Overview of Kaon physics

Kei Yamamoto (University of Zurich/Hiroshima University)

CKM2018 (Heidelberg) 17th Sep 2018

Why Kaon?

Kaon observables are sensitive to NP at a very high scale, which is not accessible at the LHC

- FCNC and CP violation in Kaon system are suppressed in the SM

Several on-going experiments for Kaon observables (KOTO/NA62/LHCb + KLOE-2/TREK...)

Using recent result of lattice calculation, there is discrepancy in ϵ'/ϵ between SM value and data (discuss in detail later)

Outline

• ϵ • ϵ'/ϵ • $K_L \to \pi^0 \nu \bar{\nu}$ • $K^+ \to \pi^+ \nu \bar{\nu}$ • $K_S \to \mu \mu$

ϵ and ϵ'

1964 $K_L \rightarrow 2\pi$ was observed *Discovery of CP violation*

$$\begin{array}{c|c} & & & \text{CP even} \\ & & |K_L\rangle = |K_2\rangle + \epsilon |K_1\rangle \\ \hline & & \text{Direct CPV (decay)} \end{array} \begin{array}{c} & & \text{CP even} \\ & & & \text{Indirect CPV (mixing)} \end{array} \end{array} \xrightarrow{\text{CP even}} & & |2\pi\rangle \end{array}$$

$$\eta_{00} \equiv \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \equiv \epsilon - 2\epsilon' \qquad \eta_{+-} \equiv \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \equiv \epsilon + \epsilon'$$

Indirect CPV (mixing)
$$\epsilon$$

 $|\epsilon| \simeq \frac{1}{3} (|\eta_{00}| + 2|\eta_{+-}|)^s \overline{\frac{u,c,t}{d}}_{\overline{W}} \sqrt[w]{u,c,t}_{\overline{S}} d$
 $|\frac{\eta_{00}}{\eta_{+-}}|^2 \simeq 1 - 6 \operatorname{Re} \left(\frac{\epsilon'}{\epsilon}\right) \qquad s \frac{\frac{g/Z/\gamma}{\varepsilon}}{\frac{\zeta}{u,c,t}} \frac{u,d}{d}}{\frac{\delta}{d}} d$
 $\epsilon = \mathcal{O}(10^{-3}) \quad \operatorname{Re} \left(\frac{\epsilon'}{\epsilon}\right) = \mathcal{O}(10^{-3}) \quad \epsilon' = \mathcal{O}(10^{-6})$

Highly suppressed and sensitive to NP

3

Indirect CP violation ε gives severe constraint on NP

SM prediction of ε is sensitive to |Vcb|

 $\lambda_i = V_{is}^* V_{id}, \ S_0 : \text{Inami-Lim function} \\ \eta_i : \texttt{QCD correction} \quad \texttt{NNLO} : \texttt{Brod and Gorbahn 1108.2036}$

$$\epsilon(SD) \propto \mathrm{Im}\lambda_t \Big[\mathrm{Re}\lambda_c \eta_{cc} S_0(x_c) - \mathrm{Re}\lambda_t \eta_{tt} S_0(x_t) - (\mathrm{Re}\lambda_c - \mathrm{Re}\lambda_t) \eta_{ct} S_0(x_c, x_t) \Big] \\ \simeq |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} S_0(x_c) \Big]$$

 ε evaluated from inclusive |Vcb| is consistent with the measured value On the other hand there is 4σ tension with exclusive |Vcb| (still tension in averaged)

See e.g. Bailey, Lee, Lee, Leem 1808.09657

Vcb exclusive vs. inclusive problem

$$\epsilon|_{\rm exp} = 2.228(11) \times 10^{-3}$$

 $\mathcal{O}(10\%)$ NP room on ϵ is still allowed

E: Vcb exclusive vs. inclusive

2 different methods for functional form of form factors:

1. Model-dependent method : **CLN**

Caprini, Lellouch, and Neubert (CLN) hep-ph/9712417

2. Model-independent method : **BGL**

Boyd, Grinstein, and Lebed (BGL) hep-ph/9705252

Recent discussions on exclusive Vcb :

The gap might be explained in part with **BGL** method

Large deviation from heavy quark symmetry ?

