is high 
compared to analyses of similar genetic data for disease 
status traits, especially considering the small sample size of 
this analysis [1],[2],[14]. This can be attributed to the nature 
of the hypothesis tested here. The disease status of a subject 
may be caused by a multitude of factors. Genetic 
predisposition is one of them, but the number of genetic loci 
associated with the disease is unknown in the majority of 
diseases. Moreover, environmental factors typically play an 
important role and they are very hard to identify, or adjust 
for [14]. When looking for disease associated genes in 
similar studies it is common to find a few or no statistically 
significant results [1],[2],[14]. By focusing on gene mRNA 
expression levels the uncertainty is reduced, and the search 
for associated factors becomes more focused. Previous 
studies conducted using similar approaches confirm the high 
number of statistically significant associations across the 
whole genome providing more evidence for the explanation 
given above [2],[3].  

By considering the distance between the genetic location 
of the polymorphism and the mRNA sequence in a 
significant association it is possible to estimate if trans 
acting factors or cis acting elements are responsible for the 
association. Specifically, if the mRNA and the genetic 
polymorphism are on different chromosomes then the SNP 
in the association is associated with a trans acting factor of 
the probeset mRNA sequence. If they are on the same 
chromosome and in high linkage disequilibrium they are 

Fig. 1.  Distribution of top results in the genome. The top results are 
highly significant and distributed across the entire genome.  

 

 
Fig. 2.  Chromosomal Position of mRNA vs SNP clearly there are 
more results along the Y=X diagonal. These are driven by cis acting 
elements.  
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considered to be cis acting elements of the mRNA probeset. 
However, if they are on the same chromosome, not in LD 
and are far apart (over 100k base pairs) they cannot be 
conclusively identified as cis elements or trans acting 
factors[14]. 

An evaluation of the performance of Bonferoni correction 
for multiple testing as compared to permutation testing was 
also attempted on a subset of the top results. The evaluation 
revealed that the empirically derived p-values were for most 
of the results very close to the unadjusted values derived 
with linear regression. This implies that the multiple testing 
problem did not affect the most significant associations as 
much as expected based on Bonferoni correction. This is 
another indication that the top significance levels observed 
are driven by true effects rather than randomness associated 
with the multiple testing problem. Note however that the 
number of permuted associations represented just 0.37% of 
the total number of associations with p-values over 10-5. 

The results database of this project can be used to provide 
statistically significant evidence of genetic polymorphisms 
to mRNA expression levels across any disease area. Since 
the MDD status, gender and age of the subjects were used as 
covariates, the results are independent of these factors. As an 
example, consider a statistically significant association 
found in this experiment between SNP A and probeset of 
mRNA sequence of gene B that are on different 
chromosomes. Assume now that in an unrelated research 
project SNP A was found to be associated with a disease. 
Having knowledge of the association between SNP A and 
gene B researchers would have an indication to study 
whether changes in expression of gene B could be the true 
causative factor for the disease predisposition, and that the 
genetic polymorphism associated with SNP A was simply 
regulating the expression levels of gene B. In another 
scenario expression levels of gene B could be found to be 
associated with a disease. In this case, the product of the 
gene SNP A is associated with could be used to help regulate 
the expression of gene B in diseased subjects.  

V. CONCLUSION 

A database has been created with statistically significant 
associations between genetic polymorphisms and mRNA 
expression across the whole genome covering 550k SNPs 
and 54k mRNA probesets. These results can be applied to 
any disease area where knowledge of cis or trans effects 
between mRNA and SNPs that are involved in the 
statistically significant results of the analysis is required. The 
distance between the mRNA probeset and the SNP in the 
association can help determine if it is a trans effect or a cis 
acting element. This can be used to identify transcription 
factors and their binding sites for genes that can be used as 
targets to help regulate gene expression in diseased subjects.  
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