
Stream Ring Theory∗

Marko A. Rodriguez
Captain, S/V Red Herring

A stream is an ever expanding and contracting list of objects. Stream functions consume objects
from an incoming stream and produce objects for an outgoing stream. The presented stream algebra
enables the composition of functional structures that respect the axioms and entailed theorems
of algebraic ring theory. The algebra can be used to write expressions that are computationally
equivalent to any Turing machine and as such, can be leveraged as the theoretical foundation for
all stream-based processing languages and systems.

I. INTRODUCTION

A stream is an unordered list of objects. A stream
can have objects inserted into it and it can have objects
removed from it. A stream function f has both an in-
coming stream and an outgoing stream. The incoming
stream is the stream of objects that have yet to be pro-
cessed (removed) by f and the outgoing stream is the
stream of objects that have already been generated (in-
serted) by f . The type of objects incoming to f can be
different from the type of objects outgoing from f . For
instance, the stream function f : X → Y ∗ maps one
X-object from the incoming stream to zero or more Y -
objects in the outgoing stream.1 This simple foundation
is developed into an algebraic structure called a stream
ring. A stream ring is a set of coefficients and functions
along with additive and multiplicative operators used for
writing expressions that are isomorphic to an acyclic, di-
rected graph of coefficient-prefixed functions connected
by streams.

This article will discuss ring theory, establish the pre-
sented stream structure as a ring, demonstrate common
stream ring patterns, and then use the axioms and the-
orems of stream ring theory to prove that the developed
algebra is Turing Complete.

II. THE DEFINITION OF A RING

A ring is a set A with two binary operators + and ·
called “addition” and “multiplication” respectively and
is denoted 〈A,+, ·〉 [1]. The substructure 〈A,+〉 is an
abelian (commutative) group with additive inverses and
an additive identity element denoted 0 ∈ A. If a, b, c ∈ A,
then according to the axioms of ring theory

(a+ b) + c = a+ (b+ c),

∗Rodriguez, M.A., “Stream Ring Theory,” S/V Red Herring’s
Ship’s Log: Chronicles in the Sea of Cortez, pages 10–40, Mulegé,
Baja California Sur, México, February 2019.
1 The set X∗ refers to the Kleene star closure on the elements

of the set X and is equivalent to the multi-set of all possible
combinations of the elements in X with repetition of elements
allowed. Thus, if |X| > 0, |X∗| =∞.

0 + a = a+ 0 = a,

a− a = a+ (−a) = 0,

and, due to commutativity,

a+ b = b+ a.

The substructure 〈A, ·〉 is a monoid with a multiplicative
identity element denoted 1 ∈ A such that

(a · b) · c = a · (b · c),

and

1 · a = a · 1 = a.

In the aggregate ring structure 〈A,+, ·〉, multiplication is
both right and left distributive over addition such that

(a+ b) · c = (a · c) + (b · c)

and

a · (b+ c) = (a · b) + (a · c).

The standard term for the structure 〈A,+, ·〉 is a ring
with unity.2 If a ring is closed under addition and multi-
plication, then for every a, b ∈ A, a+ b ∈ A and a · b ∈ A.
Studied ring extensions include a multiplicative operator
that is both idempotent (for all n > 0, an = a) and com-
mutative (a ·b = b ·a).3 The commonly used implications
and equalities in Theorem 1 can be directly deduced from
the aforementioned ring theory axioms.

Theorem 1. If 〈A,+, ·〉 is a ring and a, b, c ∈ A, then

1. a+ b = a+ c =⇒ b = c

2. a+ b = 0 =⇒ a = −b and b = −a
3. −(a+ b) = (−a) + (−b)
4. −(−a) = a

5. a0 = 0 = 0a

6. a(−b) = −a(b) = −(ab)

7. (−a)(−b) = ab

2 The identity element 1 ∈ A in the multiplicative monoid 〈A, ·〉 is
oftentimes referred to as “unity.”

3 When multiplication is clear from context, a · b · c will be written
as abc.

2

Proof. The theorem’s implications and equalities will be
rigorously deduced from the ring axioms.

1. a+ b = a+ c =⇒ b = c

a+ b = a+ c

−a+ a+ b = −a+ a+ c [add −a]

(−a+ a) + b = (−a+ a) + c [+ is associative]

(a− a) + b = (a− a) + c [+ is commutative]

0 + b = 0 + c [a− a = 0]

b = c [0 + a = a]

This is the additive cancellation law.

2. a+ b = 0 =⇒ a = −b and b = −a

a+ b = 0

a+ b− b = −b [add −b]
a+ (b− b) = −b [+ is associative]

a+ 0 = −b [b− b = 0]

a = −b [a+ 0 = a]

A similar deduction proves b = −a.

3. −(a+ b) = (−a) + (−b)

0 + 0 = 0 [a+ 0 = a]

(a− a) + (b− b) = 0 [a− a = 0]

a+ (−a) + b+ (−b) = 0 [+ is associative]

a+ b+ (−a) + (−b) = 0 [+ is commutative]

(a+ b) + (−a) + (−b) = 0 [+ is associative]

(−a) + (−b) = −(a+ b) [add −(a+ b)]

4. −(−a) = a

a+ (−a) = 0 [a− a = 0]

a+ (−a)− (−a) = −(−a) [add −(−a)]

a+ ((−a)− (−a)) = −(−a) [+ is associative]

a+ 0 = −(−a) [a− a = 0]

a = −(−a) [a+ 0 = a]

5. a0 = 0 = 0a

aa+ 0 = aa [a+ 0 = a]

aa+ 0 = a(a+ 0) [a = a+ 0]

aa+ 0 = aa+ a0 [· is left distributive]

0 = a0 [add −aa]

A similar deduction using the right distributive ring
axiom proves 0a = 0.

6. a(−b) = −a(b) = −(ab)

a(−b) + ab = a(−b+ b) [· is left distributive]

a(−b) + ab = a(b− b) [+ is commutative]

a(−b) + ab = a0 [a− a = 0]

a(−b) + ab = 0 [a0 = 0]

a(−b) = −(ab) [add −ab]

A similar deduction yields −a(b) = −(ab).

7. (−a)(−b) = ab

(−a)(−b) = (−a)(−b) [a = a]

(−a)(−b) = −(a(−b)) [−a(b) = −(ab)]

(−a)(−b) = −(−(ab)) [a(−b) = −(ab)]

(−a)(−b) = ab [−(−a) = a]

III. THE DEFINITION OF A STREAM RING

A stream expression is composed of streams, functions,
and objects. An intuitive definition of these components
will be presented first and then a formal specification
containing axioms and theorems will be provided in the
subsequent subsections.

Definition 1 (Stream). The stream x ∈ X∗ is an un-
ordered list of objects in X, where x = 〈x1, x2, . . . , xn〉.
A stream is directed. There is a tail function a : ? → X
which inserts objects into the stream and there is a head
function b : X → ? which removes objects from the
stream. The codomain type of the tail function always
equals the domain type of the head function.4

Definition 2 (Stream Object). A stream object is pro-
duced by a tail function and consumed by a respective
head function. Every stream object x ∈ X has a cor-
responding coefficient c ∈ C and when its coefficient is
considered, the stream object is denoted cx. Coefficients
are elements from any algebraic ring with unity 〈C,+, ·〉.

Definition 3 (Stream Function). A stream function con-
sumes objects from its incoming stream and produces ob-
jects for its outgoing stream. If the incoming stream is
in X∗ and the outgoing stream is in Y ∗, then, in general,
the stream function a has the signature a : X → Y ∗.
Every stream function has a corresponding coefficient
c ∈ C such that a function along with its coefficient is de-
noted ca. All stream functions form the ring with unity
〈F ,+, ·〉.

The above definitions introduce two algebraic rings
with unity: the coefficient ring and the function ring.
These rings will be discussed, proved, and then unified
into the ultimate focal structure of this article, namely,
the stream ring.

4 The term “(co)domain type” is used instead of simply
“(co)domain” because, in some situations, while the head func-
tion’s codomain is X∗ and the tail function’s domain is X, the
type of objects in both is X.

3

A. The Coefficient Ring

The coefficient ring 〈C,+, ·〉 is any ring with unity. For
most of the examples to follow, C is the set of integers
Z with + being numeric addition and · being numeric
multiplication. In order to prove that 〈Z,+, ·〉 is a ring
with unity, it must be demonstrated that the structure
satisfies all the aforementioned ring axioms. The validity
of these axioms over Z is readily apparent to those with
rudimentary arithmetic knowledge.

Theorem 2. The structure 〈Z,+, ·〉 is a ring with unity.

Proof. Each operator of a ring defines an algebraic sub-
structure. The substructure 〈Z,+〉 must be an abelian
(commutative) group. The substructure 〈Z, ·〉 must be a
monoid with unity.

The substructure 〈Z,+〉 is associative because (a+b)+
c = a+(b+c) and commutative because a+b = b+a. In
words, the order in which a set of integers is added does
not change the resultant summation. The element 0 ∈ Z
is the additive identity element, where for every a ∈ Z,
0 + a = a + 0 = a. Every integer has a negative inverse
such that a− a = a+ (−a) = 0.

The substructure 〈Z, ·〉 is associative because (a · b) ·
c = a · (b · c). The element 1 ∈ Z is the multiplicative
identity element known as unity, where for every a ∈ Z,
1 · a = a · 1 = a.

Finally, in order for these two substructures to form a
ring in aggregate, it must be the case that multiplication
is both right and left distributive over addition such that
(a+ b) · c = ac+ bc and a · (b+ c) = ab+ ac, respectively.
These equalities are true for the integers Z. Thus, the
structure 〈Z,+, ·〉 is a ring with unity.

It is important to emphasize that any ring with unity
can be used to construct a stream ring. Other ring exam-
ples include the ring of real numbers R, complex numbers
C, rational numbers Q, respective numeric matrices, and
even coordinate systems in two (R×R), three (R×R×R),
or more dimensions. Ring theory is rife with example
rings and depending on the the domain of application
of stream ring theory, a suitable coefficient ring can be
chosen.

B. The Function Ring

F is the set of all stream functions. The structure
〈F ,+, ·〉 is a ring with unity. The additive binary opera-
tor + : F ×F → F combines two functions into a single
parallel function, where each original function shares the
same incoming and outgoing stream. The multiplicative
binary operator · : F × F → F composes two functions
into a single serial function. There is an additive iden-
tity element 0 ∈ F and a multiplicative identity (unity)
element 1 ∈ F defined as 0(x) = ∅ and 1(x) = x, re-
spectively. Every function a ∈ F has an additive inverse
−a ∈ F .

Every symbol-based expression has a corresponding di-
agrammatic representation. Diagram vertices represent
functions and directed edges represent streams. For ex-
ample, a+ b has the form

a

,

b

a · b · c has the form

a→ b→ c,

and, to provide a complex example, a · b · (c+ (d · e)) · f
is diagrammed as

c

a b f.

d e

An expression is an equation (program) without argu-
ments (input). To evaluate an expression, objects must
be inserted into a stream.5 For example, if 〈〉 is an empty
stream, then the expression

〈x, y, z〉abc

places the objects x, y, and z on the incoming stream of
a and is diagrammed as

a b c.
x, y, z

The objects of a stream move from the tail of an arrow to
the head of the arrow and are processed by the functions
they encounter along the way. When an object comes to
a split, the object is copied to each branch. When two
streams join, their respective objects are merged in no
required order. The following four diagrams demonstrate
how x propagates through the branching expression (1 +
1) so as to diagrammatically prove that 〈x〉(1 + 1) =
〈x, x〉.

1

1

x
1

1

x

x

5 Over the course of this article, a stream notation is developed
that is more aligned with stream semantics than standard math-
ematical function notation. If a is a stream function, it can
be denoted 〈〉a〈〉 showing that it has both an empty incom-
ing and outgoing stream. If, in function notation a(x) = y,
then 〈x〉a〈〉 = 〈〉a〈y〉. Or more conveniently, 〈x〉a = 〈y〉. The
stream expression 〈x, y〉a is not equivalent to the function ex-
pression a(x, y) as a maps one object at a time. Instead,
〈x, y〉a = 〈a(x), a(y)〉. It is always the case that 〈x〉a = a(x).
More specifically, 〈x〉a ≡ 〈a(x)〉.

4

1

1

x

x

1

1

x, x

Theorem 3. The structure 〈F ,+, ·〉 is a ring with unity.

Proof. The aforementioned axioms of ring theory must
be true if 〈F ,+, ·〉 is a ring with unity.

The abelian group 〈F ,+〉 must be commutative such
that a+ b = b+ a. Diagrammatically,

a

b

=

b

.

a

Addition creates two parallel streams. The incoming
objects to a and b are identical because when an ob-
ject meets a split, it is copied onto each branch. The
outgoing objects of a and b are merged into a single
stream in no defined order. Thus, a + b = b + a.
The abelian group must also be associative such that
(a+ b) + c = a+ (b+ c) = a+ b+ c. These equalities are
diagrammed as

a

b

c

=

a

b

c

=

a

b .

c

In the three diagrams above, the branch functions a, b,
and c each receive the same incoming objects as the ob-
jects encountering the various splits are not altered prior
to the first function of each respective branch in each di-
agram. Moreover, the outgoing objects from a, b, and
c are merged in no defined order. Therefore, the three
diagrams above are equivalent and 〈F ,+〉 is associative.
The abelian group must have an additive identity ele-
ment 0, where a+ 0 = a and 0 + a = a. If a(x) = y, then
the equality 〈x〉(a+0) = 〈x〉a is proved diagrammatically
as

a

0

x

x =

a

0

y

= a(x).

Given that 0(x) = ∅ or, in stream notation, 〈x〉0 = 〈〉,
if the only function of a branch is 0, then the incoming
objects to 0 are never merged into the outgoing stream.
Instead, only the outgoing objects of a are merged. Thus,
a + 0 = a and via the previously proved commuta-
tive property, 0 + a = a. Finally, every function in
a ∈ F must have an additive inverse −a ∈ F such that

a− a = a+ (−a) = 0. The validity of this axiom within
a function ring requires the introduction of the concept
of object orthogonality which is captured by using two
rudimentary object coefficients: 1 and −1. The equal-
ity 〈x〉(a − a) = 〈x〉0 is demonstrated diagrammatically
where if a(x) = y and −a(x) = −y, then

a

−a

x

x =

a

−a

y

−y
= 0(x).

When two “equivalent” objects in a stream are orthog-
onal to each other (e.g. opposing signs), they annihilate
each other. Thus, 〈x〉(a − a) = 〈y,−y〉 = 〈〉. This is
equivalent to 〈x〉0 and therefore, a− a = 0.6

For 〈F ,+, ·〉 to be a ring, the monoid 〈F , ·〉 must be
associative such that (a · b) · c = a · (b · c) = a · b · c.
Diagrammatically,

ab→ c = a→ bc = a→ b→ c.

Stream function composition makes implicit the explicit
stream binding two functions. If a(x) = y and b(y) = z,
then 〈x〉ab is equivalent to b(a(x)). Thus, whether the
functions are composed into a single function or not, the
serial stream will produce the same result and therefore,
〈F , ·〉 is associative. In a ring with unity, there must be
a multiplicative identity element 1 ∈ F which is defined
as 1(x) = x or, in stream notation, 〈x〉1 = 〈x〉. The
multiplicative identity element’s definition makes it clear
that a · 1 = 1 · a = a. If a(x) = y, then diagrammatically

a 1x a 1
y

a 1 .
y

While a · 0 = 0 · a = 0 can be deduced from the ring
axioms, note that in general, any serial (multiplicative)
chain of functions that contains the 0 element is equiva-
lent to 0. For instance, a0b = 0 because if x is processed
by a it will never reach b and therefore, b will never re-
ceive nor emit an object. Algebraically, (a0)b = 0b = 0
and a(0b) = a0 = 0. Diagrammatically,

a 0 bx a 0 b
y

a 0 b.

