
Estimating the Critical Density of Road Transportation
Networks using Infinitesimal Perturbation Analysis of Hybrid

Systems

C. Menelaou, S. Timotheou, P. Kolios, and C.G. Panayiotou

Abstract—Traffic congestion can be eliminated by
restraining the number of vehicles within an urban
region to be below its critical density. To achieve that,
[1], [2] proposed a route-reservation architecture that
makes appropriate routing schedules according to a
region’s critical density, and controls vehicle depar-
ture times, so that vehicles arrive at their destination
in the earliest possible time while avoiding road-
segments that are expected to be at their critical den-
sity. However, the critical density is not always known
and may vary depending on the road conditions.
In this paper, we adobe the Stochastic Fluid Mod-

eling framework to model the critical density of a
homogeneous region of the road network and employ
the route-reservation scheme to control traffic within
this region for congestion-free operation. To derive the
critical density, we employ Infinitesimal Perturbation
Analysis (IPA) that provides a stochastic approxima-
tion which can be employed in an on-line fashion to
capture the dynamic changes in the critical density
value as a consequence of different incidents.

I. Introduction

Operating and managing large-scale transportation
networks is a challenging task that becomes even harder
to tackle as increased demand for mobility results to
higher levels of traffic congestion. Traffic congestion is the
source of a variety of problems including multiple socio-
economic effects ranging for environmental pollution,
delays and productivity loss. Congestion occurs as the
vehicle density surpasses the network’s available capacity
[3] while effective management schemes are not in place
to prevent network overload in the first place.

Recent advances in Information and Communication
Technologies (ICT) enable traffic control mechanisms
that can alleviate the traffic congestion problem. One
such mechanism has been proposed earlier by the authors
in [1], [2] where, in the context of connected-autonomous
vehicles, a novel route-reservation architecture (RRA)
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computes and manages the vehicle routing and sched-
ules them from their origin O to the destination D
through non-congested road segments. Guided by the
macroscopic traffic theory [4] and assuming that the
critical density of each road segment has constant and
known value, the key objective of the proposed RRA is to
maintain each road’s density below the critical value [5].
To to that, the system keeps a record of all reservations
made over time and new vehicles are scheduled only via
non-congested routes assuming they will travel at the
free-flow speed. Therefore, for each vehicle there is a
detailed reservation plan with timings along the exact
route that it should follow from O to D. An important
assumption of the RRA solution is that each segment’s
critical density is known apriori. However in realistic
scenarios the critical density can change over time for
a variety of reasons including changes in demand and O-
D pairs, changes in flow conditions due to road works
or accidents and due to environmental factors such as
changing weather conditions.

In this work, we relax the aforementioned assumption
on the requirement of knowing apriori the critical density
of a particular region of the road network. The aim is to
estimate that value in an on-line fashion by employing
stochastic fluid modeling (SFM). Inspired by early works
done by [6], [7], [8] a region of the road network is mod-
eled as a hybrid system using the SFM framework and
Infinitesimal Perturbation Analysis (IPA) is employed in
order to compute the gradient of a performance metric
which in turn can be used to optimize the selected
control parameter. SFM modeling enables the abstrac-
tion of a system to a fluid queue and derives gradient
estimators for the performance measures of interest (e.g.,
queue throughput and packet delay) with respect to
an assigned control parameter (e.g., buffer maximum
content). In addition to optimization, the IPA framework
is also utilized for performance-regulation purposes as
introduced in [9]. In this work, a single region of the road
network is abstracted as a single queue and the gradient
estimator obtained through IPA is employed to estimate
the buffer threshold associated with the critical density
of the region. This value can then be employed by the
RRA algorithms to compute congestion-free routes over
O-D pairs in the specific region of the road network.

Work in transportation networks employing the SFM
framework and IPA analysis including [10], [11] try to



solve the traffic-light control problem for a single inter-
section. A recent work presented in [12] extended the
aforementioned approaches to multiple intersections. In
these works, the on-line gradient estimators are used to
iteratively adjust the optimum light cycle lengths over
an average traffic congestion metric with respect to the
controllable variables that in turn define the green and
red cycle phases. The work in [13] tries to control the
red/green phases over a signalizing intersection thus to
regulate congestion under a given reference level (queue
length). The major advantage of these approaches is that
vehicles flow rates are measured on-line only when spe-
cific events occur with the gradient estimators obtained
only by counting the traffic light switchings.

