

# **CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders**

# Shohei Nishida KEK CKM 2018 @ Heidelberg Sep. 17, 2018

S. Nishida Sep. 17, 2018

### Contents



- Status of Belle II experiment.
- Results from BaBar and Belle.

Belle II before Phase 2 (2018 Mar)



### Belle II go to beamline (2017/4/11)



#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders**

### **Two B Factories**





#### S. Nishida Sep. 17, 2018

#### CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders

### Luminosity





S. Nishida Sep. 17, 2018

CKM Physics in e⁺e<sup>-</sup> Colliders

# **Belle II Experiment**

3

Belle II experiment with SuperKEKB started! SuperKEKB targeting 8 × 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>  $(\times 40 \text{ of Belle})$ ✓ "Nano beam scheme": 70<sub>c</sub>  $\times$  1/20 beam size (~50nm) 60  $\times$  2 beam current (2-3 A) Integrated luminosity (ab<sup>-1</sup>) 50 • Belle II spectrometer. 40 ✓ New type of vertex and PID 30 detector. 20 • Phase 2 Operation in 2018. 10 Peak luminosity <sub>x</sub> (cm<sup>-2</sup>s<sup>-1</sup>) 01 <sub>32</sub> without Belle II Phase 1 (2016) Phase 2 (2018) with Belle II (no VXD) 2017 2018 2019 Phase 3 (2019-) with full Belle II



#### S. Nishida Sep. 17, 2018

CKM Physics in e<sup>+</sup>e<sup>−</sup> Colliders

### **SuperKEKB**





#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**

### **SuperKEKB**





Sep. 17, 2018

CKM Physics in e⁺e<sup>-</sup> Colliders

### **Belle II Spectrometer**





- Operation at higher luminosity (background)
- New type of Vertex and PID detector.

ARICH (during construction)



#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**

# Phase II Operation

- The construction of SuperKEKB was completed.
- Belle II detector without vertex detectors.
- Phase II operation: Mar-Jul, 2018.



(Mar. 2018)

#### S. Nishida Sep. 17, 2018

### **Belle II First Collision**



### Belle II first collision at 0:46 on Apr. 26, 2018



#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**

### Phase 2 Operation



### One day history of SuperKEKB (Jul 5, 2018)



- Mostly accelerator tuning.
- Physics run (in the midnight).
  - Maximum luminosity  $5.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$  (during accelerator study).
    - ✓ 1-2 × 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> during physics run

#### S. Nishida Sep. 17, 2018

#### CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders

### Phase 2 Operation



- The main purpose of Phase II operation was the accelerator tuning and the study of nano beam scheme.
- Physics data were also taken: total data size 0.5 fb<sup>-1</sup>
  - ✓ Understanding of the detector.
  - B mesons are reconstructed.



### potential BB candidate





#### S. Nishida Sep. 17, 2018

#### CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders

### **Toward Phase 3**





- The construction of SVD (inner vertex detector) is finished. Under commissioning outside Belle II.
- Will be installed to Belle II together with PXD (innermost pixel detector) towards the end of this year.
- Other maintenance, repair work is going on.







Phase III operation (physics run) starts in early 2019.

#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**



### Let's go back to BaBar and Belle



- Data were taken till 2008/2010.
- But the analysis is still active, and we have new results.

S. Nishida Sep. 17, 2018

# **B** Tagging Technique



- Reconstruction of B decay modes with one or more neutrinos in the final states.
- B mesons are produced in pair  $\rightarrow$  Reconstruct or tag the other B.
  - ✓ Full reconstruction: reconstruct the other B with hadronic modes.
  - ✓ Semi-leptonic tag: tag the other B with semi-leptonic decays.
  - ✓ Inclusive: reconstruct signal B and check if the rests are consistent with B.
  - ✓ Untagged: do not tag the other B (applicable in case of one neutrino)
- In general, a method with high purity has low efficiency. Typical full reconstruction efficiency is O(0.1%).
- Effort to improve the performance, which directly affects the analysis sensitivity.



#### S. Nishida Sep. 17, 2018

CKM Physics in e⁺e<sup>-</sup> Colliders

### $B\to D^{(*)}\tau\nu$



- NP contribution is tree diagram?
  - ✓ Sensitive to charged Higgs.
- Measure the branching ratio

$$R(D^{(*)}) = \frac{BF(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{BF(\overline{B} \to D^{(*)}l^{-}\overline{\nu}_{l})}_{(l^{-}=e^{-},\mu^{-})}$$

- ✓ Cancel form factors.
- ✓ Cancel experimental systematics



- Several measurements from Belle and BaBar
  - $\checkmark$  With different B tagging method  $\rightarrow$  Independent sample

### $B\to D^{(\star)}\tau\nu$





#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**

### $B\to D^{(\star)}\tau\nu$

3

For more precise measurement of  $B \to D^{(*)} \tau \nu$ 

- More statistics  $\rightarrow$  Belle II
- Better understanding of the systematics
  - ✓ Dominant systematic error : the uncertainty of  $B \rightarrow D^{**}\ell_{V}$  ( $D^{**}\tau_{V}$ ).