Multiplication must be right distributive over addition
such that (a+ b) · c = (a · c) + (b · c). Diagrammatically,

a

c

b

=

a c

.

b c

6 The concepts of equivalence, orthogonality, and annihilation are
discussed in depth in the next section which introduces stream
rings.

5

The outgoing objects from a and b will be incoming ob-
jects to c regardless of whether the objects are merged
first before being processed by c or are processed by c on
each respective branch and then merged. Finally, multi-
plication must be left distributive over addition such that
a · (b+ c) = (a · b) + (a · c). Diagrammatically,

b

a

c

=

a b

.

a c

The incoming objects to b and c will be outgoing from a
regardless of whether the objects are first processed by a
and then split or whether the objects are first split and
then processed by a on each branch. Thus, 〈F ,+, ·〉 is a
ring with unity.

Binomials and multinomials are important concepts in
ring theory. A binomial is a two component sum raised
to a power. For instance,

(a+ b)n.

A multinomial generalizes a binomial, where any number
of different two component summations are multiplied.
Both binomials and multinomials have expansions. An
expansion transforms a multiplication of additions into
an addition of multiplications. For example, the following
equality relates a multinomial to its expansion:

(a+ b) · (b+ c) = ab+ ac+ b2 + bc.

The validity of this equality can be deduced from the ring
axioms (e.g. using the “foil method”).

(a+ b)(b+ c)

a(b+ c) + b(b+ c) [· is right distributive]

(ab+ ac) + (b2 + bc) [· is left distributive]

ab+ ac+ b2 + bc [+ is associative]

In the lexicon of the developed function ring, the con-
catenation of two 2-way branches can be expanded into
an equivalent single 4-way branch. Diagrammatically,

a b

b c

=

a b

a c

.

b b

b c

C. The Stream Ring

The product of a coefficient ring 〈C,+, ·〉 and a func-
tion ring 〈F ,+, ·〉 forms a stream ring 〈CF ,+, ·〉.7 The
product of the sets C and F is the cross product

C × F = {(c, a) : c ∈ C ∧ a ∈ F}.

For every tuple (c, a) ∈ C × F , the first element is a
coefficient and the second element is a function. Tuples
will be written ca ∈ CF . If ca, db ∈ CF , then the stream
ring’s additive + operator is defined as a product of the
coefficient and function rings’ additive operators with

ca+ db =

{
(c+ d)a if a = b,

ca+ db otherwise,

where on the right hand side of the equality, (c+ d) uses
the coefficient ring’s addition and ca+ db uses the func-
tion ring’s addition. The stream ring’s multiplicative ·
operator is defined as the product of the pairwise multi-
plication of the coefficient and function rings with

ca · db = (c · d)(a · b),

where (c · d) uses the coefficient ring’s multiplication op-
erator and (a · b) uses the function ring’s multiplication
operator. In general, when coefficients are being added or
multiplied, it is the coefficient ring’s respective operators.
Likewise, when functions are being added or multiplied,
it is the function ring’s respective operators.8,9

The stream ring’s functions operate on stream objects.
Every object x ∈ X has a corresponding coefficient c ∈ C
where a stream object of type CX is an element in the
set

C ×X = {(c, x) : c ∈ C ∧ x ∈ X}.

When a stream object’s coefficient is referenced, the ob-
ject is denoted cx ∈ CX.10 The following equalities spec-

7 The symbols + and · are overloaded. In each ring, + and ·
has a unique definition. It will be clear from the context which
operation is being referred to.

8 The stream ring is similar to the direct product of the coefficient
and function rings 〈C,+, ·〉 ⊗ 〈F ,+, ·〉, where both addition and
multiplication are defined pairwise. In abstract algebra, it has
been proved that the direct product of any two rings forms a
ring. However, while multiplication is defined pairwise in the
stream ring, addition is not and thus, a formal proof is required
to demonstrate that 〈CF ,+, ·〉 is a ring with unity.

9 The smallest coefficient ring possible for constructing a stream
ring is 〈{−1, 0, 1},+, ·〉, where 1 is the additive identity, 0 is
the multiplicative identity, · is numeric multiplication, and + is
numeric addition save that 1 + 1 and −1 − 1 are not defined.
The stream expression a+ a 6= 2a, but instead remains a+ a or
(1+1)a. The object stream 〈x, x〉 can not be bulked to 〈2x〉, but
remains 〈x, x〉. A similar pattern holds for −1− 1.

10 When an object (or function) is denoted x (or a), it means that
the coefficient is 1 and thus, x = 1x (or a = 1a), where 1 ∈ C.
In a stream expression, when a coefficient c is denoted without
a function, then c = c1, where 1 ∈ F .

6

ify how a stream of coefficient-prefixed objects are manip-
ulated by coefficient-prefixed functions.11 These equali-
ties, along with the stream ring definitions of + and ·
above, form the stream ring axioms which will serve as
the foundation for the forthcoming proof that 〈CF ,+, ·〉
is a ring with unity. If x, y, z ∈ X are objects, 0, c, d, e ∈ C
are coefficients, and a, b ∈ F are functions, then

1. x ∼ y =⇒ 〈cx〉 = 〈cy〉
2. 〈cx, dy〉 = 〈dy, cx〉
3. 〈cx, dx〉 = 〈(c+ d)x〉
4. 〈cx〉da = 〈(c · d)a(x)〉
5. 〈cx〉(da+ eb) = (〈cx〉da) + (〈cx〉eb)
6. 〈cx〉+ 〈dy〉 = 〈cx, dy〉
7. 〈0x〉 = 〈c∅〉 = 〈〉.

1. x ∼ y =⇒ 〈cx〉 = 〈cy〉. Every object x ∈ X within
the stream x ∈ X∗ is an element of the equivalence
class

[x] = {y ∈ x : ∀f ∈ FX→? f(x) = f(y)}.

If the objects x and y map to the same range for
every applicable function in F , then there exists the
equivalence relation x ∼ y and the stream 〈cx〉 =
〈cy〉. In essence, two objects are “equal” if they are
in the same stream and behave the same way for
all F .12

2. 〈cx, dy〉 = 〈dy, cx〉. Streams are unordered lists of
stream objects and are considered equal if they con-
tain the same objects with respective coefficients.

3. 〈cx, dx〉 = 〈(c + d)x〉. If a stream contains two
equivalent objects, then they can be merged into a
single stream object by summing their coefficients
using the coefficient ring’s additive operator. This
is called the bulk axiom.

4. 〈cx〉da = 〈(c · d)a(x)〉. The coefficients of a func-
tion’s outgoing objects are equal to the function’s
incoming object’s coefficient multiplied by the func-
tion’s coefficient. This is called the apply axiom.13

5. 〈cx〉(da+ eb) = (〈cx〉da) + (〈cx〉eb). The incoming
stream object to two parallel functions is copied to

11 The element a ∈ F is a function and the element ca ∈ CF is a
stream function. Likewise, the element x ∈ X is an object and
the element cx ∈ CX is a stream object. When the element class
is obvious from context, this strict terminology is not adhered
to.

12 Every equivalence relation is reflexive, symmetric, and transitive
such that x ∼ x (reflexive); if x ∼ y then y ∼ x and [x] = [y]
(symmetric); and if x ∼ y and y ∼ z, then x ∼ z (transitive).

13 In the case when |a(x)| = n and n > 1,

〈(c · d)a(x)〉 = 〈(c · d)a(x)1, (c · d)a(x)2, . . . , (c · d)a(x)n〉.

the incoming stream of each function. This is called
the split axiom.

6. 〈cx〉 + 〈dy〉 = 〈cx, dy〉. The sum of two streams
is a stream containing the objects of the original
streams. With respect to stream addition, the out-
going stream of two parallel functions is the merg-
ing of the individual functions’ outgoing streams.
This is called the merge axiom.14

7. 〈0x〉 = 〈c∅〉 = 〈〉. If an object has the coefficient
0 ∈ C, then it can be removed from the stream. If
an object is the empty set, then it can be removed
from the stream.

Theorem 4. The structure 〈CF ,+, ·〉 is a ring with
unity.

Proof. If 〈CF ,+, ·〉 is a ring with unity, then 〈CF ,+〉
must be an abelian group and 〈CF , ·〉 must be a monoid
with unity. These two structures must also interact where
multiplication is both right and left distributive over ad-
dition.

The group 〈CF ,+〉 must be commutative where ca +
db = db+ ca. If a(x) = y and b(x) = z, then

ca+ db = db+ ca

〈x〉ca+ db = 〈x〉db+ ca [apply 1x]

(〈x〉ca) + (〈x〉db) = (〈x〉db) + (〈x〉ca) [split axiom]

〈cy〉+ (〈x〉db) = (〈x〉db) + 〈cy〉) [〈x〉ca = 〈cy〉]
〈cy〉+ 〈dz〉 = 〈dz〉+ 〈cy〉 [〈x〉db = 〈dz〉]
〈cy, dz〉 = 〈dz, cy〉 [merge axiom]

〈cy, dz〉 = 〈cy, dz〉 [〈x, y〉 = 〈y, x〉].

For the case in stream addition when a = b and thus,
ca + db = (c + d)a, it is only necessary to prove the
equality to prove commutativity as the right hand side

14 The application of the merge axiom to the merging of the out-
going streams of two parallel functions is made more apparent
when using verbose stream notation. If a(x) = x and b(x) = y,
then

〈〉(〈〉ca〈〉+ 〈〉db〈〉)〈〉 [ca+ db]

〈1x〉(〈〉ca〈〉+ 〈〉db〈〉)〈〉 [〈1x〉(ca+ db)]

〈〉(〈1x〉ca〈〉+ 〈1x〉db〈〉)〈〉 [split axiom]

〈〉(〈〉ca〈cx〉+ 〈〉db〈dy〉)〈〉 [apply axiom]

〈〉(〈〉ca〈〉+ 〈〉db〈〉)〈cx, dy〉 [merge axiom].

7

of the equation only has one function. Therefore,

ca+ db = (c+ d)a

ca+ da = (c+ d)a [a = b]

〈x〉ca+ da = 〈x〉(c+ d)a [apply 1x]

〈x〉ca+ da = 〈(c+ d)y〉 [apply axiom]

(〈x〉ca) + (〈x〉da) = 〈(c+ d)y〉 [split axiom]

〈cy〉+ (〈x〉da) = 〈(c+ d)y〉 [〈x〉ca = 〈cy〉]
〈cy〉+ 〈dy〉 = 〈(c+ d)y〉 [〈x〉da = 〈dy〉]
〈cy, dy〉 = 〈(c+ d)y〉 [merge axiom]

〈(c+ d)y〉 = 〈(c+ d)y〉 [bulk axiom].

The abelian group 〈CF ,+〉 must also be associative such
that (ca+ db) + ef = ca+ (db+ ef). If f(x) = w, then

(ca+ db) + ef = ca+ (db+ ef)

〈x〉((ca+ db) + ef) = 〈x〉(ca+ (db+ ef)) [apply 1x]

(〈cy〉+ 〈dz〉) + 〈ew〉 = 〈cy〉+ (〈dz〉+ 〈ew〉) [split/apply]

〈cy, dz〉+ 〈ew〉 = 〈cy〉+ 〈dz, ew〉 [merge]

〈cy, dz, ew〉 = 〈cy, dz, ew〉 [merge].

The zero element 0 ∈ CF is the element (0, 0) ∈ C × F ,
where 0 + ca = ca+ 0 = ca as

0 + ca = ca

〈x〉0 + ca = 〈x〉ca [apply 1x]

(〈x〉0) + (〈x〉ca) = 〈x〉ca [split axiom]

(〈x〉0) + 〈cy〉 = 〈cy〉 [〈x〉ca = 〈cy〉]
〈0∅〉+ 〈cy〉 = 〈cy〉 [〈1x〉00 = 0∅]
〈〉+ 〈cy〉 = 〈cy〉 [〈0∅〉 = 〈〉]
〈cy〉 = 〈cy〉 [merge axiom].

Given the previous proof of commutativity, 0 + ca =
ca+ 0. Finally, the abelian group 〈CF ,+〉 must support
additive inverses such that ca− ca = ca+ (−ca) = 0.

ca+ (−ca) = 0

〈x〉(ca+ (−ca)) = 〈x〉0 [apply 1x]

〈x〉(ca+ (−ca)) = 〈〉 [〈0x〉 = 〈〉]
(〈x〉ca) + (〈x〉(−ca)) = 〈〉 [split axiom]

〈cy〉+ (〈x〉(−ca)) = 〈〉 [〈x〉ca = 〈cy〉]
〈cy〉+ 〈−cy〉 = 〈〉 [〈x〉(−ca) = 〈−cy〉]
〈cy,−cy〉 = 〈〉 [merge axiom]

〈0y〉 = 〈〉 [bulk axiom]

〈〉 = 〈〉 [〈0x〉 = 〈〉].

The multiplicative monoid 〈CF , ·〉 must be associative
such that (ca·db)·ef = ca·(db·ef). If a(x) = y, b(y) = z,

and f(z) = w, then

(ca · db) · ef = ca · (db · ef)

(cd)ab · ef = ca · (de)bf [stream mult]

〈x〉(cd)ab · ef = 〈x〉ca · (de)bf [apply 1x]

〈(c · d)z〉ef = 〈cy〉(de)bf [apply axiom]

〈((c · d) · e)w〉 = 〈(c · (d · e))w〉 [apply axiom]

〈(c · d · e)w〉 = 〈(c · d · e)w〉 [· is associative in C].

A ring with unity requires that there exists a multiplica-
tive identity 1 ∈ CF . This is the element (1, 1) ∈ C × F .
The equality ca · 1 = 1 · ca = ca holds given that

ca · 1 = ca

ca · 11 = ca [1 ∈ CF = (1, 1) ∈ C × F]

(c · 1)(a · 1) = ca [stream mult]

c(a · 1) = ca [c · 1 = c]

ca = ca [a · 1 = a].

A similar deduction can be used to prove that 1 ·ca = ca.
The complete ring 〈CF ,+, ·〉 must be both right and

left distributive. With respect to right distributivity, it
must be the case that (ca+ db)ef = (ca · ef) + (db · ef).
If a(x) = y, b(x) = z, e(y) = w and e(z) = u, then

(ca+ db)ef = (ca · ef) + (db · ef)

〈x〉(ca+ db)ef = 〈x〉(ca · ef) + (db · ef) [apply 1x]

〈cy, dz〉ef = 〈x〉(ca · ef) + (db · ef) [split/merge]

〈cy, dz〉ef = 〈(c · e)w, (d · e)u〉 [split/merge]

〈(c · e)w, (d · e)u〉 = 〈(c · e)w, (d · e)u〉 [apply].

With respective updated function definitions, a similar
deduction can be used to prove the left distributive prop-
erty ef(ca + db) = (ef · ca) + (ef · db). Thus, 〈CF ,+, ·〉
is a ring with unity.

An important feature of the stream ring is that func-
tion application, stream merging, and object bulking do
not have to occur in a lock-step fashion. The stream
ring’s axioms entail a lazy evaluation strategy that can
evaluate an expression using depth-first semantics (save
space), breadth-first semantics (save time), or any arbi-
trary hybrid of the two.

Theorem 5. Streams are atemporal. There are no re-
quirements to the order in which functions are applied,
streams are merged, or objects are bulked.

Proof. With respect to function application and stream
merging, the following derivation demonstrates that the
objects of the outgoing stream from branch b can be pro-
cessed by the subsequent function c even before the in-

8

coming objects of a are processed.

