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Abstract
A principal component analysis of a multiple sequence alignement of hemag-
glutinin sequences of subtype H1 has been performed, the sequences being
encoded using the amino-acid property that maximizes the weight of the ma-
jor component. In the case of this alignment, it happens to be a well-known
hydrophobicity scale. Interestingly, sequences coming from human have large
positive amplitudes along the major component before 2009, and large neg-
ative ones afterwards. This strongly suggests that the 2009 pandemic was
associated to a major change in the hydrophobicity pattern of hemagglutinin.
The present analysis also highlights the high variability of viral sequences
coming from swine. At a more general level, the method proposed herein
allows to describe a sequence coming from an alignment with a set of num-
bers, the original point being that the choice of the corresponding property
is driven by the data.

Keywords: principal component analysis – multiple sequence aligment –
hydrophobicity – hemagglutinin – influenza – pandemic
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Introduction
Because it does not require any assumption about the underlying population
genetic model, and also because it allows to study large datasets at a neg-
ligible computational cost, principal component analysis (PCA) (Ringnér,
2008) has been used for long for analyzing multiple sequence alignments
(MSA) (Van Heel, 1991; Casari et al., 1995; Vinga & Almeida, 2003; Clamp
et al., 2004; Cocco et al., 2013).
To this end, since PCA deals with numerical quantities, each sequence needs
to be associated to a set of numbers. In the case of nucleic acids, an obvious
choice is a binary code (Casari et al., 1995; Clamp et al., 2004) where, for
instance, {1, 0, 0, 0} corresponds to adenine, {0, 1, 0, 0} to cytosine, etc.
For proteins, because there are twenty common amino-acid residues, doing so
yields matrices that are both large and extremely sparse (Lam et al., 2012),
since many residues are never observed at a given position, even in the case
of large alignments, like the one considered in the present study. This issue
has for instance been addressed by using instead frequencies of amino-acid
residues, in whole genomes (Suhre & Claverie, 2003), or counts of pairs of
residues found in each considered sequence (Van Heel, 1991). In the present
study, it is addressed by associating a single numerical property to each
residue. Since the arbitrary choice of a given property could introduce a
bias, this property is picked among the 544 properties gathered in the amino
acid index database (Kawashima & Kanehisa, 2000; Kawashima et al., 2008),
so that the relative weight of the major component of the PCA is the largest.
In other words, while, by definition (Rao, 1964), the major component is the
component along which sequence fluctuations are the largest, it is herein
proposed to code the sequences with a property chosen in such a way that
the amount of fluctuations along the major component is the largest.
As a first application, this approach is used for analyzing the MSA of in-
fluenza A hemagglutinin sequences belonging to subtype H1. Gaining a bet-
ter understanding of the mutational dynamics of this subtype may indeed
prove of particular importance, since it has been involved in at least two
pandemics, noteworthy the 1918-1919 one (Reid et al., 1999), which killed
at least 50 million people (Johnson & Mueller, 2002), but also in the latest
one, in 2009-2010 (Smith et al., 2009; Neumann et al., 2009).

2



Methods

Multiple sequence alignment

17808 hemagglutinin (HA) sequences of subtype H1 were retrieved1 from
the NCBI influenza virus resource (Bao et al., 2008), sequences coming from
laboratory viral strains being disregarded. Obtaining an accurate MSA of
a large number of sequences can prove challenging (Thompson et al., 2011;
Sievers et al., 2013; Chang et al., 2014), noteworthy when sequences of various
lengths are considered2. So, since H1 sequences have high levels of sequence
identities, being at least 75% identical to each other (Sanejouand, 2017), like
in a previous study (Sanejouand, 2017), pairwise alignments were performed,
with BLAST (Altschul et al., 1997) version 2.2.19, taking as query the long
H1 sequence of virus A/Thailand/CU-MV10/2010 (genbank accession num-
ber HM752477). MVIEW (Brown et al., 1998), version 1.60.1, was then used
for converting the BLAST output into an actual MSA.
Including gaps, this MSA is 575 residues long. For performing PCA, 205
sites were considered, those with little variability being disregarded, namely,
all sites where the same amino-acid residue is found in at least 99% of the
sequences, as well as those with more than 10% of gaps and those that are
not observed in crystal structure 4EEF (Whitehead et al., 2012), the latter
being mostly at both ends of the MSA3.
The 4EEF structure was used for illustrative purposes, as well as for residue
numbering which is, like in most available crystal structures4, the H3 num-
bering, even though 4EEF is a structure of the 1918 HA, from strain A/South
Carolina/1/1918 (Reid et al., 1999) (genbank accession number AF117241.1).
Though the rate of evolution of H1 sequences over the last century has not
been spectacular, contemporary sequences being on average more than 80%
identical to the 1918-1919 sequences (Sanejouand, 2017), note that, due to
the large number of H1 sequences taken into account, the variability of the
205 retained sites is high, ≈10 different residues being observed at each site
of the MSA, on average.