In this work, IPA analysis is used to estimate the
critical density of a region of a road network and enable
the route reservation algorithm to prevent congestion
without restricting the maximum outflow of the network.
According to this setup the main contribution of this
paper are:
• The derivation of IPA sensitivity estimates of the

performance measure of instantaneous throughput
of the whole region with respect to the critical
density.

• The on-line application of the derived IPA estima-
tors to the actual system (not the SFM) in order to
optimize the critical density selection that is going
to be used by the route reservation architecture.

• The proposed model explicitly addresses the two-
state traffic dynamics using IPA analysis. According
to traffic theory the outflow of a homogeneous region
is highly correlated with its instantaneous density
as its state can be described in one of two possible
regimes: i) the free flow regime and the congested
regime. In this work we illustrate how, using IPA
analysis, these switching dynamics are taken into
consideration to determine the state evolution.

The remainder of this paper is organized as follows:
Section II presents the system model and the basic
flow control problem for the SFM setting of the route-
reservation architecture while the performance metrics of
the related problem are also mathematically formulated.
Section III derives the IPA estimators for the region’s
throughput gradients based on the SFM setting. Sec-
tion IV includes simulation results demonstrating how
the SFM-based gradient estimators can be used for the
on-line estimation of the critical capacity, showing an
approximation method which can be on-line applied to
the actual system (not the SFM). Finally, Section V con-
cludes this work and discusses future research directions
motivated by this work.

II. System Model and Problem Statement
A. Traffic Flow Model

Consider a homogeneous urban road region [14] defined
as a graph G = (V, E) with vertices V, NV = |V|,
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Fig. 1: A triangular Network Fundamental Diagram
(NFD) of an urban area.

representing the road-junctions and edges E , NE =
|E|. Due to the homogeneity of the region, the Net-
work Fundamental Diagram (NFD) [5] can describe the
macroscopic traffic behaviour using three fundamental
parameters: speed, u(t) (km/h), flow q(t) (veh/h), and
density ρ(t) (veh/km). Fig. 1 depicts a typical flow-
density relationship which is comprised of two distinct
regimes separated from the critical density, ρC : 1) the
free-flow regime where traffic flows at free-flow speed uf ,
and 2) the congested regime where traffic experiences
a speed reduction due to congestion. The flow-density
diagram is complemented by the fundamental relation-
ship that the flow is equal to the product of density
and speed, i.e., q(t) = ρ(t)u(t). Using this information,
one can define other important parameters of the NFD
depicted in Fig. 1 such as the capacity qC = ρCuf which
is the maximum possible flow of the region observed at
the critical density, the jam density, ρJ , and the backward
congestion propagation speed w = qC/(ρJ − ρC) [5].
Notice that above the critical density ρC the outflow of
the region decreases [15].

To maximize the flow through the region, current
literature controls traffic to regulate the density of the
network below or equal to ρC , assuming that the param-
eters of the NFD are known. Such control mechanisms
include perimeter control that regulates exogenous traffic
entering the network [16], [17] and route reservations that
manage demand from exogenous and endogenous traffic
[1], [2].

In this work we consider the use of route-reservations
to maintain the traffic density of the region below ρC .
Route-reservations are used to keep track of the cu-
mulative number of arrivals and departures within the
region. Let variable r(t) denote the accumulated number
of vehicle reservations within the region, and L the total
length of all roads in the region. Then, the quantity
r(t)/L approximates ρ(t) at time t. Considering the
NFD of Fig. 1 and the fact that the route-reservation
scheme operates within the free-flow regime, it is true
that vehicles traverse the entire region with a constant
speed equal to uf . Hence, vehicle l entering the region
at time t remains within the region up to time t + tl
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Fig. 2: The corresponding Stochastic Fluid Model (SFM)
of the considered network.

where tl = Ll/uf denotes the travel time and Ll the
route length of vehicle l. Hence, the region is denoted as
admissible if a vehicle l entering at time t can traverse the
region without making the accumulated reserved density
larger than the critical density for the entire traversing
period. Hence, the admissibility state n(t) can be defined
as:

n(t) =
{

1, if r(t+ k)/L ≤ ρC , ∀ k ∈ [0, tl]
0, otherwise (1)

Therefore, under the route-reservation scheme vehicles
are allowed to reserve routes only during time periods
where n(t) = 1 to ensure that the region never enters
the congested regime.