The situation of exclusive Vcb is still unclear See talk WG2

Bigi, Gambino and Schacht 1703.06124/1707.09509 Grinstein and Kobach 1703.08170

Bernlochner, Ligeti, Papucci and Robinson 1708.07134

ε'/ε

In the SM, there is accidental cancellation between ImA_0 and ImA_2 due to the enhancement factor $1/\omega$

EW penguin is comparable to QCD penguin due to the enhancement factor

ε'/ε discrepancy

Decay amplitude Short distance Matrix element $\langle (\pi\pi)_I | \mathcal{H} | K^0 \rangle = \sum_n C_n \langle (\pi\pi)_I | \mathcal{O}_n | K^0 \rangle$

Short distance

- NLO result has been available since early 90's
- NNLO QCD calculation is in progress Cerda-Sevilla, Gorbahn, Jager, Kokulu 1611.08276
- Long distance (Matrix elements)
 - First lattice result by RBC-UKQCD in 2015 1502.00263 1505.07863

From the lattice result, ϵ'/ϵ has been calculated in SM using data for ReA_{0,2}

 $\frac{\text{SM}}{\text{with Lattice}} \left(\frac{\epsilon'}{\epsilon}\right)_{\text{SM}} = (1.06 \pm 5.07) \times 10^{-4} \text{ Kitahara, Nierste and Tremper, 1607.06727} \\ \text{c.f. RBC-UKQCD / Buras, Gorbahn, Jager and Jamin 1507.06345} \\ \text{Exp} \quad \left(\frac{\epsilon'}{\epsilon}\right)_{\text{exp}} = (16.6 \pm 2.3) \times 10^{-4} \text{ average of NA48 and KTeV}$

2.8\sigma difference $\mathcal{O}(1)$ NP in ϵ'/ϵ ?

ε'/ε discrepancy

SM with Lattice

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = (1.06 \pm 5.07) \times 10^{-4}$$
 difference $\left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4}$

 $O_6 \& O_8$ have dominant effects on ϵ'/ϵ due to chiral enhancement

 $\begin{array}{l} \langle (\pi\pi)_0 | \mathcal{O}_6 | K \rangle \propto B_6^{(1/2)} \\ \langle (\pi\pi)_2 | \mathcal{O}_8 | K \rangle \propto B_8^{(3/2)} \end{array} \begin{array}{l} \text{Non-perturbative} \\ \text{parameter} \end{array}$

 $B_6^{(1/2)} = 0.57 \pm 0.19$ $B_8^{(3/2)} = 0.76 \pm 0.05$

QCD penguin
$$O_6 = (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_q (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

EW penguin $O_8 = \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_q^q e_q(\bar{q}_{\beta}q_{\alpha})_{V+A}$

Buras, Buttazzo, Girrbach-Noe and Knegjens 1503.02693

Error for ϵ'/ϵ is dominated by $B_6^{(1/2)}$

Values extracted from the lattice result

Two ways of analytic approaches

Result in DQCD approach gives a strong support to lattice result. On the other hand, result in ChPT is consistent with data *See J.Aebischer talk (WG3, Wed)*

Wait for improved lattice results See C. Kelly talk (next)

Interpretation of ε'/ε discrepancy

Motivated by ϵ'/ϵ discrepancy, several new physics models have been studied

Little Higgs Model with	T-parity Blanke, Buras and Recksiegel 1507.06316		
Modified Z scenario	Buras, Buttazzo and Knegjens1507.08672/Buras, 1601.00005		
	Endo, Kitahara, Mishima and KY 1612.08839/Bobeth, Buras, Celis and Jung 1703.04753		
Z' models	Buras, Buttazzo, Knegjens 1507.08672 /Buras 1601.00005		
331 model	Buras and De Fazio 1512.02869/1604.02344		
MSSM Chargino Z peng	guin Endo, Mishima, Ueda and KY 1608.01444		
Gluino Z pengu	n Tanimoto and KY 1603.07960		
	Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959		
Gluino Box	Kitahara, Nierste and Tremper 1604.07400,1703.05786		
	Crivellin, D'Ambrosio, Kitahara, Nierste 1712.04959		
	Chobanova, D'Ambrosio,Kitahara, Martínez, Santos, Fernández and KY 1711.11030		
Vector-like quarks	Bobeth, Buras, Celis and Jung 1609.04783		
Right handed current	Cirigliano, Dekens, Vries and Mereghetti 1612.03914		
	Alioli, Cirigliano, Dekens, de Vries and Mereghetti 1703.04751		
Leptoquark	Bobeth and Buras 1712.01295		
LR symmetric model	Haba,Umeeda and Yamada 1802.09903/1806.0342		
Type-III 2HDM	Chen and Nomura 1805.07522/1808.04097		
Chiral-flavorful vectors	Matsuzaki, Nishiwaki and KY 1806.02312		
Diquark model	Chen and Nomura 1808.04097		

Different implications (correlations & predictions) for other observables appear depending on models \Rightarrow Possibility of model discriminations

Clean signal : $K \rightarrow \pi \nu \nu$

$K_L \rightarrow \pi^0 v \bar{v}$ and $K^+ \rightarrow \pi^+ v \bar{v}$

- Highly suppressed in the SM : $BR_{SM} \sim 10^{-11}$ Buras, Buttazzo, Girrbach-Noe and Knegjens 1503.02693 $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (3.00 \pm 0.30) \times 10^{-11}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (9.11 \pm 0.72) \times 10^{-11}$