### Measurement of $B\to D^{(*)}\pi\ell\nu$ at Belle



#### S. Nishida Sep. 17, 2018



|                                           | Results                                   | HFLAV2016                    |  |  |
|-------------------------------------------|-------------------------------------------|------------------------------|--|--|
| $B^+ \rightarrow D^- \pi^+ \ell^+ \nu$    | $(4.55 \pm 0.27 \pm 0.39) \times 10^{-3}$ | $(4.1\pm0.5)\times10^{-3}$   |  |  |
| $B^0 \rightarrow D^0 \pi^- \ell^+ \nu$    | $(4.05\pm0.36\pm0.41)\times10^{-3}$       | $(4.2\pm0.6) \times 10^{-3}$ |  |  |
| $B^+ \rightarrow D^{*-} \pi^+ \ell^+ \nu$ | $(6.03 \pm 0.43 \pm 0.38) \times 10^{-3}$ | $(6.0\pm0.6) \times 10^{-3}$ |  |  |
| $B^0 \rightarrow D^0 \pi^- \ell^+ \nu$    | $(6.46 \pm 0.53 \pm 0.52) \times 10^{-3}$ | $(4.7\pm0.8)\times10^{-3}$   |  |  |

- Consistent with HFLAV.
- Precision is similar or slightly better compared to HFLAV2016.
- Main source of systematic errors are tag efficiency for charged modes, and PID, tracking efficiency for neutral modes.
  - $\checkmark$  Can be improved with luminosity (but not an easy work).

### $\tau$ Polarization in B $\rightarrow$ D<sup>\*</sup> $\tau v$





- Belle measured  $\tau$  polarization in B  $\rightarrow$  D<sup>\*</sup> $\tau v$ 
  - ✓ Hadronic tag (full reconstruction)

🔶 Data

- $\checkmark$  Hadronic  $\tau$  decays.
- ✓ 2 bins of  $\cos(\theta_{hel})$

 $\overline{B} \rightarrow D^{**} I \overline{v}_{I}$  and Hadronic B

 $\overline{B} \rightarrow D^* I \overline{\nu}_l$ 



 $W^{-}$ 

, Н





#### S. Nishida Sep. 17, 2018

Signal

100

 $\tau$  cross feed

#### CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders

# D\* Polarization in $B \rightarrow D^* \tau v$



 $\bar{\mathbf{D}}^0$ 

[BELLE-CONF-1805 in preparation]

 $W^{*+}$ 

 $D^*$  polarization in  $B \to D^* \tau \nu$ 

 $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4}[2\boldsymbol{F}_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1-\boldsymbol{F}_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))]$ 

- Inclusive reconstruction
- All  $\tau$  decays can be used.
- Efficiency highly depends on  $\cos\theta_{hel}(D^*)$ .
- 3 bins of  $cos\theta_{hel}(D^*)$ .

**New Result** 



 $F_{L}^{D^{*}} = 0.60 \pm 0.08 \pm 0.03$ Consistent with SM (~0.45) within  $2\sigma$ 

M(tag) for one mode with  $-0.67 < \cos\theta_{hel}(D^*) < 0.33$ .



Talk by K. Adamczyk (WG2)

#### S. Nishida Sep. 17, 2018

#### CKM Physics in e<sup>+</sup>e<sup>−</sup> Colliders

# EW Penguin B Decays





- ✓ Sensitive to  $C_7$ ,  $C_9$ ,  $C_{10}$ .
- "Anomalies" seen:
  - ✓ Lepton Flavour Universality.
  - ✓ Angular variable

$$R_{K} \equiv rac{\mathcal{B}(B^{+} o K^{+} \mu \mu)}{\mathcal{B}(B^{+} o K^{+} ee)}$$

LHCb result

 $R_{K} = 0.745 \stackrel{+0.090}{_{-0.074}} \pm 0.036$  (2.6 $\sigma$  from SM) [PRL 113 (2014) 151601]

 $R_{K^*}$ : 2.1-2.4 $\sigma$  deviation from SM.



### LHCb, JHEP08(2017)055



#### S. Nishida Sep. 17, 2018

CKM Physics in e<sup>+</sup>e<sup>−</sup> Colliders

# EW Penguin B Decays



- LHCb/ATLAS/CMS results from muon modes.