Principal component analysis

Let us associate a set of n numerical properties to a given residue i, pi,1, . . . , pi,n,
so that a sequence k of length N can be described as a vector sk = {p1,1, . . . , pN,n}

1On September 6th, 2016.
2The shortest sequence considered herein is 21 residues long.
3There are 498 amino-acid residues in each HA monomer of 4EEF.
4For instance, ten X-ray structures of the 1918 HA have been determined and the H3

numbering was used for nine of them.
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of dimension d = nN . A MSA can then be described as a matrix:

S =


s1 − sref

...
sk − sref

...
sm − sref


where sref is a reference sequence and m, the number of sequences. Thus,
C, the covariance matrix, of dimension d× d, is:

C =
1

m
STS

A, the orthogonal matrix with the principal components, and Λ, the diagonal
matrix with their weights, are obtained by diagonalizing C (Rao, 1964):

ATCA = Λ

Note that the weight of a principal component gives the proportion of the
variance of the sequences, with respect to the reference one, that is captured
by the component.
On the other hand, since the principal components form a basis set, sequence
k can be described as a set of amplitudes (projections) along the principal
components:

qi = ai · (sk − sref ) (1)

where qi is the amplitude of sequence k along component i, ai = {a1,i, . . . , ad,i}
being the ith component, that is, the ith eigenvector of C, and aj,i the coeffi-
cient of component i for the jth property of sequence k5.
Hereafter, the n = 1 case is considered and the reference sequence, for which
q = 0, is the average sequence of the MSA. Gaps and unknown residues are
treated as follows: the property value of a gap is assumed to be the average
value at the considered site; the property value of an unknown residue is
assumed to be the value obtained for the closest sequence having a known
residue at that site.
The correlation matrix was calculated with the 14774 non-redundant se-
quences of our dataset while projections (eqn 1) were only performed for
long enough sequences, namely, for the 11869 sequences where a standard
amino-acid residue is found in at least 90% of the 205 selected sites of the
MSA.

5When n = 1, this is the coefficient of the component for residue j.
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Results

Choice of the amino-acid property

All 544 properties of the amino acid index database (Kawashima & Kane-
hisa, 2000; Kawashima et al., 2008), normalized so that each of them ranges
between -1 and 1, were tried one after the other, a PCA of the MSA with
the 14774 different H1 sequences being performed for each of them. The
weight of the major (first) component varies between 39.9% and 63.9% of
the overall variance (the trace of C) of the sequence dataset. The fact that
at least 39.9% of the overall variance is captured whatever the property used
for sequence encoding underlines the point that for identifying significant
covariances in a sequence dataset using PCA, it is enough to give different
values to the amino-acid residues.
Interestingly, properties yielding the largest weight for the major component
are well known hydrophobicity scales, the 17 that are, according to our crite-
rion, the best ones being highly correlated (absolute coefficient of correlation
over 0.8) with the best one. Specifically, the scales that are the three best
ones were built with residue contact matrices (Bastolla et al., 2005), mean po-
larities (Radzicka et al., 1988) and amino-acid partition energies (Miyazawa
& Jernigan, 1999), the weight of the major component being of 63.9%, 63.7%
and 63.6% for these three cases, respectively.
Although by a small margin, being the best one, the former6 was retained
for further analysis. It corresponds to the following residue ranking: EKRS-
DQGNPHTAMWYCFLVI. As expected for an hydrophobicity scale, the two
basic (KR) and the two acidic (ED) residues are at one end of the scale,
namely, among the five first ones, while the four last ones (FLVI) are the
residues that are the most often considered to be the most hydrophobic
ones (Trinquier & Sanejouand, 1998).
The weights of the second and third components are 9.8% and 3.5%, respec-
tively. Thus, nearly three quarters (74%) of the fluctuations of the 14774 H1
sequences can be described with two components only (among 205), most
remaining ones being of little significance. As a matter of fact, only eight
components have a weight of 1% or more.