〈x〉(a+ b)c = 〈ac(x), bc(x)〉 [· is distributive]

((〈x〉a) + (〈x〉b))c = 〈ac(x), bc(x)〉 [split axiom]

((〈x〉a) + 〈b(x)〉)c = 〈ac(x), bc(x)〉 [apply axiom]

(〈x〉a)c+ 〈b(x)〉c = 〈ac(x), bc(x)〉 [· is distributive]

(〈x〉a)c+ 〈bc(x)〉 = 〈ac(x), bc(x)〉 [apply axiom]

〈a(x)〉c+ 〈bc(x)〉 = 〈ac(x), bc(x)〉 [apply axiom]

〈ac(x)〉+ 〈bc(x)〉 = 〈ac(x), bc(x)〉 [apply axiom]

〈ac(x), bc(x)〉 = 〈ac(x), bc(x)〉 [merge axiom].

The following derivation demonstrates that stream ob-
jects can be bulked prior to function application.

〈cx, dx〉a = 〈(c+ d)a(x)〉 [apply axiom]

〈(c+ d)x〉a = 〈(c+ d)a(x)〉 [bulk axiom]

〈(c+ d)a(x)〉 = 〈(c+ d)a(x)〉 [apply axiom].

Finally, the next derivation demonstrates that stream ob-
jects can be bulked after function application.

〈cx, dx〉a = 〈(c+ d)a(x)〉 [apply axiom]

〈ca(x), da(x)〉 = 〈(c+ d)a(x)〉 [apply axiom]

〈(c+ d)a(x)〉 = 〈(c+ d)a(x)〉 [bulk axiom].

The previous derivations prove that there is no re-
quired order to the application of the apply, merge, and
bulk stream axioms. These axioms can be leveraged at
anytime without effecting the ultimate result of the com-
putation.

The following theorem demonstrates the universal
functional commutativity of coefficients. The general idea
is that any function ca ∈ CF can be rewritten as c1 · 1a,
where in c1, 1 ∈ F and in 1a, 1 ∈ C. Due to the com-
mutative property of 1 in a ring’s multiplicative monoid
(a · 1 = 1 · a), c1 can be moved forward or backward
through an expression. If c ∈ C and a, b, f ∈ F , then

ca · 1b · 1f = 1a · 1b · 1f · c1.

It is important to note that unless the coefficient ring is
commutative (c ·d = d · c), once a non-identity coefficient
is encountered by the “floating coefficient,” it must be
left (or right) multiplied by the non-identity coefficient.15

That is, in a non-commutative coefficient ring, if d ∈ C,
then

ca · 1b · df = 1a · 1b · (cd)f = 1a · 1b · 1f · (cd)1.

Another explanation for the above equalities is that
stream multiplication is not bijective and therefore, is

15 In a standard ring, addition is commutative (a+ b = b+ a), but
multiplication is not (a · b 6= b · a). In a commutative ring, both
addition and multiplication are commutative.

not uniquely invertible. When the two stream functions
ca, db ∈ CF are multiplied as (c · d)(a · b) = (cd)ab, the
transformation leads to a loss of information as to which
function had which coefficient. Assuming that c, d, a and
b are all prime elements in their respective rings,16 the
function (cd)ab has the following factors:

(cd)a · 1b = (cd)ab

ca · db = (cd)ab

1a · (cd)b = (cd)ab.

As a side, in any non-commutative monoid 〈CF , ·〉, any
n-composite of prime functions and respective prime co-
efficients can be factored in 2n − 1 ways.

Theorem 6. If 〈CF ,+, ·〉 is a stream ring, c, d ∈ C, and
a, b ∈ F , then

1. ca = a · c
2. ca+ cb = c(a+ b) = (a+ b)c

3. (ca)n = cnan = an · cn

Proof. The theorem’s equalities will be rigorously de-
duced from the stream ring axioms.

1. ca = a · c

ca = a · c
11 · ca = a · c [1 · a = a]

(1 · c)(1 · a) = a · c [stream mult]

(1 · c)(a · 1) = a · c [1 · a = a · 1 = a]

1a · c1 = a · c [stream mult]

a · c = a · c [1a = a and c1 = c].

When the coefficient and the function are not clear
from context, a · c = 1a · c1.

2. ca+ cb = c(a+ b)

ca+ cb = c(a+ b)

ca+ cb = c1(a+ b) [c = c1]

ca+ cb = c1(1a+ 1b) [a = 1a and b = 1b]

ca+ cb = (c1 · 1a) + (c1 · 1b) [· is left distrib]

ca+ cb = ca+ cb [stream mult].

Given the first equality in the theorem, it is also
true that c(a+ b) = (a+ b)c.

16 In number theory, a prime number can only be represented as the
product of 1 and itself and thus, a prime number has no proper
factors. The concept of primes generalizes to any algebraic group,
where a prime element is any element of the group that has no
proper factors.

9

3. (ca)n = cnan

(ca)n = cnan

ca · ca · (ca)n−2 = cnan [exponent expansion]

(c · c)(a · a) · (ca)n−2 = cnan [stream mult]

c2a2 · (ca)n−2 = cnan [stream mult]

cnan = cnan [induction].

Given the first equality in the theorem, it is also
true that cnan = an · cn.

Corollary 1. In a commutative coefficient ring, where
〈C, ·〉 is a commutative monoid, the greatest common fac-
tor of the function coefficients in an additive stream is
both left and right distributive. If c, d ∈ C and a, b ∈ F ,
then

ca+ (cd)b = c(a+ db) = (a+ db)c.

Proof.

ca+ (cd)b = c(a+ db)

(c1 · 1a) + ((cd)1 · 1b) = c(a+ db) [ca = c1 · 1a]

c1((11 · a) + (d1 · 1b)) = c(a+ db) [· is left distrib]

c((11 · a) + (d1 · 1b)) = c(a+ db) [c1 ≡ c]
c(a+ (d1 · 1b)) = c(a+ db) [11 · 1a = a]

c(a+ db) = c(a+ db) [c1 · 1a = ca].

Given the above derivation, the universal functional com-
mutativity of coefficients, and the commutative monoid
property that c · d = d · c, the greatest common factor
of the function coefficients is also right distributive and
thus,

ca+ (cd)b = (a+ db)c.

Corollary 2. In a standard ring where 〈C, ·〉 is not a
commutative monoid, only the greatest common “left”-
factor is left distributive and only the greatest common
“right”-factor is right distributive. If c, d ∈ C and a, b ∈
F , then

ca+ (cd)b = c(a+ db)

and

ca+ (dc)b = (a+ db)c.

Proof. The proof for left distributivity in Corollary 1 ap-
plies to the first equality. For the second equality, since
a · b 6= b ·a in a non-commutative ring, then the following

derivation proves that the largest “right”-factor is right
distributive. If c, d ∈ C and a, b ∈ F , then

ca+ (dc)b = (a+ db)c

(c1 · 1a) + ((dc)1 · 1b) = (a+ db)c [ca = c1 · 1a]

((11 · 1a) + (d1 · 1b))c1 = (a+ db)c [· is right distrib]

((11 · 1a) + (d1 · 1b))c = (a+ db)c [c ≡ c1]

(a+ (d1 · 1b))c = (a+ db)c [11 · 1a = a]

(a+ db)c = (a+ db)c [c1 · 1a = ca].

IV. THE FUNCTION SUBRINGS

In every function ring 〈F ,+, ·〉, there are three logical
subsets of the functions in F : map, filter, and flatmap
functions [3]. Each of these three subsets form a ring with
unity and each ring has a unique set of algebraic prop-
erties. A fourth subset of reduce functions will be added
to the stream ring set F . The reduce functions form a
near-ring, where multiplication is not right distributive
over addition.17

1. map : X → Y maps an incoming X object to an
outgoing Y object. [one-to-one]18

2. filter : X → X ∪ ∅ uses a predicate to determine
whether to emit the incoming X object to the out-
going stream or not. [one-to-(one or none)]

3. flatMap : X → Y ∗ maps an incoming X object to
zero or more outgoing Y objects. If more than one
Y object is produced, then they are linearized into
the outgoing stream. They are not mapped as a
set. [one-to-many]

4. reduce : X∗ → Y gathers all the X stream objects
of the incoming stream and yields a single outgoing
Y stream object. [many-to-one]

The subset Fm is the set of all map functions, the subset
Ff is the set of all filter functions, the subset Ffm is
the set of all flatMap functions, and the subset Fr is the
set of all reduce functions such that

F = Fm ∪ Ff ∪ Ffm ∪ Fr.

Note that these are not disjoint sets. It will be demon-
strated that Ff ⊂ Ffm and Fm ⊂ Ffm.

17 The inclusion of the reduce function subset makes 〈F ,+, ·〉 a
near-ring as this is the ring-type for which all the axioms and
theorems are guaranteed to hold. However, standard ring theory
applies throughout most expressions and when reduce functions
are encountered, near-ring theory is required when performing
algebraic manipulations.

18 The term “one-to-one” does not refer to the function being in-
jective, but that it maps one input to one output.

10

Definition 4 (Functionally Closed). Any ring 〈A,+, ·〉 is
closed with respect to addition and multiplication if, for
any two elements a, b ∈ A, a+ b ∈ A and ab ∈ A. Every
multi-typed function ring 〈F ,+, ·〉 is not closed because
if a : X → Y and b : W → Z, then a + b /∈ F and
ab /∈ F as these compositions are undefined. However,
〈F ,+, ·〉 is considered functionally closed if a, b, c ∈ F ,
a : X → Y , b : Y → Z, c : X → Y , then ab ∈ F and
a + c ∈ F . A functional closure is a closure over those
compositions for which function input and output types
are respected.

Definition 5 (Stream Cardinality). The cardinality of
the set A is the number of elements in the set and is
denoted |A|. Thus, |{x, y, z}| = 3. The cardinality of a
stream x is the sum of the absolute value of the coeffi-
cients of the elements of the stream and is denoted |x|.
Thus, if C = Z, |〈−1x, 2y, 4z〉| = 7.

Definition 6 (Multiplicative Inverses). The algebraic
structure 〈A, ·〉 is a multiplicative group if for every a ∈ A
there is an a−1 ∈ A such that a · a−1 = a−1 · a = 1.
The elements a, a−1 ∈ A are multiplicative inverses of
each other. The following equalities can be proved us-
ing similar deductions as the additive inverse equalities
in Theorem 1. If 〈A, ·〉 is a group and a, b, c ∈ A, then

1. ab = ac =⇒ b = c

2. ba = ca =⇒ b = c

3. ab = 1 =⇒ a = b−1 and b = a−1

4. (ab)−1 = b−1a−1

5. (a−1)−1 = a.

A. The Map Ring

The map ring 〈Fm,+, ·〉 contains the set of all map
functions a : X → Y where, for each incoming object
of type X, a will map it to one and only one outgoing
object of type Y .

Theorem 7. The abelian map group 〈Fm,+〉 is not
functionally closed.

Proof. For every a, b ∈ Fm such that b 6= −a, if a : X →
Y and b : X → Y , then a+ b ∈ Ffm as |〈x〉(a+ b)| = 2.
The function a + b : X → Y ∗ maps one object in X to
two objects in Y . Thus, a + b /∈ Fm and 〈Fm,+〉 is not
functionally closed.

Theorem 8. The map monoid 〈Fm, ·〉 is functionally
closed.

Proof. For every a, b ∈ Fm such that a 6= 0 6= b, if a :
X → Y , b : Y → Z, a(x) = y, and b(y) = z, then
〈x〉ab = z. Thus, ab : X → Z, ab ∈ Fm, and 〈Fm, ·〉 is
functionally closed.

The map function a : X → Y is injective if it maps
every object of X to a unique object in Y . That is, if
a(x1) = a(x2), then x1 = x2. The function a is surjective
if every object in Y has a mapping from one or more
objects in X. That is,

⋃
x∈X a(x) = Y . If function a

is both injective and surjective then it is bijective and
there exists an inverse function a−1 : Y → X such that
aa−1 = 1 and a−1a = 1, where aa−1 : X → X and a−1a :
Y → Y . A bijective function defines an isomorphism
between the sets X and Y as a and a−1 can be used
to move between the sets without loss of information.
The set of all bijective functions in Fbm ⊂ Fm form the
group 〈Fbm, ·〉 and can leverage the axioms and theorems
provided by multiplicative inverses.

B. The Filter Ring

The filter ring 〈Ff ,+, ·〉 contains the set of all filter
functions a : X → X ∪ ∅. The predicate

p : X → {true, false}

determines whether or not an object x ∈ X has some
“p”-property. If it does, the predicate returns true, else
it returns false. Every filter function is founded on some
predicate. If the predicate returns true, then the filter
function passes the object to the outgoing stream, else if
the predicate returns false, it does not pass the object
to the outgoing stream. In general, if p is a predicate,
then the filter function a is defined as

a(x) =

{
x if p(x) = true,

∅ otherwise.

Theorem 9. The filter monoid 〈Ff , ·〉 is both idempo-
tent and commutative.

Proof. If a ∈ Ff , then a(x) = x or a(x) = ∅. It must
then be true that a(a(x)) = x or a(a(x)) = ∅, respec-
tively.19 Via induction, once a filter has been applied,
a repeated application of that filter on the same ob-
ject will not alter the result of the stream and thus,
multiplication is idempotent in 〈Ff , ·〉. Symbolically,
a · a · . . . · a = an = a. Finally, if a, b ∈ Ff , a(x) = x,
and b(x) = x, then a(b(x)) = b(a(x)) = x. If b(x) = ∅,
then a(b(x)) = b(a(x)) = ∅. Lastly, if a(x) = ∅ as well,
then a(b(x)) = b(a(x)) = ∅. Thus, a · b = b · a and
multiplication is commutative in 〈Ff , ·〉.

Corollary 3. There are no multiplicative inverses in the
filter monoid 〈Ff , ·〉.

19 It is always the case that for every non-reduce function a, a(∅) =
∅ as 〈〉a = 〈〉 since a has no incoming objects to process and thus,
no outgoing objects to emit.

11

Proof. A proof by contradiction will demonstrate that
the filter monoid does not have multiplicative inverses.
Assume that for every a ∈ Ff where a 6= 1, there exists
an a−1 ∈ Ff .

a = a

aa = a [· is idempotent]

aaa−1 = aa−1 [multiply a−1]

a(aa−1) = aa−1 [· is associative]

a = 1 [aa−1 = 1]

Given that a 6= 1, there is a contradiction and 〈Ff , ·〉
does not contain multiplicative inverses.

Every filter function a ∈ Ff has a corresponding anni-
hilator ā ∈ Ff which is generally defined as

ā = 1− a.

Diagrammatically,

ā =

1

−a

If a(x) = x, then 〈x〉ā = 〈x,−x〉 = 〈〉. If a(x) = ∅, then
〈x〉ā = 〈x, ∅〉 = 〈x〉.

Theorem 10. For every annihilator pair a, ā ∈ Ff ,

1. a · ā = 0

2. a+ ā = 1

3. ¯̄a = a

Proof. The theorem’s equalities will be rigorously de-
duced from the ring axioms.

1. a · ā = 0

a− a = 0 [ring axiom]

a− a2 = 0 [an = a]

a(1− a) = 0 [· is left distributive]

a · ā = 0 [ā = 1− a]

2. a+ ā = 1

0 + 1 = 1 [ring axiom]

(a− a) + 1 = 1 [a− a = 0]

a+ (−a+ 1) = 1 [+ is associative]

a+ (1− a) = 1 [+ is commutative]

a+ ā = 1 [ā = 1− a]

3. ¯̄a = a

a+ ā = 1 [previous deduction]

a = 1− ā [add −ā]

a = ¯̄a [ā = 1− a]

The annihilator ā is also known as the “not” of a. If p
is the predicate of a, then ā is generally defined as

ā(x) =

{
x if p(x) = false,

∅ otherwise.