Contrary to previous literature assuming known NFD
parameters, this work aims to estimate the critical den-
sity by maximizing the outflow of the region. Next,
it is described how a Stochastic Fluid Model can be
used to represent the traffic network and formulate the
investigated problem.

B. Stochastic Fluid Model Representation
The traffic flow model under consideration can be

represented as a Stochastic Fluid Model (SFM) based
on continuous fluid-flow dynamics characterized by a set
of stochastic processes defined on a common probability
space (Ω,F ,P) [18], [19].

As shown in Fig. 2, the road network can be repre-
sented by a fluid-storage queue with finite density (con-
tent) ρJ with a single-server to determine the traversal
time (service time) of vehicles within the region. The
control parameter of interest is θ which denotes the max-
imum queue size allowed within the queue. Parameter θ
is regulated using some control mechanism (in our case
route reservations). Parameter θ aims to estimate the
critical density in order to maximize the outflow of the
queue. According to the NFD, for θ > ρC the region is
over-utilized resulting in a reduction of the outflow as
the region experiences congestion. On the contrary, for
values of θ < ρC the region is underutilized, also resulting
in a reduction of outflow. Hence, the aim is to define a
strategy that changes online the value of θ in order to
operate as close as possible to the critical density of the
system that maximizes the outflow.

Let x(t, θ), A(t, θ) and B(t, x(t, θ)) denote the SFM
state (queue content), arrival rate1 (inflow) and depar-
ture rate (outflow) at time t, respectively.

The arrival rate of vehicles depends on θ and is given
by

A(t, θ) =
{
a(t), if r(t) < θ

0, if r(t) ≥ θ (2)

where, the variable a(t) denotes the vehicle arrival pro-
cess which is a time-varying and unknown function
independent of θ. According to (2), when the number
of reservations reaches the parameter θ (which should
approximate the critical density of the region) the inflow
is set to zero so that no more vehicles to enter, until
r(t) < θ. Here, it is assumed that the reservations are
consistent with the actual state of the region (x(t, θ) =
r(t)). Although, this is not generally true due to the
stochastic nature of traffic [1], [2], it is a reasonable
assumption in light of the emergence of connected and
automated vehicles.

The departure rate B(t, x(t, θ)) depends on the NFD;
when the density exceeds ρC the function B(t, x(t, θ))
changes from a linear increasing function (free-flow
regime) to a linear decreasing function (congested
regime). Hence, B(t, x(t, θ)) is defined as

B(t, x(t, θ)) =
{
ufx(t, θ), if x(t, θ) < ρC

w(ρJ − x(t, θ)), if x(t, θ) ≥ ρC (3)

Notice from Eq. (3) that the departure rate is sig-
nificantly affected by the instantaneous density in two
ways: (a) when parameter θ overestimates ρC , undesir-
able vehicle delays are produced that further exacerbate
congestion conditions, and (b) when θ underestimates ρC
the region is underutilized leading to lower outflow rates.

The queue content is determined by the following
differential equation:

ẋ(t, θ) =


0, if x(t, θ) = 0 &A(t, θ) = 0,
0, if x(t, θ) = θ,

A(t, θ)−B(t, x(t, θ)), otherwise, (4)

with the initial condition that x(0) = x0, with x0 known.
Here, it is assumed for simplicity that x(0) = 0. Note
that according to Eq. (4) whenever x(t, θ) > 0 a non-
zero flow rate should be observed. Moreover, for the case
x(t, θ) = θ, it may be true that A(t, θ) = B(t, x(t, θ)) 6= 0
such that ẋ(t, θ) = 0. In addition, we make the technical
assumption that a(t) ≥ −ε where ε is a small positive
number. This assumption is needed to make sure that
the queue becomes empty at a finite time (and does not
go to zero asymptotically). For practical systems, this
assumption does not have any impact, since a(t) ≥ 0
and empty periods are always observed.