Projections on the two first components

Sequence fluctuations are, by definition (Rao, 1964), the largest along the ma-
jor component. As shown in Figure 1, where the projections of H1 sequences
on the two major components (eqn 1) are plotted, most human sequences

6Named BASU050103 in the amino acid index database.
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Figure 1: Projections of HA sequences on the two first PCA components.
Sequences come from swine (top left), human (top right), birds (bottom
right) or from mammals other than swine and human (bottom left). Main
sequence clusters are labelled A-F. Open square: the 1918 sequence.
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(Figure 1, top right) belong to a pair of clusters, coined E and F, which
correspond to extreme values of the amplitude along the major component:
q1 ≈ 4.5 and q1 ≈ −2.5, respectively.
Both clusters are also observed with swine sequences (Figure 1, top left),
while most sequences from mammals other than swine and human (Figure 1,
bottom left) belong to cluster F. Note that this latter point is likely to be
a consequence of the lack of data for these species before 2009. Indeed,
the single sequence found in cluster E, from a giant anteater, was obtained
in 2007 while the only other sequence obtained before 2009, from a ferret,
belongs to yet another one, coined A. A sequence belonging to cluster D was
also found in 2013, coming from a wild boar.
Most avian sequences (93% of them) belong to a fourth cluster (Figure 1,
bottom right), coined B. Since complete avian sequences are known since
19797, this result confirms that a strong evolutionary pressure is at work
in avian species (Sanejouand, 2017), which limits the variability of avian
H1 sequences. This result is far from obvious since, on the other hand,
all known hemagglutinin subtypes have been found in avian species (Dugan
et al., 2008).
Interestingly, the 1918 sequence colocalizes with cluster B (Figure 1, top
right), further supporting the hypothesis of an avian origin for the 1918-1919
pandemic (Reid et al., 1999). However, seven sequences coming from swine
with collection dates between 1931 and 1942 are also located close to the
1918 sequence. Since these latter sequences are also the closest ones in terms
of sequence identity (Sanejouand, 2017), based on our sole analyses of the
hemagglutinin sequences, the hypothesis that the 1918 virus actually came
from swine would be more likely.
The limited variability of avian sequences helps highlighting a key result
of the present analysis, namely, the spectacular variability of H1 sequences
coming from swine (Figure 1, top left). On the one hand, swine sequences
are found in all major clusters observed with sequences of other species. On
the other hand, two clusters (A and D) are mostly populated by sequences
coming from swine.

Projection as a function of time

Figure 2 shows the evolution of the projections of the sequences on the major
component, as a function of their collection date. For sequences coming from
swine, this analysis highlights two striking features: first, a new cluster of
swine sequences has been popping up every five-ten years (lately: E in 2003,

7Two 1917 avian sequences were determined, but they are partial ones.
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Figure 2: Projections of HA sequences on the major PCA component, as a
function of time. Sequences come from swine (top) or human (bottom). The
year correspond to the collection date of each sequence, as provided by the
NCBI influenza virus ressource. Main sequence clusters are labelled A-F, like
in Figure 1. Following the amplitude of the second component (not shown)
allows to pinpoint when cluster D popped up.
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F in 2009). Second, half of them seem to have vanished after 2014 (clusters
B-D).
For sequences coming from human, our analysis highlights the fact that, a
given year, almost all of them belong to a given cluster, with a switch from
cluster E to cluster F occurring in 2009. Indeed, before the 2009 pandemic,
no sequence belonging to cluster F was found while, after 2009, sequences
belonging to cluster E are rare (see Figure 2). On the other hand, the fact
that the cluster the closest to cluster F is cluster A (see Figure 1) suggests
that the former derives from the later, that is, since most sequences of cluster
A come from swine, it supports the hypothesis that the 2009 pandemic has
its origin in this species (Neumann et al., 2009).
Sequences with a collection date before 1960 are rare. As a consequence,
following their projections on the first component (not shown) does not allow
to check if, for instance, sequences coming from human have experienced
other large jumps from a sequence cluster to another, like the 2009 one.
This seems however likely since, while for the 1918 sequence q1 ≈ 0.2, it was
significantly higher in the thirties (q1 in the 1.5–2 range).
Overall, Figure 2 also suggests that, as far as the recent evolution of the H1
subtype is concerned, evolutionary shift is the dominant phenomenon, with
respect to evolutionary drift (Treanor, 2004).