Analogously, by relying completely on the definition of
a,

ā(x) =

{
x if 〈x〉a = 〈〉,
∅ otherwise.

Theorem 11. The abelian filter group 〈Ff ,+〉 is not
functionally closed.

Proof. For some a, b ∈ Ff , if a : X → X ∪ ∅, b : X →
X ∪ ∅, then a + b ∈ Ffm as |〈x〉(a + b)| ∈ {0, 1, 2}. The
function a + b : X → X∗ maps one input to zero, one,
or two outputs. Thus, a + b /∈ Ff and 〈Ff ,+〉 is not
functionally closed.

Theorem 12. The commutative filter monoid 〈Ff , ·〉 is
functionally closed.

Proof. For every a, b ∈ Ff , if a : X → X ∪ ∅, b : X →
X ∪ ∅, then b(a(x)) ∈ {x, ∅}. Thus, ab : X → X ∪ ∅,
ab ∈ Ff , and 〈Ff , ·〉 is functionally closed.

C. The Flatmap Ring

The flatmap ring 〈Ffm,+, ·〉 contains the set of all
flatmap functions a : X → Y ∗ where, for each incom-
ing object of type X, a will emit zero or more outgoing
objects of type Y .

Theorem 13. The map functions Fm and filter func-
tions Ff are subsets of Ffm.

Proof. If a : X → Y ∗ is a flatmap function, then it maps a
single incoming object to zero or more outgoing objects.
If for all x ∈ X, |a(x)| = 1, a is equivalent to a map
function. Likewise, when for all x ∈ X, a(x) = x or
a(x) = ∅, a is equivalent to a filter function. Thus, Fm ∪
Ff ⊂ Ffm.

It is important to distinguish the map and filter rings
as they have their own unique algebraic properties that
are lost when generalized to flatmap. However, because
their functions are subsets of the flatmap ring, they in-
herit all the properties of the flatmap ring.

Theorem 14. The abelian flatmap group 〈Ffm,+〉 is
functionally closed.

Proof. For every a, b ∈ Ffm, if a : X → Y ∗, b : X → Y ∗,
then a + b ∈ Ffm as |〈x〉(a + b)| ≥ 0. The function
a+ b : X → Y ∗ maps one input to zero or more outputs.
Thus, 〈Ffm,+〉 is functionally closed.

12

Theorem 15. The flatmap monoid 〈Ffm, ·〉 is function-
ally closed.

Proof. For every a, b ∈ Ffm, if a : X → Y ∗, b :
Y → Z∗, and 〈x〉a = 〈y1, y2, . . . , yn〉, then 〈x〉ab =
〈b(y1), b(y2), . . . , b(yn)〉. Thus, ab : X → Z∗, ab ∈ Ffm,
and 〈Ffm, ·〉 is functionally closed.

D. The Reduce Near-Ring

The reduce near-ring 〈Fr,+, ·〉 contains the set of all
reduce functions a : X∗ → Y with a multiplication op-
erator that is not right distributive over addition. The
reduce function a will map all the incoming objects of
type X to a single object of type Y as a(x) = y, where
x ∈ X∗, |x| ≥ 0, and y ∈ Y . Once the full incom-
ing stream is passed to a, then there are no objects on
any stream prior to a. Reducers “drain” the preceding
stream in one evaluation. Unlike the other functions in
F\Fr,20 in a stream ring, reduce functions are coefficient-
aware functions generally specified as a : CX∗ → CY
with a(cx) = dy, where cx ∈ CX∗ and dy ∈ CY .21

In every stream ring 〈CF ,+, ·〉, two reduce-specific
stream axioms apply:

1. For every ca ∈ CFr, c = 1. All reduce functions
have a coefficient of 1 ∈ C.

2. For every a ∈ Fr, cxa = 〈da(cx)〉. All reduce func-
tions consume the entire input stream and produce
a single stream object with a reduce-specified coef-
ficient d ∈ C. This is the reduce apply axiom.

Theorem 16. Reduce functions are temporal. All previ-
ous functions must be applied and streams merged before
a reducer processes its input stream.

Proof. If a, b ∈ F \ Fr and c ∈ Fr, then the following
derivation demonstrates that all incoming streams to c
must be processed first. This is due to the fact that
reduce functions are not right distributive and therefore,
(a+b) must be treated as a single function whose output
is the complete input stream to c.

〈x〉(a+ b)c = c(a(x), b(x)) [apply 1x]

(〈x〉a+ 〈x〉b)c = c(a(x), b(x)) [split axiom]

(〈a(x)〉+ 〈b(x)〉)c = c(a(x), b(x)) [apply axiom]

〈a(x), b(x)〉c = c(a(x), b(x)) [merge axiom]

c(a(x), b(x)) = c(a(x), b(x)) [reduce apply].

20 A \ B is set difference which is the set A minus those elements
in B such that A \B = {x : x ∈ A ∧ x /∈ B}

21 Functions in F \ Fr never leverage object coefficients in their
definition. Functions operate on objects while stream functions
operate on stream objects, where object coefficients are manip-
ulated by function coefficients as specified by the stream apply
axiom.

Stream bulking is not necessary prior to the evaluation of
a reduce function as all object coefficient information is
contained in the reduce function’s stream argument.

Theorem 17. The universal functional commutativity
of coefficients is not applicable to reduce functions. If
c ∈ C and a ∈ Fr, then

c1 · 1a 6= 1a · c1.

Proof. A counterexample is demonstrated. If a(〈x〉) = y,
then 〈x〉c1 · 1a = 〈1y〉 while 〈x〉1a · c1 = 〈cy〉. Thus, in
general, ca 6= a · c.

A longer example expression is provided where if a, b ∈
F \ Fr, f ∈ Fr, and c ∈ C, then

ca · 1b · 1f = 1a · cb · 1f.

Another explanation for this equality is that standard
stream multiplication only applies to reduce functions
when the coefficients of the functions are 1 ∈ C. If
ca ∈ CF and 1b ∈ CFr, then, as an entailment of the
first reduce-specific stream axiom, stream multiplication
is defined as

ca · 1b =

{
1(ab) if c = 1,

c1 · 1(ab) otherwise,

where in 1(ab), 1 ∈ C and ab ∈ Fr (see §IV E) and thus,
the second case can not be further reduced. The stream
multiplication definition above also demonstrates how a
reduce function “drains” all proceeding streams. If a :
CX∗ → CY is a reduce function that maps a stream of
objects in CX to a single stream object in CY then, in
the first case above, the stream is the entire input to the
expression. In the second case, the stream is the entire
c-modulated input to the expression.

The first reduce-specific stream axiom has a conse-
quence in stream addition as well. Stream addition was
previously defined as

ca+ db =

{
(c+ d)a if a = b,

ca+ db otherwise.

If a ∈ Fr and a = b, then ca + da = (c + d)a if and
only if c + d = 1 as the composite reduce function a2

must have a coefficient of 1 ∈ C. However, typically, in
most coefficient rings, 1 + 1 6= 1 and thus, if c + d 6= 1,
then no further reduction of the expression is possible and
ca + da = ca + da. This relates to the following lemma
proving that reduce functions are not right distributive.

———

Lemma 1. The structure 〈Fr,+, ·〉 is not a ring.

Proof. The multiplication operator of 〈Fr,+, ·〉 is not
right distributive over addition. Assume the functions
a, b ∈ F and the reduce function c ∈ Fr. If reduce

13

functions were right distributive over addition, then the
expression (a + b)c = ac + bc. However, the expres-
sion (a + b)c emits one object which is the reduction
of the merged outgoing objects from both the a and b
branches. On the other hand, the expression ac+bc emits
two objects which are the merged reductions of branch
ac and branch bc. Therefore, because |〈x〉((a + b)c)| 6=
|〈x〉(ac + bc)|, (a + b)c 6= ac + bc and 〈Fr,+, ·〉 is not a
ring.

Theorem 18. The structure 〈Fr,+, ·〉 is a near-ring with
multiplication being left distributive over addition.

Proof. Assume the functions a, b ∈ F and the reduce
function c ∈ Fr. If multiplication is left distributive over
addition, then c(a+b) = ca+cb. In the expression c(a+b),
the entire incoming stream to c is reduce to a single object
x. The x object is split and provided to both a and b
and the resultant outgoing stream is 〈a(x), b(x)〉. In the
expression ca + ca, the entire incoming stream is split
between two branches. Via c, both branches will reduce
their respective copies of the incoming stream to x. The
two parallel x objects will then be merged to form the
outgoing stream 〈a(x), b(x)〉. Thus, c(a+b) = ca+cb and
given the previous lemma, 〈Fr,+, ·〉 is a near-ring.

There is a subset of the reduce functions called the
monoidic reduce functions Fmr ⊂ Fr. Let 〈X,⊕〉 be
any commutative monoid with e ∈ X being the identity
element.22 If c ∈ Fmr, c : X∗ → X, and c’s reduction is
completely defined by ⊕, then

(a+ b)cn = (a+ b)c = (ac+ bc)c.

Theorem 19. Monoidic reduce functions are idempo-
tent and semi-right distributive.

Proof. If 〈X,⊕〉 is a commutative monoid, x ∈ X∗,
and c ∈ Fmr, then the base case c1 is equivalent to
c(x) = x1 ⊕ . . . ⊕ xn ⊕ e. For c2, c(c(x)) = x1 ⊕
. . . ⊕ xn ⊕ e ⊕ e. Since, by definition, e2 = e and for
all x ∈ X, x ⊕ e = x, c2 = c. Via induction cn = c
and monoidic reduce functions are idempotent. Next,
the expression (a + b)c produces a single reduce object.
The expression (ac + bc) produces two reduced objects:
one from branch ac and one from branch bc. Thus,
like all other reduce functions, monoidic reduce functions
are not right distributive. However, the two branch re-
ductions can be reduced to a single reduced object. If

22 If the monoidic reduce function is coefficient-aware, then 〈CX,⊕〉
must be a commutative monoid with 1e ∈ CX being the identity
element.

a(x)⊕ = a(x)1 ⊕ a(x)2 ⊕ . . .⊕ a(x)n, then

(a+ b)c = (ac+ bc)c

〈x〉(a+ b)c = 〈x〉(ac+ bc)c [apply 1x]

(〈a(x)〉+ 〈b(x)〉)c = 〈x〉(ac+ bc)c [split axiom]

〈a(x), b(x)〉c = 〈x〉(ac+ bc)c [merge axiom]

〈a(x)⊕ ⊕ b(x)⊕〉 = 〈x〉(ac+ bc)c [apply c]

〈a(x)⊕ ⊕ b(x)⊕〉 = (〈a(x)〉c+ 〈b(x)〉c)c [split/apply]

〈a(x)⊕ ⊕ b(x)⊕〉 = (〈a(x)⊕〉+ 〈b(x)⊕〉)c [apply c]

〈a(x)⊕ ⊕ b(x)⊕〉 = 〈a(x)⊕, b(x)⊕〉c [merge]

〈a(x)⊕ ⊕ b(x)⊕〉 = 〈a(x)⊕ ⊕ b(x)⊕〉 [apply c].

Thus, monoidic reduce functions are semi-right distribu-
tive.

The reduce functions in Fr can be used within a larger
steam expression as long as the axioms and theorems of
the respective structures are respected. All the examples
to follow that reference functions in F will typically not
assume functions in Fr unless explicitly stated.

Theorem 20. The abelian reduce group 〈Fr,+〉 is not
functionally closed.

Proof. For every a, b ∈ Fr, if a : X∗ → Y , b : X∗ →
Y , then a + b /∈ Fr as |x(a + b)| = 2. The function
a + b : X∗ → Y ∗ maps many inputs to two outputs.
Thus, 〈Fr,+〉 is not functionally closed.

Theorem 21. The reduce monoid 〈Fr, ·〉 is functionally
closed.

Proof. For every a, b ∈ Fr, if a : X∗ → Y , b : Y ∗ → Z,
xa = 〈y〉, 〈y〉b = z, then xab = z. Thus, ab : X∗ → Z,
ab ∈ Fr and 〈Fr, ·〉 is functionally closed.

E. Summary of Functional Closures

All the function rings are functionally closed under
multiplication. This means that when two functions in F
of the same ring are composed, their composite is in the
same ring. However, when two functions from different
rings are composed, their composite function may be in
a different ring. The following table outlines the function
rings of the various multiplicative composites.

a ∈ Fm b ∈ Ff c ∈ Ffm d ∈ Fr

e ∈ Fm ea ∈ Fm eb ∈ Ffm ec ∈ Ffm ed ∈ Fr

f ∈ Ff fa ∈ Ffm fb ∈ Ff fc ∈ Ffm fd ∈ Fr

g ∈ Ffm ga ∈ Ffm gb ∈ Ffm gc ∈ Ffm gd ∈ Fr

h ∈ Fr ha ∈ Fr hb ∈ F hc ∈ F hd ∈ Fr

Note that the functions hb and hc are many-to-(one or
none) and many-to-many functions, respectively. These
functions are not within the presented function rings, but

14

instead are generally in the barrier near-ring 〈Fb,+, ·〉,
where Fb ⊂ F . If a ∈ Fb, then a : X∗ → Y ∗. The barrier
near-ring generalizes the reduce near-ring in a manner
similar to how the flatmap ring generalizes the map and
filter rings in that Fr ⊂ Fb. The barrier near-ring is not
further explored in this article.

With respect to addition, for any a, b ∈ F \ Fr, it is
generally true that a + b ∈ Ffm. Addition creates two
parallel branches where every incoming object is split and
this leads to zero or more objects being merged on the
outgoing stream. For every a, b ∈ Fr, a + b produces a
many-to-many barrier function in Fb. For those additive
compositions that produce guaranteed map or filter be-
havior such as ā = (1−a), they are within their respective
function ring (i.e. ā ∈ Ff). However, in general, only the
〈Ffm,+, ·〉 ring is functionally closed under both addition
and multiplication. Finally, the complete function ring
〈F ,+, ·〉 is functionally closed under both addition and
multiplication. If the associated coefficient ring 〈C,+, ·〉
is also closed, then the stream ring 〈CF ,+, ·〉 is function-
ally closed under both addition and multiplication.

V. STREAM RING PATTERNS

This section will present a collection of stream ring
patterns that are useful when expressing complex com-
putations.

A. Nested Stream Functions

A stream expression can be used in the definition of a
stream function. Such functions are called nested stream
functions. The unary operator [] : F → F maps any
stream function a : X∗ → Y ∗ to a (nested) stream func-
tion [a] : X → Y ∗ with the recursive definition

〈x1, x2, . . . , xn〉[a] = 〈x1, x2, . . . , xn−1〉[a]〈a(xn)〉.

If c1, c2, . . . , cn ∈ C are stream object coefficients and
d ∈ C is the nested stream function’s coefficient, then the
above definition can be rewritten with coefficients as

〈c1x1, c2x2, . . . , cnxn〉d[a] =

〈c1x1, c2x2, . . . , cn−1xn−1〉d[a]〈(cn · d)a(xn)〉.

The coefficient of every outgoing object from a nested
stream function is the incoming object’s coefficient mul-
tiplied by the nested stream function’s coefficient. As
such, a nested stream function obeys the stream apply
axiom and therefore, behaves as any other function in
F \ Fr. Thus, for any coefficient c ∈ C and non-reduce
function a ∈ F \ Fr,

c[a] = ca.