1Consistent with the proposed architecture a central entity is
responsible to schedule vehicles according to the described route-
reservation scheme. In this way, the arrival rate is controlled to
ensure that x(t, θ) ≤ θ.
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Fig. 3: The Stochastic Hybrid Automaton model.

The above SFM setting can be viewed as a hybrid sys-
tem, with the time-driven dynamics described by Eq. (4)
and with event-driven dynamics denoted by the region’s
full and empty periods. Hence, the region’s operation
can be determined with a Stochastic Hybrid Automaton
(SHA) as depicted in Fig. 3 which consists of three (3)
modes. This model is similar to the one used in [7] (single
buffer case), but different as the inflow and outflow rates
depend on the parameter θ. Let the time interval [0, T ];
the region operation can be determined by the set of
events E = {e1, e2, e3, e4} defined as:

e1 : x(t, θ) = θ, queue reaches capacity.
e2 : x(t, θ) = 0, queue becomes empty.
e3 : the sign of A(t, θ) − B(t, x(t, θ)) changes from
positive to negative and queue content ceases to be
full.
e4 : the sign of A(t, θ) − B(t, x(t, θ)) changes from
negative to positive and the queue content ceases to
be empty.

All events whose occurrence time depends on the
parameter θ are called endogenous events, while all other
that are independent of the parameter θ are referred to
as exogenous events.

C. Problem Statement
As mentioned earlier, we seek to estimate the critical

density which by definition, is the density that maximizes
the average outflow of the regionW (t, θ) over the interval
[0, T ], defined as follows:

WT (t, θ) = 1
T

∫ T

0
B(t, x(t, θ))dt (5)

Thus the critical density will be approximated by the
control parameter θ that will maximize the outflow
following the solution of the optimization problem:

max
θ

J(t, θ) = E[WT (t, θ)] (6)

In the next section we employ the IPA method to deter-
mine the best value for the control parameter θ∗ in an
online fashion.

III. Infinitesimal Perturbation Analysis (IPA)
A. IPA Review:

Let vk(θ) denote the occurrence times of k-th event,
then the time derivative of queue content (i.e., x(t, θ))
and event occurrence times (i.e., vk(θ) ) with respect to
θ can be expressed as:

x′(t, θ) = dx(t, θ)
dθ

v′k(θ) = dvk(θ)
dθ

(7)

Let k denote the k-th interval [vk, vk+1) ∈ T within which
the dynamics of x(t, θ) are fixed representing the right-
hand-side expression of Eq. (4). If the SHA is in mode
2, then the queue content at time t ∀ t ∈ [vk, vk+1) is
formulated as:

x(t, θ) = x(vk, θ) +
∫ t

vk

ẋ(τ, θ) dτ

= x(vk, θ) +
∫ t

vk

(A(τ, θ)−B(τ, x(t, θ))) dτ (8)

If the SHA is in modes 1 or 3, then

x(t, θ) = x(vk, θ) ∀t ∈ [vk, vk+1)

As above, taking the derivatives with respect to θ and let
t = v+

k the boundary initial condition can be obtained
as:

x′(v+
k ) = x′(v−k ) + [ẋ(v−k , θ)− ẋ(v+

k , θ)]v
′
k (9)

Furthermore, taking the derivatives with respect to t in
Eq. (4) for all t ∈ [vk, vk+1):

∂

∂t
x′(t, θ) = ∂ẋ(t, θ)

∂x
x′(t, θ) + ∂ẋ(t, θ)

∂θ
(10)

As mentioned earlier, the derivative with respect to θ of
each event occurrence time (i.e., v′k) depends on the type
of event that occurs. Hence, a discrete time transition
that is independent from θ is an exogenous event with
v′k = 0. Otherwise, if event depends on the control
parameter θ, a continuously differentiable function gk :
Rn × Θ −→ R exist such that vk = min{t > vk−1 :
gk(x(t, θ), θ) = 0} (this function constitutes the guard
function [19]). Now, taking the derivatives with respect
of θ we obtain

v′k(θ) = −
[∂gk
∂x

ẋ(v−k , θ)
]−1(∂gk

∂θ
+ ∂gk

∂x
x′(v−k )

)
(11)

Proof of the above expressions (Eq. (9) - (11)) can be
found in [19].