Analysis of the major component

Figure 3 shows that the coefficients of the major component are much larger
(whatever their sign) on the head of hemagglutinin (residues 53-269), where
the binding site of the receptor stands. Indeed, on the rest of hemagglutinin
(86 analyzed sites) the absolute value of the coefficient is always less than
0.16 while, on the head of hemagglutinin, it is larger for 14 residues, raising
up to 0.258.
Moreover, six of these residues have positive coefficients, namely, A103I,
T155V, A169I, S203F, K219I, N269I, the coefficients being negative for the
other eight ones, namely, L53K, L78S, I80S, V133N, L160S, I188T, V205G,
I244T, the residue given first being the most commonly found one before 2009
in sequences of human origin, while the second is the most commonly found
afterwards9. This means that, though the overall hydrophobicity of the head
of hemagglutinin has not changed significantly in 2009, the hydrophobicity
pattern there has changed dramatically.

8Being an eigenvector, a component is normalized, that is, the sum of the square of its
coefficients is one.

9H3 numbering.
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Figure 3: Change in the hydrophobicity pattern of hemagglutinin. The width
of the worm is proportional to the absolute value of the coefficient of the
major PCA component for the residue. The colour gives the sign of the co-
efficient. Red means that the residue was polar before 2009 and has been
hydrophobic since then. Blue means the opposite. The three residues with
large absolute coefficients that are the closest to the receptor binding site are
labelled, the residue the most often observed in sequences of human origin
before 2009 being mentioned first, the residue the most often observed since
then being mentioned last. Drawn with UCSF Chimera (version 1.11.2) (Pet-
tersen et al., 2004).

I188T, the residue with the third largest coefficient (in terms of absolute val-
ues), was a glycine in the 1918 HA sequence. Interestingly, at variance with
all the other residues of the 1918 sequence, Gly 188 has not been observed
again in H1 sequences of human origin (Sanejouand, 2017). This suggests
that mutations at this position may play a key role in the development of
pandemics. It further calls for a dedicated monitoring of such mutations.

Discussion

What does principal component analysis brings ?

Clustering (Plotkin et al., 2002) or phylogenetic analyses (Suzuki & Nei,
2002; Ferguson et al., 2003) can also identify clusters of sequences within
a given hemagglutinin subtype, With respect to the former methods, the
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approach proposed herein has several advantages. For instance, it provides
a metric with a meaning, namely, in the case of the H1 subtype, amino-
acid hydrophobicity. Moreover, it allows to pinpoint the subset of residues
(Figure 3) that are responsible for the difference between the major clusters.
It also allows to follow the evolution of a population as a function of time in
a straightforward way (Figure 2).
With respect to phylogenetic methods, the main advantage of PCA is, like
in the present study, to allow the study of very large ensembles of sequences,
without any need of selecting representatives for each cluster. As a con-
sequence, it is particularly useful for pointing out outliers in a sequence
dataset. Moreover, while phylogenetic analyses group sequences according
to their overall similarity, PCA group them according to the similarity of
their patterns of fluctuations. As a consequence, both approaches should
prove complementary. They could also be mixed, noteworthy by building
phylogenetic trees with a metric based on the first few components of a
PCA.

Conclusion
Encoding the hemagglutinin sequences belonging to subtype H1 with the
hydrophobicity of their residues, using a well known scale (Bastolla et al.,
2005), allows to describe ≈64% of the fluctuations of these sequences with
a single principal component, which corresponds to a major change in the
pattern of hydrophobicity on the head of hemagglutinin (Figure 3), where
the receptor binding site stands. This change occurred in 2009 (Figure 2),
suggesting that it is involved in the pandemic, probably by modifying ex-
tensively the antigenicity of hemagglutinin, thus helping the virus to escape
recognition by the immune system.
Taken together, the two major components allow to delineate several clusters
of sequences (Figure 1), highlighting the reduced variability of H1 sequences
of avian origin, most of them being included in a single cluster, in contrast
with sequences from swine, which are found in in at least six different ones.
Projecting the swine sequences on the major component as a function of time
(Figure 2) shows that, while new clusters appear regularly, namely, every five-
ten years, several seem to have vanished after 2014. As a consequence, most
actual sequences from swine belong to the same two clusters where sequences
of human origin are found.
In the case of hemagglutinin sequences, describing sequences with a single
property per residue proved enough for getting meaningful components. It
is likely that for other alignments using more properties per residue could
prove helpful.
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