However, of particular importance to their use, it is gen-
erally true that for all a ∈ Fr, [a] 6= a because, for in-
stance, |〈x, y〉a| = 1, but |〈x, y〉[a]| = 2. The [] oper-
ator isolates the parent stream from the nested stream

restricting nested stream reduce functions to an input
stream with a single object. Thus, if a ∈ Fr, then

〈x1, x2, . . . , xn〉[a] = 〈x1, x2, . . . , xn−1〉[a]〈a(〈xn〉)〉.

By using appropriate reduce functions in a nested ex-
pression, any flatmap function can be made to behave
like a map or filter function. This is useful for creat-
ing complex stream-based mappings (lambda maps) and
predicates (lambda filters).

Nested stream functions can be named. In the expres-
sion f [a], f is the name of the nested stream function
[a]. When it is not clear from context, · will be used to
delineate the nested stream function from any preceding
functions. For instance, f [a] can either mean that f is
the name of the nested stream function [a] or f is a pre-
ceding function to the anonymous nested stream function
[a]. The notation convention for the latter is f · [a].

For all the examples to follow, a(b+ c) ∈ Ffm will be
used as the nested expression.

1. Lambda Maps

The expression a(b+ c) is a one-to-many flatmap func-
tion. In order to leverage this expression in a one-to-one
map capacity, it can be placed into a nested map func-
tion. Assume the monoidic reduce function α ∈ Fmr ⊂
Fr, where α : Y ∗ → Y and

α(y) = y1.

This function reduces the entire input stream to the first
object of the stream.23 The nested map function f [a(b+
c)α] : X → Y has the definition

f(x) = 〈x〉a(b+ c)α.

Like any other stream function, f can be used in a larger
stream expression such as d·f [a(b+c)σ]·e, where d, e ∈ F .
Moreover, given that f is completely defined by its nested
expression, there is no need to name the function f and
thus, an anonymous, or lambda, map can be written as

d[a(b+ c)α]e

with a diagram of

b

d [a α] e.

c

The lambda map function will return one and only one
object for every outgoing object from d. A convenient

23 Streams are unordered so “the first” object of the stream is equiv-
alent to “any object” of the stream.

15

shorthand for representing the nested map function is
[a(b + c)]m. The actual α-implementation is not impor-
tant as another implementation could be leveraged. The
important aspect is that a(b+ c) is the nested expression
of the one-to-one map function [a(b+ c)]m ∈ Fm.

2. Lambda Filters

Every filter function is founded on some predicate p :
X → {true, false}, where p(x) tests whether x ∈ X has
a “p”-like property or not. A nested filter function is no
exception. If f : X → X ∪ ∅ is the nested filter function,
then using the example function a(b+ c) ∈ Ffm,

f(x) =

{
x if |〈x〉a(b+ c)| > 0,

∅ otherwise.

The expression a(b+c) serves as the predicate. If a(b+c)
emits at least one object for the incoming x object, then
x has the “a(b+ c)”-like property.

There are various ways to create a generalized nested
stream filter. However, given the stream constructs intro-
duced thus far, an overly complex implementation will be
demonstrated.24 Assume the map function α : X → {�}
defined as

α(x) = �,

where � is some globally unique “token” object. Every
incoming object to α is mapped to the � constant. Next,
assume the reduce function β : (X ∪ �)∗ → (X ∪ �)
defined as

β(x) =

{
x \� if � ∈ x,

� otherwise.

If the incoming stream contains a �, then the stream
object x ∈ X (which is not a �) is emitted, else a � is
emitted. Finally, assume the filter function θ : (X∪�)→
(X ∪�) ∪ ∅ defined as

θ(x) =

{
x if x 6= �,

∅ otherwise.

The θ function will filter out all � token objects from the
stream.25

24 §V G 4 presents a simpler nested stream filter.
25 The composite function βθ ∈ Fb is a many-to-(one-or-none) bar-

rier function whose definition is

βθ(x) =

{
x \ � if � ∈ x,

∅ otherwise.

A lambda filter function which uses a(b + c) as the
nested expression is generally defined as [((a(b + c)α) +
1)βθ]. The larger example expression

d[((a(b+ c)α) + 1)βθ]e

has the diagram

b

a α

c

d [1 β θ] e.

Assume d : Y → X. Every outgoing object from d will
be an incoming object to the nested lambda expression.
The incoming object x will split itself across the two par-
allel branches a(b+c)α and 1. The 1 function will emit x
unchanged. The α function will emit a � token for every
outgoing object from a(b+c) (i.e. x has the “a(b+c)”-like
property). If α does not emit a � token, then a(b + c)
yielded no output (i.e. x does not have the “a(b+c)”-like
property). The two branches guarantee that the incom-
ing stream to β will contain an x and zero or more �
tokens. Once reduced by β, the incoming stream to the
θ filter function will have either an x or a �. Only the
single x 6= � is allowed to pass which is, incidentally, the
original x outgoing from d. Therefore, a(b+ c) serves as
the predicate to the lambda filter function. Like nested
map functions, the short hand for the nested filter func-
tion [((a(b+c)α)+1)βθ] is [a(b+c)]f ∈ Ff . The internal
“plumbing” is not always necessary to expose.

3. Lambda Flatmaps

The flatmap function f : X → Y ∗ is a one-to-many
function. For every incoming object, there are zero or
more outgoing objects. Unlike nested map and nested
filter functions, a nested flatmap step does not require
any internal “plumbing” to ensure the one-to-many re-
quirement as that property is guaranteed by the [] oper-
ator. If f [a(b+ c)] is a nested flatmap function, it can be
written anonymously as [a(b+c)].26 The function can be
used in the larger example composition d[a(b+c)]e which
has the diagram

b

d [a] e.

c

26 There is no need to put a []fm subscript as there are no internal
functions that need to be hidden in a nested flatmap function.

16

4. The Non-Existent Lambda Reducers

Proposition 1. There is no such thing as a nested re-
duce function.

Proof. There is no known guaranteed way to reduce a
stream of zero or more objects to a single object us-
ing stateless functions in F \ Fr. Therefore, suppose
that [a(b + c)d] is a nested a reduce function, where
d ∈ Fr. This means that for every incoming object,
a single reduced object will be emitted from d. Thus,
|〈x, y〉[a(b + c)d]| = 2. This is equivalent to the nested
map function [a(b + c)d]m because according to §V A 1
[a(b+c)d]m ≡ [a(b+c)dσ] and thus, |〈x, y〉[a(b+c)d]m| =
2. If “[” is generalized to enable the entire proceeding
stream to be aggregated into the incoming stream of the
nested function, then |〈x, y〉[a(b+c)d]| = 1. This is equiv-
alent to the non-nested form 〈x, y〉a(b + c)d as d will
emit a single outgoing object for the entire proceeding
stream. Thus, there is no such thing as a nested reduce
function.

B. A Filter Ring Total Preorder

No two filters will have the same space/time perfor-
mance characteristics when implemented in a real-world
system. Some filters may use less memory, require fewer
clock cycles, or have a greater stream reduction poten-
tial than another filter. The respective “cost” of a filter
enables the definition of the total preorder (Ff ,≤). If
a, b, c ∈ Ff , then a ≤ a (reflexive), a ≤ b or b ≤ a (con-
nex), and if a ≤ b and b ≤ c, then a ≤ c (transitive).
This total preorder can be used to determine the expres-
sion with the lowest cost amongst a set of algebraically
equivalent expressions.

This section’s running example begins with the follow-
ing expression composed of the filter functions a, b, c, d ∈
Ff :

d(cb+ ca)a.

Assume the function α : Ff → N maps a filter to an
ordinal value in the preorder (Ff ,≤). Specifically,

α =

1 a b c d

↓ ↓ ↓ ↓ ↓
0 1 2 3 10

and for every e, f ∈ Ff , α(e + f) = α(e) + α(f). Given
that the filter monoid 〈Ff , ·〉 is commutative

d(cb+ ca)a = a(cb+ ca)d.

The above algebraic manipulation is desirable because
the cheaper (i.e. less cost) a filter should be executed
first and the more expensive (i.e. higher cost) d filter

should be executed last as α(a) = 1, α(d) = 10, and
thus, a ≤ d ∈ (Ff ,≤). Diagrammatically,

c b

d a

c a

=

c b

a d.

c a

It is important to note that d(cb+ca)a ∈ Ffm because the
additive expression (cb+ca) is a flatmap function and all
multiplications with a flatmap function yield a flatmap
function (see §IV E). The flatmap monoid 〈Ffm, ·〉 is
not commutative. However, the commutative property
of filters still applies at a more local scope as individ-
ual function pairs can leverage the theorems of the filter
ring.27 Thus, the previous equality can be proved more
rigorously as follows:

d(cb+ ca)a

d(cba+ caa) [· is right distributive in Ffm]

d(acb+ aca) [· is commutative in Ff]

da(cb+ ca) [· is left distributive in Ffm]

ad(cb+ ca) [· is commutative in Ff]

a(dcb+ dca) [· is right distributive in Ffm]

a(cbd+ cad) [· is commutative in Ff]

a(cb+ ca)d [· is right distributive in Ffm].

Next, given the distributive nature of a ring, the c filter
can be applied prior to the split in order to reduce the
total number of filter operations. Thus,

a(cb+ ca)d = ac(b+ a)d

and

c b

a d

c a

=

b

a c d.

a

Filter commutativity states that acad = aacd and filter
idempotence states that aacd = acd. Therefore, ac(b +
a)d = ac(b+ 1)d and

b

a c d

a

=

b

a c d.

1

27 The scope of an axiom or theorem is bound to the subexpression
for which the axiom’s or theorem’s functions and operators apply.

17

Since (b + 1) ≤ c, ac(b + 1)d = a(b + 1)cd. Diagram-
matically,

b

a c d

1

=

b

a c d.

1

In summary, semantically

a(cb+ ca)d = a(b+ 1)cd

and according to the defined total preorder (Ff ,≤)

a(cb+ ca)d > a(b+ 1)cd.

Note that the flatmap function (b+ 1) produces one or
two outgoing objects. The b branch will either emit its
input or not and the 1 branch will always emit its input.
The nested filter function [b + 1]f always produces one
output. Thus, every filter of the form [b + 1]f = 1. By
extending the running filter example,

a(b+ 1)cd ' a[b+ 1]fcd = acd,

Diagrammatically,

b

a c d

1

' a→ c→ d.

C. Set Operations

Set theory defines a collection of operators for creat-
ing new sets from existing sets. The typical operations
are union, difference, symmetric difference, and intersec-
tion. These operations will be defined for sets and then
expressed using a stream ring. For all the examples to
follow, the sets A and B are defined as A = {x1, x2} and
B = {x2, x3}. The filter functions, a, b ∈ Ff filter out
those incoming objects that are not in their respective
set. For example,

a(x) =

{
x if x ∈ A
∅ otherwise.

The function b is defined analogously. If x = 〈x1, x2, x3〉,
then xa = 〈x1, x2〉 and xb = 〈x2, x3〉.

1. Set Union

Set union is defined as

A ∪B = {x : x ∈ A ∨ x ∈ B},

where A∪B = {x1, x2, x3}. In a stream ring, the expres-
sion x(a+b) = 〈x1, x2, x2, x3〉. The expression a+b is the
multi-set union A]B as there are repeated objects in the
outgoing stream. Standard set union without repeated
elements is defined as

a+ b− ab,

where x(a+ b−ab) = 〈x1, x2, x3〉. Diagrammatically, set
union is

a

b .

−ab

The expression a+b−ab is the union of both sets minus
those objects that are in both sets. If an object is in both
sets, then it is repeated so the subtraction of one of those
objects removes duplicates. This is demonstrated using
verbose stream notation as

〈x1, x2, x3〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−ab)〈〉)〈〉
〈〉(〈x1, x2, x3〉a〈〉+ 〈x1, x2, x3〉b〈〉+ 〈x1, x2, x3〉(−ab)〈〉)〈〉 [split]

〈〉(〈〉a〈x1, x2〉+ 〈〉b〈x2, x3〉+ 〈〉(−ab)〈−x2〉)〈〉 [apply]

〈〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−ab)〈〉)〈x1, x2, x2, x3,−x2〉 [merge]

〈〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−ab)〈〉)〈x1, x2, x3〉 [bulk],

where 〈x1, x2, x3〉(−ab) has the following verbose deriva-
tion

〈x1, x2, x3〉(−a)〈〉b〈〉
〈〉(−a)〈−x1,−x2〉b〈〉 [apply axiom]

〈〉(−a)〈〉b〈−x2〉 [apply axiom].

2. Set Difference

Set difference is defined as

A−B = {x : x ∈ A ∧ x /∈ B},

where A − B = {x1}. In a stream ring, the expression
x(a − b) = 〈x1,−x3〉. The x3 object is not in a and as
such does not destructively interfere with its orthogonal
form −x3 from −b. Since only those objects that are
in a are required, only those objects in both a and b
should be removed from a. This is accomplished with
the expression

a− ab,

where x(a−ab) = 〈x1〉. Diagrammatically, set difference
is

a

.

−ab

18

In verbose stream notation,

〈x1, x2, x3〉(〈〉a〈〉+ 〈〉(−ab)〈〉)〈〉
〈〉(〈x1, x2, x3〉a〈〉+ 〈x1, x2, x3〉(−ab)〈〉)〈〉 [split axiom]

〈〉(〈〉a〈x1, x2〉+ 〈〉(−ab)〈−x2〉)〈〉 [apply axiom]

〈〉(〈〉a〈〉+ 〈〉(−ab)〈〉)〈x1, x2,−x2〉 [merge axiom]

〈〉(〈〉a〈〉+ 〈〉(−ab)〈〉)〈x1〉 [bulk axiom].

3. Set Symmetric Difference

Symmetric difference is defined as

(A−B) ∪ (B −A),

where (A−B)∪(B−A) = {x1, x3}. In a stream ring, the
expression x((a− b) + (b− a)) = 〈〉 as (a− b) + (b− a) =
a + −b + b + −a = 0. However, symmetric difference is
defined as the merge of two set differences and therefore,
the previous set difference expression can be leveraged to
define symmetric difference as

(a− ab) + (b− ba)

where x((a−ab)+(b−ba)) = 〈x1, x3〉. Diagrammatically,

a

−ab
.

b

−ba

The above expression can be simplified.

(a− ab) + (b− ba)

a− ab+ b− ba [+ is associative]

a+−ab+ b+−ba [a− b = a+−b]
a+ b+−ab+−ba [+ is associative]

a+ b+−ab+−ab [· is commutative in Ff]

a+ b− 2ab [a+ a = 2a].

Diagrammatically, symmetric difference is

a

b .

−2ab

In verbose stream notation,

〈x1, x2, x3〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−2ab)〈〉)〈〉
〈〉(〈x1, x2, x3〉a〈〉+ 〈x1, x2, x3〉b〈〉+ 〈x1, x2, x3〉(−2ab)〈〉)〈〉 [split]

〈〉(〈〉a〈x1, x2〉+ 〈〉b〈x2, x3〉+ 〈〉(−2ab)〈−2x2〉)〈〉 [apply]

〈〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−ab)〈〉)〈x1, x2, x2, x3,−2x2〉 [merge]

〈〉(〈〉a〈〉+ 〈〉b〈〉+ 〈〉(−ab)〈〉)〈x1, x3〉 [bulk].

Note that the function −2ab ∈ CFf and the object
−2x2 ∈ CX do not assume that Z ⊂ C as any integer
coefficient can be rewritten using the identity 1 ∈ C and
its abelian group additive inverse −1 ∈ C. Thus, if 2 /∈ C,
the function −2ab can be rewritten as

−2ab = −2ab

(−1 +−1)ab = −2ab [-2 = -1 + -1]

(−ab) + (−ab) = −2ab [· is right distributive].