B. IPA:
Our solution approach is based on the aforementioned

IPA analysis that is used to estimate the gradient of
our performance metric e.g., throughput Eq. (13) which
in turn is employed within a stochastic approximation
based algorithm in order to converge towards to the
maximum throughput. In this manner we are interested
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Fig. 4: A typical sample path of the queue’s content.

in estimating the d
dθJ(t, θ) through an iterative scheme

of the form

θk+1 = θk − hHk(θk, ωSFM ) (12)

where h is a constant value step-size and Hk(θk, ωSFM )
is an estimate of d

dθJ(t, θ) derived on-line and is based
on information of its sample path as depicted in Fig. 4.

The related sample path consists of time intervals over
which x(t, θ) > 0, called Non-Empty Periods (NEPs),
followed by intervals where x(t, θ) = 0, called Empty-
Periods (EPs). The k-th NEP period starts at vk,0 and
ends at vk,sk

where k = 1, 2, ..., NT and |NT | denotes
the number of NEPs in time-interval T . On that premise
some of NEPs may also contain some periods that the
system is full at its capacity (FPs) that attain during the
interval [vk,2j−1, vk,2j ] i.e., j = 1, . . . , sk−1

2 . Note that,
the even index (2j) represents the ending time of each
particular FP.

Even though the start of a Non-Empty Period looks
like an endogenous event (rates A(t, θ) and B(t, x(t, θ))
generally depend on θ, at the specific time, they are
independent of θ. This can be justified combining equa-
tions Eq. (3) and (4) as the x(t, θ) = 0 only if A(t, θ) =
B(t, x(t, θ)) = 0 and according Eq. (3) the queue content
switches to x(t, θ) > 0 only when the inflow changes from
A(t, θ) = 0 to A(t, θ) = a(t) > 0 which is independent
of θ. Considering, the SHA in Fig. 3 the transition from
mode 2 to 3 is the result of event e1 which is dependent
on θ (endogenous) while the opposite direction (modes
3 to 2) is due to an e3 event which is independent
from θ (exogenous). Considering that during mode 3
B(t, x(t, θ)) is maintained constant and thus the e3 event
occurs only with a decrease of the inflow rate A(t, θ) =
a(t) which is independent from θ. The transition from
2 to 1 (e2) is considered an endogenous event as its
dependent on the queue content. Note that, the times
that endogenous events occur indicated with red dashed
lines in Figure 4.

Using the above notation, the network’s outflow (see
Eq. (5)) can be rewritten as:

ΩT (t, θ) = 1
T

Nt∑
k=1

ωk = 1
T

Nt∑
k=1

∫ vk,sk

vk−1,sk

B(t, x(t, θ))dt

(13)

where ωk is the outflow during the kth NEP. Taking
derivatives with respect to θ and observing that all EPs

are independent from θ then the required IPA gradient
derivative d

dθΩT (t, θ) of the Eq. (5)

∂ΩT (t, θ)
∂θ

= 1
T

Nt∑
k=1

dωk
dθ

(14)

The IPA tries to evaluate these derivatives as a function
of the observable sample path quantities using similar
framework establish in [7], [19]. In this way, the deriva-
tion of the IPA derivatives requires some mild assump-
tions in order to guarantee the existence of derivatives
as follows:

1) A(t, θ) <∞ and B(t, x(t, θ)) <∞ for all t ∈ [0, T ].
2) For all θ ∈ Θ, w.p.1, no two events occur at the

same time.
1) Time derivatives: Taking all the possible transition

events for a single NEP we have:
At event e2, a transition from mode 2 to 1 takes

place. This is an endogenous event with g2(x(t, θ), θ) =
x(vsk

, θ) = 0. Applying Eq. (11) we have

v′sk
=

−x′(v−sk
, θ)