• 2.6 $\sigma$  deviation in the muon mode.

• 1.1 $\sigma$  in the electron mode.

[PRL 118, 11801 (2017)]

**CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders** 

# **EW Penguin B Decays**

3

Talk by T.Gershon (WG3)

New results in a few more related modes.

 $B^0 \to K^{*0} \mu^\pm e^\mp$ 

- Deviation in R(K), R(K\*) by LHCb.
- LFU violation  $\rightarrow$  LFV





- $b \rightarrow svv$  : FCNC process
- SM : B =  $(7.9 \pm 1.9) \times 10^{-7}$
- Hadronic B tag



#### S. Nishida Sep. 17, 2018

$$B\to X_s\,\gamma$$

3

### Radiative B Decay ( $b \rightarrow s\gamma$ )

- Penguin diagram (FCNC process).
- Good agreement between theory and experiments.
  - ✓ Strong constraint to New Physics



```
B(B→X<sub>s</sub>\gamma; E<sub>\gamma</sub>>1.6GeV)
= (3.32 ± 0.15) × 10<sup>-4</sup> [HFLAV2018]
= (3.36 ± 0.23) × 10<sup>-4</sup> [Misiak 2015]†
```

† Misiak et al, PRL 114, 221801, (2015)

- $A_{CP}$  of  $B \rightarrow X_{s\gamma}$  is an interesting probe for NP, but has small (~2%) theoretical uncertainty.
- $\Delta A_{CP}$  (difference of  $A_{CP}$  between charged and neutral B) is a cleaner probe.

$$\Delta A_{CP}(B \to X_s \gamma) \equiv A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma)$$

S. Nishida Sep. 17, 2018  $B\to X_s \ \gamma$ 

### [BELLE-CONF-1801, arXiv:1807.04236]

- Sum of 38  $X_s$  modes with  $M(X_s) < 2.8$  GeV.
  - ✓ 11 of them are flavour non specific modes.
- 8 M<sub>bc</sub> distributions (including 3 from offresonance) are simultaneously fitted.



 $\Delta_{0-} = (+1.70 \pm 1.39 \pm 0.87 \pm 1.15)\% \longrightarrow \text{reduce uncertainty for B.F.}$  $\Delta A_{CP} = (+1.26 \pm 2.40 \pm 0.67)\%$ 

Constraint NP :  $\Delta A_{CP} \approx 4\pi^2 \alpha_s \frac{\Lambda_{78}}{m_b} Im \left(\frac{C_8}{C_7}\right)$ 

S. Nishida Sep. 17, 2018

### **Unitarity Triangle**





#### S. Nishida Sep. 17, 2018

**CKM Physics in e⁺e⁻ Colliders** 

# $\cos(2\beta)$ in $B \rightarrow D^{(*)}h^0$





#### S. Nishida Sep. 17, 2018

#### CKM Physics in e⁺e<sup>-</sup> Colliders

# $|V_{ub}|$ and $|V_{cb}|$



- |Vub| and |Vcb| measurements are done using semi-leptonic decays  $b \rightarrow ulv$ , clv.
- Two approaches: inclusive and exclusive



do not specify hadron state

- QCD corrections to parton level decay rate
- Operator Product Expansion (OPE) in  $\alpha_{S}$  and  $\Lambda/m_{b}$



specify hadrons (experimentally clean)

- QCD contributions parametrized in form factors
- Lattice QCD (high q<sup>2</sup>) or LCSR (low q<sup>2</sup>)

#### S. Nishida Sep. 17, 2018

#### CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders

 $|V_{ub}|$  and  $|V_{cb}|$ 



Discrepancy between inclusive and exclusive



#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders**

# Untagged $B \to D^* \ell \nu$



- New result of untagged analysis of  $B \rightarrow D^* \ell v$ was presented at ICHEP.
- Simultaneous fit to  $\cos\theta_{\ell}$ ,  $\cos\theta_{V}$ ,  $\chi$ , w (hadronic recoil) to extract form factors and F(1)  $|V_{cb}|$ .
- Two form factor parametrization, CLN [NPB530, 153 (1998)] and BGL [PRL74, 463 (1995)] are used.
  - ✓ CLN was mainly used in previous measurements.

$$N(B \rightarrow D^*ev) = 91381$$
  
 $N(B \rightarrow D^*\mu v) = 89965$ 

Bonus: Lepton Flavor Universality test

$$\frac{\mathcal{B}(B^0 \to D^{*-} e^+ \nu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu)} = 1.01 \pm 0.01 \pm 0.03$$