For stream objects, if 2 /∈ C, then 〈x2〉(−ab) + (−ab) =
〈−x2,−x2〉. In general, for every coefficient ring 〈C,+, ·〉,
every integer in Z has a corresponding C representation.

4. Set Intersection

Set intersection is defined as

A ∩B = {x : x ∈ A ∧ x ∈ B},

where A ∩ B = {x2}. This is equivalent to the union
of the two sets minus their symmetric difference. Thus,
intersection is defined as

(a+ b− ab)− (a+ b− 2ab).

This expression can be significantly reduced as

(a+ b− ab)− (a+ b− 2ab)

a+ b− ab+ (−a+−b+ 2ab) [−(a+ b) = −a+−b]
a+ b− ab+−a+−b+ 2ab [+ is associative]

a+−a+ b+−b+−ab+ 2ab [+ is associative]

−ab+ 2ab [a− a = 0]

ab [stream addition].

Thus, x(ab) = 〈x2〉. In verbose stream notation,

〈x1, x2, x3〉a〈〉b〈〉
〈〉a〈x1, x2〉b〈〉 [apply axiom]

〈〉a〈〉b〈x2〉 [apply axiom].

D. Logical Predicates

In logic, complex predicates can be built from the com-
position of simpler predicates using the ∧ (“and”) and ∨
(“or”) commutative, associative binary operators. The
unary ¬ (“not”) operator yields the negation of the pred-
icate such that a ∧ ¬a = false and a ∨ ¬a = true. The
filter ring can express these logical operations.

19

Theorem 22. If a, b ∈ Ff , then logical “and”, “or”, and
“not” have the following equivalences.

a ∧ b a · b
a ∨ b a+ b− ab
¬a ā

Proof. The proof is accomplished by exhaustively item-
izing each a/b-pair case.

a(x)|b(x) a ∧ b a · b a ∨ b a+ b− ab
x|∅ false ∅ true x

∅|x false ∅ true x

x|x true x true x

∅|∅ false ∅ false ∅

Finally, for the unary negation operator, if a(x) = x,
then ¬a = false and ā(x) = ∅. Similarly, if a(x) = ∅,
then ¬a = true and ā(x) = x.

It is important to emphasize that a∨b 6= a+b as in the
(a(x) = b(x) = x)-case, 〈x〉(a+ b) = 〈x, x〉 instead of 〈x〉.
The expression (a+b)−ab emits a or b and if both a and
b are emitted, then one of the branch objects is removed
from the outgoing stream. This is similar to “exclusive
or” which is defined in a stream ring as (a + b) − 2ab,
where if a and b both emit a result, then both branch
objects are removed from the outgoing stream.

Theorem 23. The filter ring 〈Ff ,+, ·〉 can express the
equalities of De Morgan’s Law.

¬(a ∧ b) = ¬a ∨ ¬b a · b = ā+ b̄− (ā · b̄)
¬(a ∨ b) = ¬a ∧ ¬b a+ b− ab = ā · b̄.

Proof.

ab = ā+ b̄− (āb̄)

ab = ā+ b̄− ((1− a)(1− b)) [ā = 1− a]

ab = ā+ b̄− (12 − a− b+ ab) [multinomial expansion]

ab = ā+ b̄− (1− a− b+ ab) [12 = 1]

ab = ā+ b̄− 1 + a+ b− ab [−(a+ b) = −a+−b]
ab = ā+ 1− b− 1 + a+ b− ab [ā = 1− a]

ab = ā+ 1− 1 + a− ab [−b+ b = 0]

ab = ā+ a− ab [1− 1 = 0]

ab = 1− a+ a− ab [ā = 1− a]

ab = 1− ab [−a+ a = 0]

ab = ab [ā = 1− a]

Similarly,

a+ b− ab = āb̄

a+ b− ab = (1− a)(1− b) [ā = 1− a]

a+ b− ab = 12 − a− b+ ab [multinomial expansion]

a+ b− ab = 1− a− b+ ab [12 = 1]

a+ b− ab = 1− (a+ b− ab) [−a+−b = −(a+ b)]

a+ b− ab = a+ b− ab [ā = 1− a]

E. Conditional Branching

Flow control is a necessary aspect of any complex com-
putation. The monoid 〈F , ·〉 enables the creation of linear
computations that can only mutate or filter a propagat-
ing object. On the other hand, the abelian group 〈F ,+〉
permits the specification of a branching computation via
the introduction of splits and merges within a stream.
Conditional branching dynamically determines (at run-
time) which branch of an additive expression an incoming
object should propagate through. A branch condition ex-
ists when the sibling branches of a split are prefixed with
mutually exclusive filters in Ff . Every a, ā ∈ Ff anni-
hilator pair, where a · ā = 0, and a + ā = 1, is a set of
mutually exclusive filters. As an example, if b, c ∈ F are
branch functions (clauses), then

(a · b) + (ā · c)

implements “if/else”-semantics as the incoming split ob-
ject will either be filtered by a or ā and thus, the outgoing
stream will contain either the objects outgoing from b or
c, but not both. Diagrammatically,

a b

.

ā c

The associative property of addition states that (a +
b) + c = a+ (b+ c). This means that the order in which
the branches are composed does not effect the semantics
of the expression and thus, for all intents and purposes,

(a+ b) + c = a+ (b+ c) = a+ b+ c.

A generalization of the above equality confirms that
an arbitrary number of mutually exclusive condi-
tional branches can be expressed with a stream ring.
Other types of n-ary conditional branches include
“if/then/else” and “switch” statements. For instance,
if every axn

: X → X ∪ ∅ is a filter function defined as

axn(x) =

{
x if x = xn,

∅ otherwise,

and b1, b2, . . . , bn, b ∈ F are respective branch functions,
then

ax1
b1 + ax2

b2 + . . .+ axn
bn + (¯ax1

¯ax2
. . . ¯axn

)b

is a switch-statement with the last branch being the de-
fault case whose condition is defined using De Morgan’s
Law, where

¬(a1 ∨ a2 ∨ . . . ∨ an) = ¬a1 ∧ ¬a2 ∧ . . . ∧ ¬an.

20

Diagrammatically,

ax1
b1

ax2
b2

.

axn
bn

(¯ax1
¯ax2
. . . ¯axn

) b

F. Looping

Looping is another type of flow control. There are two
general looping techniques: repetition and recursion.

1. Repetition-Based Looping

If the number of loops through a particular expression
is known a priori, then looping can be accomplished by
repeating the expression n-times using exponents. For
the expression abc, (abc)n = abc · . . . · abc. Note that
the following exponent equivalences hold for all monoids:
a0 = 1, an · am = an+m, and (an)m = anm. Moreover,
for ca ∈ CF , (ca)n = cnan.

If it is necessary that some objects exit the loop before
the repetitions are exhausted, then a (ā/a)-conditional
branch should be included at the beginning (“while-do”)
or end (“do-while”) of the looped expression. If the
annihilator-pair ā, a ∈ Ff is the while-condition and
b ∈ F is the body of the loop (i.e. loop function), then
for n ≥ 1

(ā+ ab)n

is “while-do” and

b(ā+ ab)n−1

is “do-while.”28 It is necessary that the domain and
codomain of the loop body b are equivalent so that the
output of b can be used as the input to b. For both
loop patterns, when ā(x) = x, x breaks out of the loop
because, on the sibling branch, a(x) = ∅.

Both loop expressions are binomials. As a form of
“loop unrolling,” binomials can be expanded to enumer-
ate all the valid paths through the expression. With re-
spect to “while-do” looping, binomial expressions of the

28 A true “while-do” is (ā + ab)∞ and a true “do-while” is b(ā +
ab)∞. In these expressions, exiting the loop is predicated solely
on the (ā/a)-conditional branch and not the exponent. However,
in order to better explain loop semantics, finite exponents will
be used.

form (ā + ab)n can be expanded using the ring axioms.
For instance, if n = 2, then

(ā+ ab)2

(ā+ ab)(ā+ ab) [exponent expansion]

(ā(ā+ ab)) + ((ab)(ā+ ab)) [· is right distributive]

(ā2 + āab) + (abā+ (ab)2) [· is left distributive]

ā2 + āab+ abā+ (ab)2 [+ is associative]

ā+ āab+ abā+ (ab)2 [ā2 = ā]

ā+ abā+ (ab)2 [aāb = 0b = 0]

ā+ abā+ abab [(ab)2 = abab]

Diagrammatically,

ā ā

ab ab

=

ā ā

ā ab

.

ab ā

ab ab

=

ā

abā .

abab

The binomial expansion of a loop expression parallelizes
all the mutually exclusive paths that an object can take
through the loop. For n = 2, as deduced and diagrammed
above, there are 3 paths:

1. ā: The while-condition is false so exit the loop.

2. abā: The while-condition is true (or else branch 1
would have executed) so evaluate the body of the
loop. The while-condition is false so exit the loop.

3. abab: The while-condition is true (or else branch 1
would have executed) so evaluate the body of the
loop. The while-condition is true (or else branch 2
would have executed), so evaluate the body of the
loop and then exit the loop.

The generalized binomial theorem states that for any
expression of the form (a+ b)n, the expansion is defined
as(
n

0

)
anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + . . .+

(
n

n

)
a0bn,

where the “n choose k” binomial coefficient(
n

k

)
=

n!

k!(n− k)!

and
(
n
n

)
=
(
n
0

)
= 1. The above expansion can be ex-

pressed in summation notation as

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

21

Thus, for all “while-do” loop expressions, the general so-
lution is

(ā+ ab)n =

n∑
k=0

(
n

k

)
ān−k(ab)k.

With respect to the previous (ā+ab)2 example, the above
equation yields the following equivalent expansion.(

2
0

)
ā2 +

(
2
1

)
ā(ab) +

(
2
2

)
(ab)2 [summation equivalence]

ā2 +
(
2
1

)
ā(ab) + (ab)2 [choose 1 reduction]

ā2 + abā+ āab+ (ab)2 [choose 2 from {ā, ab}]
ā+ abā+ āab+ (ab)2 [ā2 = ā]

ā+ abā+ āab+ abab [(ab)2 = abab]

ā+ abā+ abab [āab = 0b = 0]

The expression
(
2
1

)
ā(ab) = ā(ab) + (ab)ā because the

monoid 〈F , ·〉 is not commutative and therefore, com-
binatorially, there are

(
2
1

)
(i.e. 2) unique ways to choose

and combine from the set {ā, ab}, āab and abā.
For “do-while” repetition-based looping, b(ā + ab)n−1

is equivalent to “while-do” save that once the binomial
component has been expanded, b needs to be left dis-
tributed through the summed components. For n =
1, there is no need to check the (ā/a)-condition as
b(ā + ab)0 = b1 = b. For the case when n = 2,
b(ā + ab) = bā + bab. There are 2 mutually exclusive
parallel paths:

1. bā: Evaluate the body of the loop. The while-
condition is false so exit the loop.

2. bab: Evaluate the body of the loop. The while
condition is true (or else branch 1 would have ex-
ecuted), so evaluate the body of the loop and then
exit the loop.

Substituting the result for n = 2, n = 3 has the follow-
ing form (bā + bab)(ā + ab). This multinomial has the
following expansion:

(bā+ bab)(ā+ ab)

bā(ā+ ab) + bab(ā+ ab) [· is right distributive]

(bāā+ bāab) + (babā+ babab) [· is right distributive]

bāā+ bāab+ babā+ babab [+ is associative]

bā+ bāab+ babā+ babab [āā = ā]

bā+ babā+ babab [bāab = b0b = 0].

Diagrammatically,

bā ā

bab ab

=

bā ā

bā ab

.

bab ā

bab ab

=

bā

babā .

babab

For n = 3, there exists 3 mutually exclusive paths
through the loop.

1. bā: Evaluate the body of the loop. The while-
condition is false so exit the loop.

2. babā: Evaluate the body of the loop. The while-
condition is true (or else branch 1 would have exe-
cuted), so evaluate the body of the loop. The while
condition is false so exit the loop.

3. babab: Evaluate the body of the loop. The while-
condition is true (or else branch 1 would have exe-
cuted), so evaluate the body of the loop. The while-
condition is true (or else branch 2 would have ex-
ecuted), so evaluate the body of the loop and then
exit the loop.

Given the aforementioned general binomial theorem,
any “do-while” loop expression has the following expan-
sion:

b(ā+ ab)n−1 = b

n−1∑
k=0

(
n

k

)
ān−k(ab)k.

2. Recursion-Based Looping

Repetition-based looping repeats an expression using
exponents. Recursion-based looping, on the other hand,
makes use of nested streams and the production rules of a
regular grammar. If the annihilator pair ā, a ∈ Ff forms
the while-condition and b is the body of the loop, then a
“while-do” expression has the general recursive form

f [ā+ abf]

and “do-while” has the form

bf [ā+ abf].

The recursive “while-do” expression is diagrammed as

ā

f [ab f].

If x is incoming to the first f , it is placed on the incoming
stream of the branch (ā+abf). If ā(x) = x, then x breaks
out of the loop, else 〈x〉ab. If there is an outgoing object
from b, f expands. The expansion of f follows the rules
of a right regular grammar, where a terminal expression
(e.g. (ā+ ab)) can be followed by a non-terminal symbol
(e.g. f) [2]. Therefore, f [ā+ abf] expands to

f [ā+ abf [ā+ abf]]

with the following diagram:

ā

f [ab f [ab f]].

ā

22

The above equation has the general solution

f [ā+ abf [ā+ abf]]

ā+ ab[ā+ ab] [remove nested names]

ā+ ab(ā+ ab) [[a] = a]

ā+ (abā+ abab) [· is left distributive]

ā+ abā+ abab [+ is associative].

The 3 mutually exclusive paths above are the same as
those derived in §V F 1.

For 3 passes through a “do-while” loop, a single b is
left distributed into the previous expansion as

bf [ā+ abf [ā+ abf]].

Again, the same result as repetition-based looping is de-
duced:

bf [ā+ abf [ā+ abf]]

b[ā+ ab[ā+ ab]] [remove nested names]

b(ā+ ab(ā+ ab)) [[a] = a]

bā+ bab(ā+ ab) [· is left distributive]

bā+ babā+ babab [· is left distributive].

G. Thread Metadata

Definition 7 (An Object Thread). Every outgoing ob-
ject of a function is related to the respective incoming
object of the function all the way back to the stream
expression’s original input object. This chain of rela-
tionships is called an object thread. If abc is a stream
expression, then 〈x〉abc has a thread from x to a(x), a(x)
to ab(x), and ab(x) to abc(x). Map functions append to
an object thread. Filter functions may or may not de-
stroy an object thread. Flatmap functions can destroy an
object thread, append to an object thread, or create mul-
tiple branching object threads. Finally, reduce functions
reset object threads.

While object threads exist implicitly in all stream com-
putations, thread metadata makes selected aspects of a
thread explicit. Thread metadata is represented using tu-
ples. A tuple is an ordered list of objects. The elements
of a tuple can have different types such as the 2-tuple
(x, y) ∈ (X ×Y) and the 3-tuple (x, y, z) ∈ (X ×Y ×Z).
Tuples can be used to store data about an object. The
first object of the tuple is called the datum and the re-
maining objects are called the metadata. This subsec-
tion will present three use cases for stream metadata:
mutation histories, loop counters, and sacks. While the
use cases are individually presented, it is possible to mix
cases within a single stream expression. Moreover, the
presented use cases are in no way an exhaustive list of
all potential uses. Finally, this section concludes with
a thread metadata-based implementation of the lambda
filter concept introduced in §V A 2.