A(v−sk , θ)−B(v−sk , θ)
(15)

In addition applying Eq. (9) we get

x′(v+
sk
, θ) = x′(v−sk

, θ) + [ẋ(v−sk
, θ)]v′sk

(16)

and combining the two equations above we have

x′(v+
sk
, θ) = 0 (17)

The e1 event is an endogenous and thus, there ex-
ists a continuous differentiable function denoted as
g1(x(t, θ), θ) = x(v2j−1, θ)− θ = 0 ∀ j = 1, . . . , sk−1

2 and
applying Eq. (11) we get

v′2j−1 =
1− x′(v−2j−1, θ)

A(v−2j−1, θ)−B(v−2j−1, θ)
(18)

in the sequel combining Eq. (18) with Eq. (9) we have

x′(v+
2j−1, θ) = x′(v−2j−1, θ) + [ẋ(v−2j−1, θ)]v

′
2j−1 (19)

and combining the two equations above Eqs. (19)-(18)
we get

x′(v+
2j−1, θ) = 1 (20)

The e3 is an exogenous event with x′(v2j , θ) = 0 ∀ j =
1, . . . , sk−1

2 .
Finally from Eqs. (17)-(20) it follows that x′(t, θ)

always starts from 0 and at every FP switches to 1 and
always at the end of the NEP reset back again to 0 value.
2) IPA for throughput:
Lemma 1: Eq. (13) measures the total outflow as the

summation of region’s NEPs starting from the beginning
of an EP until the beginning of the next EP. Therefore,
considering that the region’s outflow rate is determined
by Eq. (3) then taking the derivatives with respect to θ
we get



dω

dθ
= 1
T

[ sk−1
2∑
j=1

C(v2j−1 − v2j)
]

(21)

where the parameter C is obtained from B(t, x(t, θ))
defined by Eq. (3) and thus

C = ∂

∂x
B(t, x(t, θ)) =

{
uf , if x(t, θ) ≤ θ
−w, otherwise (22)

Proof: Considering that Eq. (13) can be re-stated
as

ΩT (t, θ) = 1
T

Nt∑
k=1

[ ∫ vk,0

vk−1,sk

B(t, x(t, θ))dt+∫ vk,sk

vk,0

B(t, x(t, θ))dt
]

(23)

then, taking the derivative with respect to θ we get
dωk
dθ

= 1
T

d

dθ

∫ vk,sk

vk,0

B(t, x(t, θ))dt (24)

since, d
dθ

∫ vk,0
vk−1,sk

B(t, x(t, θ))dt is zero as B(t, x(t, θ)) = 0
during an EP. In the sequel, considering the Leibniz rule
the above derivative can be computed as
d

dθ

∫ vk,sk

vk,0

B(t, x(t, θ))dt = B(vk,sk
)v′k,sk

+∫ vk,sk

vk,0

[ ∂
∂x
B(t, x(t, θ))∂x

∂θ
+ dB(t, x(t, θ))

dθ

]
dt

(25)

considering the Eq. (25) we can observe that the term
dB(t,x(t,θ))

dθ = 0 as is not dependent on θ while the term∫ vk,sk

vk,0
∂x
∂θ can be computed as follows:

Considering a single NEP, the term
∫ vsk

v0
∂x
∂θ dt can be

expressed as∫ vsk

v0

∂x

∂θ
dt =

∫ v1

v0

x′(t, θ)dt+

sk−1
2∑
j=1

∫ v2j

v2j−1

x′(t, θ)dt+

sk−3
2∑
j=1

∫ v2j+1

v2j

x′(t, θ)dt+
∫ vsk−1

vsk

x′(t, θ)dt

(26)

Taking one term at time then, during the all the FPs the
queue content x(t, θ) = θ and thus

sk−1
2∑
j=1

∫ v2j

v2j−1

x′(t, θ)dt =

sk−1
2∑
j=1

∫ v2j

v2j−1

1dt (27)