- Theoretically clean (Hadronic matrix element can be estimated using isospin symmetry)

- Neutral decay $K_L \rightarrow \pi^0 v v$ is purely CP violating mode

$K_L \rightarrow \pi^0 v \bar{v}$ and $K^+ \rightarrow \pi^+ v \bar{v}$

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{exp}$

- KOTO at J-PARC reported new result from the 2015 data this summer

- KOTO-phase2 aims to measure at 10% accuracy

 $\begin{array}{l} BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} \quad \textit{NA62} \bigotimes \quad \textit{NA62@CERN} \\ \hline \text{- NA62 at CERN observed one event in 2016 data} \\ BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (9.11 \pm 0.72) \times 10^{-11} \\ BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10} \quad \textit{BNL 949/E787} \\ < 14 \times 10^{-10} (95\% \text{C.L.}) \quad \textit{New 2018} \quad \textit{NA62@FPCP2018} \end{array}$

- Expected about 20 SM events from the 2017-2018 data sample

$\epsilon'/\epsilon \Leftrightarrow K \rightarrow \pi \nu \nu$ - Examples -

Z scenario

Buras, Buttazzo and Knegjens 1507.08672 / Buras 1601.00005 / Bobeth, Buras, Celis and Jung 1703.04753

 $\Delta_{\rm I}$ and/or $\Delta_{\rm R}$

There are interesting correlations between Kaon observables depending on the chiral structure of coupling (LH and/or RH)

$\epsilon'/\epsilon \Leftrightarrow K \rightarrow \pi \nu \nu$ - Examples -

Different correlations between ϵ'/ϵ and $K \rightarrow \pi \nu \nu$ may allow to distinguish among models

Recent other progress for ϵ'/ϵ

- Chromomagnetic operator
 - ETM collaboration has reported the first Lattice result for the K $\rightarrow \pi$ matrix element of the chrome magnetic operator *ETM collaboration, 1712.09824*
 - DQCD gives a similar result Buras and Gérard 1803.08052

CMO contribution is not significant in the SM, but it could be important in some NP models

BSM operators Aebischer, Buras and Gérard 1807.01709 / Aebischer, Bobeth, Buras, Gérard and Straub 1807.02520

Matrix elements of BSM operator are calculated in DQCD Master formula including BSM operators is derived with DQCD Scalar & tensor operators, which have chiral enhancement, are important

SMEFT study : (SM effective field theory) [SU(2) imesU(1) inv.] (μ_{EW} < μ < μ_{NP})

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} C_i \mathcal{O}_i^{d \ge 5}$ Due to the RG effect, observables have correlation

-Model independent approach Aebischer, Bobeth, Buras and Straub 1808.00466

The constraints from K⁰ and D⁰ mixing as well as EDM are potentially important

- Z penguin scenario Bobeth, Buras, Celis and Jung 1703.04753 Endo, Kitahara, Mishima and KY 1612.08839/ Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959

 Δ S=1 operators generate Δ S=2 contributions, through top-Yukawa enhanced RG evolution 15/19

К→µµ

It could be used to probe NP contributions. However, there are LD contributions $(K \rightarrow \gamma \gamma)$ in SM: $\mu) = \gamma_{S,L} - \gamma_{16} - \mu$ $\frac{K^{0}}{C_{P} - \tilde{C}_{P}} + \frac{2nn}{M_{K}} \ln C_{A} = \tilde{C}_{A} \bar{\mu}$

 $K_S \to \mu \mu$

 $K \rightarrow \gamma \gamma$ is evaluated in ChPT at O(p^4)

 $\mathcal{B}(K_S \to \mu^+ \mu^-)_{\rm SM}$

= $(4.99 (LD) + 0.19 (SD)) \times 10^{-12}$ = $(5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

> Ecker and Pich Nucl.Phys. B366 (1991) 189-20 Isidori and Unterdorfer hep-ph/0311084

 $\mathcal{B}(K_S o \mu^+ \mu^-)_{
m exp} < 0.8 imes 10^{-9}$ LHCb Run1

SM sensitivity at LHCb Run3 (2021-)

$$K_L \to \mu \mu$$

Leading O(p^4) contributions for $K \rightarrow \gamma \gamma$ vanish

Determined from $B(K_L \to \gamma \gamma)_{exp}$ Sign ambiguity in $A(K_L \to \mu \mu)_{LD}$

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm SM} = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9} & \text{destructive} \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9} & \text{constructive} \end{cases}$$

Isidori and Unterdorfer hep-ph/0311084 Gorbahn and Haisch hep-ph/0605203

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\exp} = (6.84 \pm 0.11) \times 10^{-9}$$