1. Mutation Histories

Every time an object is mapped to a new range ob-
ject, the domain object is “forgotten.” It is possible to
remember the domain object by appending it to a meta-
data component called mutation history. If U is the
set of all objects, the mutation history ∆ ∈ U∗ is an
ordered list of zero or more elements (i.e. an ordered
multi-set). The map function a : X → Y can be ex-
tended to support mutation history as the map function
a′ : (X × U∗)→ (Y × U∗), where

a′(x,∆) = (a(x),∆] x).

The first component of the 2-tuple maps to a new object
as defined by the original map function a. The second
component has the x argument appended to its muta-
tion history. An example tuple may be (z, (w, x, y)). The
current object is z and it was derived from a lineage of
mutations that went from w to x to y. The current ob-
ject is not “the object” nor are the historic objects “the
object.” Instead, the complete lineage of this particular
object thread is “the object.”

Filter functions never map/mutate an incoming object.
Therefore, they only need to preserve the tuple in its
current form. If a : X → X ∪ ∅ is a filter function, it can
be extended to the mutation history aware filter function
a′ : (X × U∗)→ (X × U∗) ∪ ∅ defined as

a′(x,∆) =

{
(x,∆) if |〈x〉a| = 1,

∅ otherwise.

The flatmap function a : X → Y ∗ can be extended to
support mutation history. The function a′ : (X ×U∗)→
(Y ×U∗)∗ returns zero or more objects for each incoming
2-tuple and is defined as

a′(x,∆) =
⊎

∀y∈a(x)

(y,∆] x).

The same mutation history is provided to each object in
a(x) as each sibling came from the same parent and thus,
they have the same lineage. Future mutations to these
tuples will create branching histories.

The mutation history of a reduce function is not well
defined because all incoming objects (and their respec-
tive mutation histories) are reduced to a single object.
Either the reduce object maintains all the mutation his-
tories as a list of lists in (U∗)∗ or the reduce object has
a mutation history of ∅ (i.e. the object thread is reset).
For the simpler latter solution, if a : X∗ → Y is a re-
duce function, then the mutation history aware reduce
equivalent a′ : (X × U∗)∗ → (Y × U∗) is defined as

a′(x) = (a(x), ∅).

If the functions in F are mutation history aware, then
it is possible to define stream functions that make use
of that information within an expression. Two simple

23

examples are provided. A “teleportation” map function
αi : (X ×U∗)→ (Y ×U∗) will map the current object to
the historic ith-mutation and is defined as

αi(x,∆) = (∆i,∆] x).

In looping expressions it may be necessary to ensure that
a thread never returns to a previously seen object in order
to remove cyclic behavior from the computation. If β :
(X × U∗)→ (X × U∗) ∪ ∅ is a filter function, then

β(x,∆) =

{
(x,∆) if x /∈ ∆,

∅ otherwise.

2. Loop Counters

There are situations when it is important to know how
many times a thread has gone through a loop. To record
this information, a loop counter i ∈ N can be added as a
metadata component. Assume a standard filter function
a ∈ Ff with the signature a : X → X∪∅. If it is necessary
that the predicate of a be true and that the thread has
gone through the loop less than 9 times, then the loop
counter aware filter function a′ : (X×N+)→ (X×N+)∪∅
has the definition

a′(x, i) =

{
(x, i) if |〈x〉a| = 1 ∧ i < 10,

∅ otherwise.

The loop body b : X → X∗ is extended to pass the
loop counter information along unchanged in the function
b′ : (X × N+) → (X × N+)∗. The loop reset function
α : (X × N+)→ (X × N+) is defined as

α(x, i) = (x, 0)

and the loop increment function β : (X×N+)→ (X×N+)
is defined as

β(x, i) = (x, i+ 1).

In aggregate, a “while-loop” that is guaranteed to execute
for no more than 10 iterations for each object thread is
defined as

α(ā′ + a′b′β)∞.

3. Sacks

A flatmap function typically maps an object to zero
or more different objects. If it is necessary to save data
between object mutations, then metadata sacks can be
used. As an example, assume a graph G = (V,E, λ),
where V is a set of vertices, E ⊆ (V × V) is a set of
edges, and λ : V → Z maps a vertex to some arbitrary
“weight” integer. If the flatmap function α : V → V ∗

maps an incoming vertex to all its adjacent vertices as
defined by E, then the stream expression

〈v〉αn

will emit all the vertices n-steps away from vertex v ∈ V .
In the context of this example, an object thread is called
a graph traverser.

Suppose that as a traverser traverses a graph, it col-
lects the weight of the vertices that it encounters along
the way. This behavior is accomplished by the flatmap
function β : V × Z∗ → (V × Z∗)∗, where Z∗ is the tra-
verser’s current sack of weights and

β(v, z) =
⊎

u∈α(v)

(u, z] λ(u)).

An n-step traversal starting at v ∈ V is defined as

〈(v, [])〉αn.

The outgoing traversers from this expression will each
have a sack of gathered weights. For instance, if n = 3,
one result might be (u, [1, 5, 6]), where u ∈ V and
[1, 5, 6] ∈ Z∗. From here, other functions can be ap-
pended to the expression above to isolate (i.e. project
out) the sack weights for further analysis.

If the ultimate weight analysis is based on the + op-
erator of the abelian group 〈Z,+, 〉, then it is possible to
perform the analysis in situ. Instead of gathering weights
only to reduce them later into a sum, a more space effi-
cient solution would be to sum the weights along the way.
The flatmap function θ : V ×Z→ (V ×Z)∗ is defined as

θ(v, z) =
⊎

u∈α(v)

(u, z + λ(u)).

The object’s sack is no longer a list of integers, but a sin-
gle integer denoting the running sum total of encountered
weights. The expression

〈(v, 0)〉β3

would return all the vertices 3 steps away from v along
with the sum of the weights of the intermediate vertices
traversed along the way. The previous β-formulation’s
(u, [1, 5, 6]) result would be (u, 12) in the θ-formulation.

A simple example was provided to demonstrate the
idea of sack metadata. Variations on this theme include:

• Sack data can be analyzed by conditional branch
filters in order to place an object thread on one
branch of an expression or another. This technique
is used in §VI B.

• Object equivalence can be based solely on the
thread datum (i.e. the object) and the sack meta-
data from equivalent objects would then be merged
based on some domain specific operator. This
would require a generalization of x ∼ y and a
“sack merge operator” for combining sacks from
two “equal” objects.

24

4. Metadata-Based Lambda Filters

Anonymous (lambda) stream functions were presented
in §V A. The lambda filter specification in §V A 2 was
deemed “overly complex” because it extended the a(b+
c) nested expression with a branch (+1), a map (α), a
reducer (β), and a filter (θ). In sum total, the lambda
filter for a(b+ c) was defined as

[((a(b+ c)α) + 1)βθ]

with the following diagram

b

a α

c

[1 β θ].

This section presents a lambda filter that removes
the need for the branch expression by propagating the
lambda filter’s input object through the nested stream as
thread metadata. Suppose the following metadata map
function α : X → (X ×X) defined as

α(x) = (x, x).

This function creates a 2-tuple where the second com-
ponent is a copy of the first component. Next, assume
that the nested expression functions a, b, and c are all
updated such that, in general, if a : X → Y ∗ is a flatmap
function, then

a′(x1, x2) =
⊎

y∈a(x1)

(y, x2).

Each of the updated functions (a′, b′, c′) operates on the
first component of the tuple and maintains the second
component unchanged, where the second component was
the original X-object incoming the lambda function. Fi-
nally, like the lambda map’s reduce function, assume a
reduce function that emits the second tuple of the first
object in the provided stream or else, it emits a token
object (reducers are required to emit one object).

β(x) =

{
(x1)2 if |x > 0|,
� otherwise.

Finally, leveraging the same θ-filter as before, the last
function it the lambda filter is

θ(x) =

{
x if x 6= �,

∅ otherwise.

In aggregate a thread metadata-based lambda filter
function for the nested expression a(b+ c) is defined as

[αa(b+ c)βθ]

and is diagrammed as

b′

[α a′ α β θ].

c′

If 〈x〉[a(b+c)]f is the expression and x yields at least one
outgoing object from a(b+c), then x satisfies the a(b+c)
“predicate” and is emitted from the lambda filter. Thus,
[a(b+ c)]f : X → X ∪ ∅ is a filter function.

H. Matrix Coefficients and Wave Computing

The coefficients of the functions and objects of a stream
ring are elements from any ring with unity 〈C,+, ·〉.
All the examples thus far have used coefficients from
the integer ring 〈Z,+, ·〉 with the operators being nu-
meric addition and multiplication, respectively. In the
stream ring 〈RF ,+, ·〉, the coefficients are real numbers.
As an example, if a(x) = y, then 〈x〉(2a − 1.7a) =
〈2y,−1.7y〉 = 〈0.3y〉. Or, in an algebraically equiva-
lent form, 2a − 1.7a = (2 − 1.7)a = 0.3a and thus,
〈x〉0.3a = 〈0.3y〉.

Coefficients that are matrices with complex entries
in C can be used to simulate wave dynamics and can
be applied in those domains for which constructive and
destructive interference is paramount to the computa-
tion.29 One such domain is quantum computing [5]. The
stream ring for expressing quantum computations in a
one-dimensional space is

〈C2×2F ,+, ·〉.

1. Quantum Computing

In classical physics, a particle is at a discrete point
in space. If the space is a one-dimensional line, then the
particle is x ∈ N. In quantum physics, a classical particle
is only localized upon measurement. When the particle

29 A complex number is an element in C. Every complex number
has the form

a+ bi,

where a, b ∈ R, and i =
√
−1. The a component is know as

the real component and the bi component is the imaginary com-
ponent. Similar to how −1 “rotates” a real number about a
one-dimensional line, imaginary numbers “rotate” a real number
about a two-dimensional plane because i0 = 1, i1 = i, i2 = −1,
i3 = −

√
−1 = −i, and i4 = 1. The number i does not exist on

the real number line, but instead, orthogonal to it on an imag-
inary line. Thus, multiplying a complex number by i rotates it
90◦ off the real number line. Multiplying a real number by i2

rotates it 180◦, turning a positive real to a negative real and vice
versa.

25

x is not being measured, it enters a superposition of mul-
tiple locations with two “quantum particles” emerging.
Ignoring object coefficients for now, the quantum particle
x−1 goes left and x+1 goes right. At the next time step,
x−1 splits in two with one split going to (x−1)−1 = x−2
and the other going back to (x − 1) + 1 = x. The x + 1
quantum particle also splits, with its right child moving
to (x+ 1) + 1 = x+ 2 and its left child returning back to
(x+ 1)− 1 = x.

x

x− 1 x+ 1

x− 2 x, x x+ 2

The set of all quantum particles forms a discrete wave-
form emanating from point-x and diffusing over the
line. Like water waves, reverberation and wave phases
yield constructive and destructive interference patterns
(e.g. the bulking of x, x ∈ 〈x− 2, x, x, x+ 2〉). The quan-
tum wave continues to propagate until a measurement
of the system is made. At which point, the wave “col-
lapses” to a discrete, localized classical particle. This is
the particle-wave duality of quantum physics.30

The stream object x ∈ N denotes the particle’s posi-
tion on the line. The object’s coefficients are elements
from the complex matrix ring 〈C2×2,+, ·〉, where + is
pairwise matrix addition, · is the dot product, the 02×2

matrix is the zero element, and the identity matrix is
unity. These matrices denote the amount of left (c1) and
right (c2) “spin” (i.e. direction of movement) in the par-
ticle. Together, an object and its coefficient is defined
as [

c1 c2

0 0

]
x.

For the sake of brevity, the row vector [c1, c2] will be used
to denote the above matrix. When two quantum particles
converge at the same point in space, they are equivalent
and can be bulked. Their coefficients are added using
pairwise matrix addition, where if x ∼ y, then[

c1 c2

c3 c4

]
x,

[
c5 c6

c7 c8

]
y =

[
c1 + c5 c2 + c6

c3 + c7 c4 + c8

]
x.

It is the bulking of quantum particles that yields the wave
interference dynamics of quantum physics. When their
spins are in phase, they constructively interfere. When
their spins are out of phase, they destructively interfere.
Whenever an object coefficient becomes 02×2, the quan-
tum particle is removed from the stream as 〈0x〉 = 〈〉.

30 A quantum wave can be visualized as a “rubber sheet” that is
undulating as it expands through space. The quantum particles
provide the amplitude of the wave at each point in space and are
only “particles” because of the discrete nature of the space.

A classical particle is either spinning left ([1, 0]) or
spinning right ([0, 1]). A quantum particle, on the other
hand, can be spinning both left and right simultaneously.
Thus, the quantum wave is not only in a spatial super-
position, but also in a spin superposition. The spin of
a particle is modulated by a unitary operator in C2×2.
A unitary operator “rotates” the spin of a particle while
preserving the total amplitude in the system.31 For ex-
ample, the operator Y uses the imaginary number i to
rotate a particle’s spin by 90◦ and is defined as

Y =

[
1√
2

i√
2

i√
2

1√
2

]
.

When a quantum particle moves, it splits in two and its
left spin component goes left and its right spin component
goes right. This movement is defined by two invertible
map functions α, β ∈ Fm, where α : N→ N, β : N→ N,

α(x) = x− 1,

and

β(x) = x+ 1,

where αβ = βα = 1. The map functions’ coefficients
isolate the left and right spin components of the quan-
tum particle, respectively. Together, the spin modu-
lation and one-step diffusion of a quantum wave in a
one-dimensional space is defined as the flatmap function
U ∈ Ffm, where U : C2×2N→ (C2×2N)∗ and

U =

[
1√
2

i√
2

i√
2

1√
2

]
·

([
1 0

0 0

]
α+

[
0 0

0 1

]
β

)
.

The unitary operator Y is a function coefficient. Its
associated stream function is the identity 1 ∈ F , where
1(x) = x. Using the stream ring’s axioms, U can be
simplified by combining the unitary operator coefficient
Y and the spin projection coefficients which, for clarity
in the following derivation, are simply denoted L (left)

31 As a wave propagates, the total amplitude of the system will
never decrease unless there is friction. In a quantum system,
friction leads to “decoherence” and the ultimate collapse of the
quantum wave to a discrete classical particle.

26

and R (right).32

Y 1 · (Lα+Rβ)

(Y 1 · Lα) + (Y 1 ·Rβ) [· is left distributive]

(Y · L)(1 · α) + (Y ·R)(1 · β) [stream multiplication]

(Y · L)α+ (Y ·R)β [1 · a = a].

If YL = Y · L and YR = Y ·R, then

YL =

[
1√
2

0
i√
2

0

]
YR =

[
0 i√

2

0 1√
2

]
and

U = YLα+ YRβ.

2. Serial vs. Parallel Diffusion

The expression U∞ diffuses a quantum wave indefi-
nitely and is diagrammed as

[
1√
2

0
i√
2

0

]
α

[
1√
2

0
i√
2

0

]
α

[
1√
2

0
i√
2

0

]
α

. . .[
0 i√

2

0 1√
2

]
β

[
0 i√

2

0 1√
2

]
β

[
0 i√

2

0 1√
2

]
β

Let [1, 0]50 be a classical, left-spinning particle located
at point-50 on the one-dimensional line. This particle
can be put into superposition and propagated 2-steps as
a wave using the expression

〈[1, 0]50〉U2.

The result at each iteration is presented below, where the
first line is step 0 when the particle is classical.