According to Eq. (25) and considering the interval in-
between two consecutive FPs the buffer content can be
calculated as

x(t, v2j+1) = x(v2j , θ) +
∫ v2j+1

v2j

ẋ(τ, θ) (28)

for all j = 1, . . . , sk−3
2 . Then, taking the derivatives

with respect to θ and considering that x(t, v2j+1) =
x(v2j , θ) = θ then we get that

v′2j+1ẋ(v2j+1, θ)−v′2j ẋ(v2j , θ)+
∫ v2j+1

v2j

x′(τ, θ) = 0 (29)

for all j = 1, . . . , sk−3
2 . However, considering that

ẋ(v2j+1) = v′2j = 0 then we have
sk−3

2∑
j=1

∫ v2j+1

v2j

x′(t, θ)dt = 0 (30)

In similar way, during the interval [v0, v1] we get∫ v1

v0

x′(t, θ)dt = 1 (31)

while during the interval [vsk−1, vsk
] we have∫ vsk−1

vsk

x′(t, θ)dt = −1 (32)

Therefore, according to Eq. (25) the
∫ vsk

v0
∂x
∂θ has a unit

value only during each FPs while it first and last terms
are cancel then its follows that

d

dθ

∫ vk,sk

vk,0

B(t, x(t, θ))dt =

+

sk−1
2∑
j=0

∫ v2j

v2j−1

d

dx
B(t, x(t, θ))dt (33)

then combining Eqs. (24)-(33) then Eq. (21) follows.

IV. Simulation Results
The area under consideration is an 1 km2 homogeneous

[14] region with the following NFD parameters: ρC =300
veh/km, ρJ = 1000 veh/km and uf =15 m/s all defined
over the triangular macroscopic fundamental diagram as
denoted by eq. (3) [5].

The actual system is simulated along side the route-
reservation algorithm as presented in [1] where each
vehicle arrives to the simulated region with a Poisson
arrival process. The RRA [1] reschedules the vehicle de-
parture times from their origin according to its objective
(that is, maintain each road-segment’s density below the
critical density). Furthermore, the RRA determines each
vehicle’s route such that congested links are avoided. To
achieve this, the RRA assumes that it knows every link’s
critical capacity and can determine the exact path of each
vehicle assuming that it will traverse its path using the
free flow speed uf . In earlier works, the critical density
was measured (through extensive simulation) a priori and
it was assumed known by the RRA. In this work, the
RRA utilizes an estimate of the critical density θ, which
is continuously updated such that RRA is able to learn
on-line the true value of the critical density.

For the assumed network, Fig. 5 depict the region’s
outflow as a function of the critical density assumed by
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Fig. 5: Region’s outflow rate as a function of θ.(Brute-
force method)

the RRA. This result is obtained by running long simu-
lations with varying θ within the range of [275, . . . , 325]
in a brute-force manner. As observed by the Fig. 5 the
maximum outflow-rate is obtained when θ = 300veh/km
while, as expected, for all other values lower flow-rates
are observed since using these values imply that the
region is under/over utilized.

The critical density estimated by the RRA is updated
through the stochastic approximation rule

θik+1 = θik − h
∂ΩT (t, θ)

∂θ
(34)

with h denoting the step size while ∂ΩT (t,θ)
∂θ denotes the

sensitivity of the region’s outflow with respect to the
parameter θ as computed by the IPA (eq. (21)). At this
point it is worth pointing out that despite the fact that
the IPA algorithm was derived based on an SFM, the
underlying system model used for the simulations is a
more realistic discrete event model.

As mentioned above, as the region’s density is main-
tained within the free-flow regime, the outflow has differ-
ent rate compared to that of the congested regime, fact
that can be justified by findings in Fig. 5. Therefore,
the derived gradient estimator of Eq. (21) requires the
value of the parameter c (see eq. (22)) which is not
know since the true state of the network is also not
known. In such manner, Eq. (22) approximates all the
unknown parameters and the direction of our stochastic
approximation algorithm. Notably, considering Eq. (22)
the sign of parameter C is highly correlated with the
region’s state as is depends on whether the estimated
parameter θ over/under estimates the actual ρC . Since
the region’s true critical density is not known, it is a
challenge to determine the true state of the network.