$K_S \rightarrow \mu \mu$ - Interference contribution -

A state of K^0 (or \overline{K}^0) at t=0 evolves into mixture of K_s and K_L states

If # of $K^0 \& K^{\overline{0}}$ in beam are different from each other, interference contribution btwn K_s and K_L exists

The decay intensity of neutral Kaon beam into f: $I(t) = \frac{N(K^{0})}{N(K^{0}) + N(\overline{K}^{0})} \left| \langle f | \mathcal{H}_{eff} | K^{0}(t) \rangle \right|^{2} + \frac{N(\overline{K}^{0})}{N(K^{0}) + N(\overline{K}^{0})} \left| \langle f | \mathcal{H}_{eff} | \overline{K}^{0}(t) \rangle \right|^{2}$ $= \frac{1}{2} |\mathcal{A}(K_{S})|^{2} e^{-\Gamma_{S}t} + \frac{1}{2} |\mathcal{A}(K_{L})|^{2} e^{-\Gamma_{L}t} + D \operatorname{Re} \left[e^{-i\Delta M_{K}t} \mathcal{A}(K_{S})^{*} \mathcal{A}(K_{L}) \right] e^{-\frac{\Gamma_{S}+\Gamma_{L}}{2}t} + \mathcal{O}(\overline{\epsilon})$ Dilution factor $D \equiv \frac{N(K^{0}) - N(\overline{K}^{0})}{N(K^{0}) + N(\overline{K}^{0})}$ Interference contribution

KNonzero D can be achieved by an accompanying charged kaon tagging $pp \to K^0 K^- X$

Decay length of the interference contribution is around $2\tau_s$

decay inside of LHCb detector

 $K_S \rightarrow \mu \mu$ - Interference contribution -

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{\text{eff}} = \mathcal{B}(K_S \to \mu^+ \mu^-) + D \ \mathcal{B}(K \to \mu^+ \mu^-)_{\text{int}}$$
$$\mathcal{B}(K \to \mu^+ \mu^-)_{\text{int}} \propto \mathcal{A}(K_S \to \mu^+ \mu^-)^* \mathcal{A}(K_L \to \mu^+ \mu^-) \supset \text{Im}A_{\text{SD}} \mathcal{A}(K_L \to \mu\mu)_{\text{LD}}$$
$$\supset \text{Im}A_{\text{SD}} \quad \propto \mathcal{A}(K_L \to \mu\mu)_{\text{LD}}$$

SD effect becomes comparable in size to LD, due to large $A(K_L \rightarrow \mu \mu)_{LD}$ in interference effect

The sign of LD $A(K_L \rightarrow \mu \mu)_{\text{LD}}$ can be determined by a measurement of the interference

The interference changes Br. at O(60%) level in SM [more significant in MSSM] and the sign of the LD in $K_L \rightarrow \mu\mu$ can be determined if D=O(1) \longrightarrow LHCb

Summary

Many recent progresses in Kaon physics

Many other interesting topics (not covered in this talk)

e.g. $\begin{cases} \text{LFU test } (K_{e2}/K_{\mu 2}) \\ \text{LFV } (K_L \to \mu e) \\ K \to \pi \ell \ell \quad \text{see A. Juettner talk (WG3 Wed)} \\ \text{correlation with B physics } (R_{D^{(*)}}, R_{K^{(*)}}, ,) \quad \text{see M. Bordone talk (WG3 Wed)} \end{cases}$

Kaon physics will continue to offer a powerful probe for NP!

RBC-UKQCD lattice result

[1] Buras, et al., 1507.06345
[3] RBC-UKQCD, 1505.07863
[15] RBC-UKQCD, 1502.00263

Amplitude	Lattice QCD	Exp. data
${\rm Re}A_0 \ [10^{-7} \ {\rm GeV}]$	$4.66 \pm 1.00 \pm 1.26$ [3]	3.322 ± 0.001 [1]
$\text{Im}A_0 \ [10^{-11} \text{ GeV}]$	$-1.90 \pm 1.23 \pm 1.08$ [3]	
${\rm Re}A_2 \ [10^{-8} {\rm GeV}]$	$1.50 \pm 0.04 \pm 0.14$ [15]	1.479 ± 0.003 [1]
$Im A_2 \ [10^{-13} \text{ GeV}]$	$-6.99 \pm 0.20 \pm 0.84$ [15]	

- The real parts are consistent with those extracted from the data.
- Scattering phase-shifts are determined from the two-pion energy levels in a finite Euclidean volume on the lattice.

[Lellouch & Lüscher]

Solution Caveat: The calculated $I = 0 \pi \pi$ phase-shift is smaller than the data:

$$\delta_0 = 23.8(4.9)(1.2)^{\circ} \longleftrightarrow (\delta_0)_{exp} = 38.3(1.3)^{\circ}$$