[1, 0]50

[1√
2
, 0]49 [0, i√

2
]51

[12 , 0]48 [0, i2]50, [− 1
2 , 0]50 [0, i2]52

32 This section’s running example diffuses a wave through a one-
dimensional space. Extending the example to two, three, or more
dimensions requires more summation components (i.e. stream
branches) and larger matrix coefficients. For instance, in a two-
dimensional wave propagation there are left, right, up, and down
projections and a C4×4 unitary operator

Y =
1

2

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 .

At step 2, the two quantum particles at point-50 can be
bulked to [− 1

2 ,
i
2]50. This is constructive interference.

———

The stream expression Un = U1 · U2 · . . . · Un provides
an iterative solution to the problem of determining the
shape of a quantum wave at step n. The classical particle
[1, 0]50 is placed onto the incoming stream of U1 and is
propagated through the chain of U functions until Un.
One of the primary benefits of a stream ring formulation
is that different solutions to the same problem can be
deduced from the theory’s axioms and theorems.

A binomial expansion transforms a multiplication of
sums into a sum of multiplications. With respect to a
stream ring, a binomial expansion transforms a serial
multi-step process into a parallel single-step process. The
binomial expansion of a quantum wave’s 2-step propaga-
tion is

(YLα+ YRβ)2

Y 2
Lα

2 + YLYRαβ + YRYLβα+ Y 2
Rβ

2 [binomial]

Y 2
Lα

2 + YLYR + YRYLβα+ Y 2
Rβ

2 [β = α−1]

Y 2
Lα

2 + YLYR + YRYL + Y 2
Rβ

2 [α = β−1].

There are four components to the expansion. The first
component moves a particle two steps to the left. The
last component moves the particle two steps to the right.
The middle two components originally moved particles
left and then right and right and then left, but given
that aa−1 = 1, there is no need to do that computation.
Moreover, since the two middle particles meet back at
the original diffusion location, their coefficients can be
summed and treated as a single branch:

YLYR + YRYL =

[
− 1

2
i
2

i
2 − 1

2

]
.

Thus, U2’s binomial expanded diagram is

[
1
2 0
i
2 0

]
α α

[
− 1

2
i
2

i
2 − 1

2

]
1 .

[
0 i

2

0 1
2

]
β β

When the classical particle [1, 0]50 is placed into this
stream, it splits into the 3 quantum particles

[12 , 0]48 [− 1
2 ,

i
2]50 [0, i2]52.

27

This is the same result as previous. However, the differ-
ence is that this formulation lends itself better to par-
allelization, pre-computed bulks, and the removal of in-
verted functions and unnecessary computations.33

3. Wave Reduction and Inversion

The result of 〈[1, 0]50〉U50 will have quantum particles
spanning a one-dimensional space from point-0 to point-
100. If the quantum system is measured to determine
where the classical particle is located, the quantum wave
“collapses.” What emerges is a classical particle with a
definite location and spin. The location of the classical
particle is calculated by sampling the probability distri-
bution derived from the spin components of the quantum
particles (i.e. their wave amplitudes). The probability of
the classical particle being at any point is defined by the
inner product of the respective quantum particle’s left
and right spin components which is defined as

[c∗1, c
∗
2]

[
c1

c2

]
= |c1|2 + |c2|2,

where c∗1 is the complex conjugate (a + ib)∗ = a − ib.
Given that a probability distribution is generated from
the wave amplitudes, it is true that for all the quantum
particles on the line∑

cx∈〈[1,0]50〉U50

|c1|2 + |c2|2 = 1.

The preservation of this equality is guaranteed by the
unitary nature of Y which never increases nor decreases
the total amplitude in the system. It only diffuses it. The
evolving probability distribution up to step 2 is provided
below, where [− 1

2 ,
i
2]50 led to constructive interference

and therefore, a larger probability than the outskirt par-
ticles.

1
1
2

1
2

1
4

1
2

1
4

33 An interesting consequence of these two formulations is that
quantum physics, like every stream ring, is atemporal. The men-
tal image of a wave emanating out from the location of a classical
particle in a lock-step fashion is only a metaphor as there is no
way to “see” that wave without incurring decoherence and thus,
a wave collapse (i.e. a classical measurement). Moreover, the
parallel diffusion formulation (based on a binomial expansion)
strongly implies that the quantum wave is at all points in space
with no intermediate iterative steps required to get there. Given
the potential for destructive interference and inverted functions,
the parallel diffusion formulation appears to be the more effi-
cient implementation of the quantum algorithm and is perhaps
the formulation used by reality.

A “measurement” reduce function θ : (C2×2N)∗ →
C2×2N samples the probability distribution derived from
the wave to return a single classical particle at some point
and is defined as

θ(cx) = sample

(⋃
cx∈cx

(x, |c1|2 + |c2|2)

)
.

Thus, to go from a classical particle, to a quantum wave
that diffuses 50 steps, and then back to a classical parti-
cle, the full stream expression is succinctly defined as

〈[1, 0]50〉U50θ.

Quantum computations are reversible. This means
that all the functions and coefficients involved in the
propagation of a quantum wave are invertible. In fact,
every unitary operator Y has a complex conjugate Y ∗,
where Y Y ∗ = I and the identity matrix I = 1 ∈ C2×2.34

Furthermore, α and β are inverses of each other as
αβ = βα = 1 ∈ F . In order to take a diffused wave
and revert it back to the original classical particle prior
to quantum superposition, the original stream expression
can be “reversed” (i.e. inverted).

U−1 =

[
1√
2
−i√
2

0 0

]
α−1 +

[
0 0
−i√
2

1√
2

]
β−1.

Quantum computing exposes the rare situation where a
one-to-many flatmap function is invertible: UU−1 = 1.
In general, UnU−n = 1 and thus,

〈[1, 0]50〉U50U−50 = 〈[1, 0]50〉.

While U produces two output objects for every one in-
put object, the outgoing objects’ coefficients are split and
fractionalized such that on inversion, the two fractional
splits rejoin to make a whole. This feature of quantum
computing is made possible in a stream ring by the use of
coefficients and the forthcoming equality proved in The-
orem 24. The inverse of complex matrix coefficient sums
of functional inverses for a one-dimensional wave propa-
gation is:

(YLα+ YRβ)−1 = Y −1L α−1 + Y −1R β−1.

In numeric groups such as Z, Q, R and C, if two el-
ements multiplied together equal zero, then one of the
elements must be 0. However, this fact is only true in
groups that have no zero divisors. In a matrix group,
it is possible for two non-zero matrices to multiply to
the zero matrix. It is in these zero divisor groups that
the following theorem applies and explains the invertible
nature of waves.

34 The conjugate of a complex (2× 2)-matrix is defined as[
a+ ib c+ id

e+ if g + ih

]∗
=

[
a+ ib e− if
c− id g + ih

]
.

28

Theorem 24. If 〈CF ,+, ·〉 is a stream ring, c, c∗, d, d∗ ∈
C, cd∗ = dc∗ = 0, cc∗ + dd∗ = 1 , and a, a−1 ∈ F , then

(ca+ da−1)−1 = c∗a−1 + d∗a.

Proof. In an algebraic group a · a−1 = 1. If the above
equality is true, then

(ca+ da−1) · (c∗a−1 + d∗a) = 1

cc∗aa−1 + cd∗a2 + dc∗a−2 + dd∗a−1a = 1 [multinom]

cc∗aa−1 + 0a2 + 0a−2 + dd∗a−1a = 1 [cd∗ = 0]

cc∗aa−1 + dd∗a−1a = 1 [0a = 0]

cc∗1 + dd∗1 = 1 [aa−1 = 1]

(cc∗ + dd∗)1 = 1 [stream add]

11 = 1 [cc∗ + dd∗ = 1]

1 = 1 [11 ≡ 1].

Thus, diagrammatically,

ca c∗a−1

da−1 d∗a

= 1.

I. Domain Specific Theorems

Stream ring theory is domain agnostic. Actually, it
is more precise to state that the domain of stream ring
theory consists solely of streams, functions, objects, and
coefficients, where most phenomena can be represented
in terms of objects moving between functions. Thus,
stream ring theory has numerous application domains.
When F and C are defined according to an application
domain, then more theorems will apply. For instance,
while F can be partitioned into map, filter, flatmap, and
reduce functions, there may be other classifications such
as functions being cyclic (an = a for some n > 2), nilpo-
tent (an = 0 for some n > 2), prime, a permutation, etc.
The group theoretic properties of such functions yield
more applicable theorems. The algebraic properties of a
domain-specific C can also lead to new theorems. In the
previous section on wave computing, unitary coefficients
displayed a predictable behavior that yielded destructive
interference and an invertible flatmap function.

In general, the more an algebraic structure is specified,
the greater the number of theorems that can be deduced.
Ring theory’s axioms entail a set of theorems. Stream
ring theory’s axioms extends that set of theorems with
entailments associated with the product of rings (CF)
and the partition of F into map, filter, flatmap, and re-
duce functions. Every application domain of stream ring
theory is a theory in and of itself, and it will contain
yet more theorems that can be leveraged in the algebraic
manipulation of domain-specific expressions.

VI. TURING COMPLETENESS

A Turing machine is an abstract machine that has a
mathematical description and can be used to compute
a function [4]. Every Turing machine is composed of a
tape (input/output), a head (reader/writer), and a body
(states/instructions). Before the machine proceeds, the
input to the function is encoded on the tape. The Tur-
ing machine will read and write to the tape according to
the instructions in its body. When the machine halts,
the tape contains the output of the function. It has
been demonstrated that any computable function can be
computed by a Turing machine. Thus, if a language or
system can implement a Turing machine, then that lan-
guage or system can implement any computable function
and is called Turing Complete. This section will demon-
strate how to create every known Turing machine using
a stream ring. This will prove that stream ring theory is
Turing Complete and can be used for universal comput-
ing.

A. Defining a Turing Machine

A Turing machine is defined by the 6-tuple

M = (Q,Γ,Σ, F, q0, δ),

where Q is the set of possible machine states, Γ is the
set of possible tape symbols, Σ ⊂ Γ∗ is the tape, F ⊂ Q
is the set of final or “halt” states, q0 ∈ Q is the initial
state, and δ : Q × Γ → Q × Γ × {L, R} is the transition
function mapping the machine’s current state and tape
cell symbol to a new machine state, a new symbol for the
current tape cell, and a new tape location that is either
to the left or right of the current tape cell [2].

B. Stream Ring Turing Machines

A system of computation is Turing Complete if it can
implement any Turing machine.

Theorem 25. The stream ring 〈CF ,+, ·〉 is Turing Com-
plete.

Proof. The general form of a stream ring Turing machine
is a “while-do” loop containing mutually exclusive con-
ditional branches. Each branch determines the current
machine state and tape cell symbol and then writes to
the current tape cell, changes the machine’s state, and
moves the machine’s head to an adjacent tape cell. A
Turing machine can be defined as the stream-based map
function M ∈ Fm such that

M : (Γ∗ ×Q× N)→ (Γ∗ ×Q× N)

and

M = (ā+ a(b1b2 + c1c2 + ...))∞,

29

where the ā/a-annihilator pair determines if the machine
has halted or not and b1b2, c1c2, . . . encode the state tran-
sition functions. The function signature of M represents
the following components of a Turing machine:

(Γ∗︸︷︷︸
tape data

× Q︸︷︷︸
current state

× N︸︷︷︸
current tape cell index︸ ︷︷ ︸

machine data

).

It is important to note that every function used to define
the larger M function has the same function signature as
M save that the respective filter functions can also emit
∅.

The “halt” filter ā is defined as

ā(Σ, q, n) =

{
(Σ, q, n) if q ∈ F ,
∅ otherwise.

Each branch b1b2, c1c2, . . . contains a filter (e.g. b1) and
a map function (e.g. b2). The filters form mutually ex-
clusive conditional branches that determine whether the
current object is in the filter’s respective machine state
and is reading the filter’s respective tape symbol. Thus,
for the incoming 3-tuple, the two metadata components
(Q× N) are leveraged such that

b1(Σ, q, n) =

{
(Σ, q, n) if q = � ∧ Σn = �,

∅ otherwise,

where � is a function instance specific variable denoting
the specific state (� ∈ Q) and cell symbol (� ∈ Γ) that
the filter is selecting for. Only one of the mutually exclu-
sive branches will pass on the 3-tuple to its subsequent
map function. The next map function represents a ma-
chine instruction that writes a symbol to the current tape
cell, changes the machine’s state, and moves the machine
head left or right on the tape. Thus,

b2(Σ, q, n) = (Σn = �,�, n± 1),

where the first � ∈ Γ is the symbol to write to the current
cell Σn, the second � ∈ Q is the new machine state
to transition to, and ±1 is a function instance specific
constant denoting whether to increment (move right) or
decrement (move left) the machine’s head’s location on
the tape.

The stream-based Turing machine M is initiated by
placing a single 3-tuple containing the tape with encoded
function input, the initial machine state, and the initial
tape cell index onto the incoming stream of M as

〈(Σ, q0, 0)〉M.

The process of updating the tape continues until the
“halt” ā-condition is met and at which point, the 3-tuple
breaks out of the loop and the resultant Σ component of
the 3-tuple encodes the output of the function M . By

defining the � and ±1 constants specifically, any Turing
machine can be implemented. Thus, the stream ring is
Turing Complete.

If a system or language can model a Turing machine,
then three general features of universal computability
are supported: conditional branching, state changes, and
looping. A Turing Complete system must be able to per-
form one set of operations or another depending on some
condition. A Turing Complete system must be able to
map an input to a different output. Finally, a Turing
Complete system must be able to operate indefinitely
until some halting condition is met. While a Turing ma-
chine can be implemented by a stream ring, it is more im-
portant that the general features of universal computabil-
ity are supported as then the set of functions in F can
be composed into expressions to execute any domain-
specific computation. Moreover, these expressions can
be subjected to the axioms and theorems of stream ring
theory to ensure the most optimal representation for the
underlying execution engine.

VII. CONCLUSION

Expressions derived from any stream ring 〈CF ,+, ·〉
can be diagrammed as a set of F-functions with C-
coefficients connected by streams in a directed, acyclic
graph. The additive + operator is used to create par-
allel function branches and the multiplicative · operator
is used create serial function chains. The benefit of the
symbolic algebra is that complex functional topologies
can be manipulated according to the axioms and theo-
rems of stream ring theory to derive structures that are
perhaps simpler and/or more efficient to execute in a
real-world system. In general, the algebra can be used
to develop both languages and underlying execution sys-
tems that are functional, universal, and can be reasoned
on algebraically.

Acknowledgments

This article is dedicated to those individuals who have
directly or indirectly inspired the development of these
ideas via their collaborations with and/or mentorship
of the author. These individuals include Johan Bollen,
Herbert Van de Sompel, Joshua Shinavier, Joe Geldart,
Stephen Mallette, and Daniel Kuppitz. Discussions with
Harsh Thakkar incited the effort to write up a formal-
ization of the presented ideas. Finally, this article was
written over the course of two months while in the Sea
of Cortez with the major advances being made at Isla
Espiritu Santo, La Paz, Timbabichi, Puerto Escondido,
and Playa Santispac just south of Mulegé in Bah́ıa de
Coyote.

30

[1] J. A. Gallian. Contemporary Abstract Algebra. Houghton
Mifflin, 2002.

[2] J. Hopcroft and J. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, 1979.

[3] P. Hudak. Conception, evolution, and application of func-
tional programming languages. ACM Computing Surveys,
21(3):359–411, September 1989. ISSN 0360-0300. doi:
10.1145/72551.72554.

[4] A. M. Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. Proceedings of the
London Mathematical Society, 42(2):230–265, 1937.

[5] N. S. Yanofsky and M. A. Mannucci. Quantum Comput-
ing for Computer Scientists. Cambridge University Press,
New York, NY, USA, 1 edition, 2008. ISBN 0521879965,
9780521879965.