To address this challenge, we utilize on-line measure-
ments of the outflows of the actual discrete event system.
In this way, the parameter C is approximated with the
parameter Ĉ, by sampling the region’s outflow rate every
time that the control parameter θ updates. More specific,
we compute the average change of the outflow rate by
taking real time measurements across the current and
the previous state θ updates (i.e., θk and θk−1) as follows

Ĉ = q̄(θk)− q̄(θk−1)
∆L (35)
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Fig. 6: IPA estimators starting from different initial
values: (a) θ = 275veh/km (b) θ = 300veh/km as a
function of the number of NEP observed within the
simulation time (iterations).

with the parameter q̄(θ) denotes the real time measure-
ment of region’s outflow as a function of θ and the
parameter ∆L = |θk − θk−1| denotes the difference of
θ values of the two measurements (this approximation
is called as the “Euler’s” backward derivative approx-
imation method). In this manner, every time that we
are going to update the new θk+1 value we compare the
previous measured outflow with the current observation
in order to drive the estimated Ĉ. Notably, to further
improve the approximation accuracy measurements are
taken only during the FPs where the outflow has its
maximum possible rate according to the current θ value.

The obtained results of the on-line estimation of
∂ΩT (t,θ)

∂θ are depicted in the Fig. 6 which indicate how θ
is updated assuming different initial values of θ. In this
figure with the green color scatters we denote the updates
θk+1 observed on each NEP while with the solid blue line
represents the true value of ρC =300veh/km. According
to the figure, it is clear that for both of these cases
the IPA estimates can be used to learn the true critical
density irrespective of the initial values. Note that, in the
first case of Fig. 6(a) the initial value under-estimated
while, in the second case Fig. 6(b) over-estimate the true
critical density.

Figs. 7 illustrates scenarios where the actual critical
density starts with the initial value of ρC =300veh/km
while at some point during the simulation time ρC
suddenly changes due to external factors (e.g., weather
conditions) either increases or decreases. In a similar
manner with Fig. 6, with the green color scatters we
denote the θk+1 as they are updated on every NEP while
with the solid blue line we depict the true value of ρC .
The first two figures Figs. 7 (a) and (b) start with a
parameter θ that under-estimates ρC and as time pro-
gresses it can efficiently approximates the initial critical
density value. Subsequently, when ρC suddenly changes,
it automatically learns that and quickly it converges to
the new ρC . The same behavior is observed when the
critical density value increases or decreases Figs. 7 (a)
and (b), respectively.
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Fig. 7: IPA estimators starting from different initial
values with a suddenly change of ρC value: (a) and (b)
with initial value starting from 275veh/km to 285veh/km
and 315veh/km, respectively while (c) and (d) with
initial value starting from 325veh/km to 285veh/km and
315veh/km, respectively as a functions of the number of
NEP observed within the simulation time (iterations).

V. Conclusions
In this paper we propose a stochastic fluid model

with switching dynamics that can be utilized for the on-
line estimation of the critical density of an urban area.
The approach, utilizes a stochastic approximation based
algorithm that seeks to learn the region’s critical den-
sity. The stochastic approximation algorithm is driven
by sensitivity estimates that are obtained through IPA
on stochastic fluid models. The IPA estimate requires
minimal information (e.g., timers and average speeds and
flow rates). An important challenge of the derived IPA
estimator is that it requires knowledge of the state of the
network (free flow or congested), which is information
not directly observable, however, it is information that
can be inferred from the average speed. Thus, the major
advantage of this approach in that is mainly the simple
implementation and its on-line execution.

Future work includes, the proof of the unbiasedness of
the derived estimators which constitute a more difficult
task compared to earlier works in IPA on SFM due to
unobservable switching dynamics. Future avenues also in-
clude the introduction of uncertainty to route-reservation
estimates, something that allows the formation of queue
that are longer than the region’s actual critical density.
This will constituted a more realistic approach as in
real application inaccuracies maybe observed within the
reservation plan [1], [2]. Finally, future work should also
examine how the perturbations are propagated between

neighboring regions.
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