[BELLE-CONF-1803, arXiv:1809.03290]





### CKM 2018 @ Heidelberg 31

#### S. Nishida Sep. 17, 2018

Untagged  $B \rightarrow D^* \ell v$ 





# More Results, Talks

• B  $\rightarrow \mu \nu$  (untagged) [PRL 121, 031801 (2018)]  $\frac{2}{2}$ 



Talk by B.Pal (WG4)

Talk by M. Gelb (WG2)

- $B \rightarrow \ell v \gamma$  (hadronic tag with Full Event Interpretation)
- CPV of B  $\rightarrow$  J/ $\psi \pi^0$ , B  $\rightarrow$  K<sub>S</sub> $\pi^0 \pi^0$   $\stackrel{\circ}{\longrightarrow}$
- Inclusive  $B \rightarrow X_u \ell_V$  (electron energy endpoint) [PRD 95, 072001 (2017)]
- Charmless B decays,  $\gamma(=\phi_3)$ , .....

and

Prospects for Belle II



**New Result** 



# Summary

- Belle II started. Phase 2 operation completed this year.
  - ✓ First collision.
  - $\checkmark$  Accelerator study, but some physics data are taken.
  - ✓ B mesons are reconstructed.
- New results from BaBar and Belle.
  - $\checkmark \ D^* \text{ polarization in } B \to D^* \tau \nu.$
  - ✓  $cos(2\beta)$  in B → D<sup>(\*)</sup>h<sup>0</sup>
  - ✓ |Vcb| from  $B \rightarrow D^* \ell v$ ✓ ....
- Belle II Phase 3 (physics run) starts next year, and we expect first physics results soon. Stay tuned.



CKM Physics in e<sup>+</sup>e<sup>−</sup> Colliders





# Backup

S. Nishida Sep. 17, 2018

### SuperKEKB and Belle II







#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders**

# SuperKEKB Parameter



| parameters           |                       | КЕКВ                          |       | SuperKEKB            |         | unite                            |
|----------------------|-----------------------|-------------------------------|-------|----------------------|---------|----------------------------------|
|                      |                       | LER                           | HER   | LER                  | HER     | units                            |
| Beam energy          | Eb                    | 3.5                           | 8     | 4                    | 7       | GeV                              |
| Half crossing angle  | φ                     | 11                            |       | 41.5                 |         | mrad                             |
| Horizontal emittance | ε <sub>x</sub>        | 18                            | 24    | 3.2                  | 5.0     | nm                               |
| Emittance ratio      | κ                     | 0.88                          | 0.66  | 0.27                 | 0.25    | %                                |
| Beta functions at IP | $\beta_x^*/\beta_y^*$ | 1200/5.9                      |       | 32/0.27              | 25/0.31 | mm                               |
| Beam currents        | l <sub>b</sub>        | 1.64                          | 1.19  | 3.60                 | 2.60    | А                                |
| beam-beam parameter  | ξ <sub>y</sub>        | 0.129                         | 0.090 | 0.0886               | 0.0830  |                                  |
| Luminosity           | L                     | <b>2.1 x 10</b> <sup>34</sup> |       | 8 x 10 <sup>35</sup> |         | cm <sup>-2</sup> s <sup>-1</sup> |

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

**CKM Physics in e<sup>+</sup>e<sup>-</sup> Colliders** 

### From Belle to Belle 2





#### S. Nishida Sep. 17, 2018

#### **CKM Physics in e⁺e⁻ Colliders**

### The Geography of the International Belle II collaboration



This is <u>rather unique</u> in Japan and Asia. The only comparable example is the T2K experiment at JPARC, which is also an <u>international collaboration</u>

Youth and potential: There are ~267 graduate students in the collaboration

### Event Topology tells us we are seeing B's







We are on the Y(4S) resonance and recording B anti-B pairs with ~99% efficiency.

### **Examples of Physics Competition and Complementarity**



### Angular Analysis of $B \to K^* \ell^+ \ell^-$



Angular distribution in  $B \rightarrow K^* \ell^+ \ell^- (K^* \rightarrow K \pi)$  $d^4\Gamma$  $\mathrm{d}\Gamma/\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2$  $= \frac{9}{32\pi} \left| \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \right|$  $+\frac{1}{4}(1-F_L)\sin^2\theta_K\cos 2\theta_\ell$  $-F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$  $+S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$  $+S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$  $+S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$ 

 8 variables: F<sub>L</sub> (longitudinal polarization of K\*) and S<sub>j</sub> (j=3,4,5,6,7,8,9)
 ✓ function of q<sup>2</sup>



$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

S. Nishida Sep. 17, 2018