Critical analyses of nitrous oxide emissions in a full scale activated sludge system treating low carbon-to-nitrogen ratio wastewater

- 3 M. Spinelli¹, A.L. Eusebi^{1*}, V. Vasilaki², E. Katsou², N. Frison³, D.Cingolani¹, F. Fatone¹
- 4

¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce
 Bianche, 12, 60100 Ancona, IT. a.l.eusebi@univpm.it

² Department of Civil Engineering and Environmental Engineering; Institute of Environment, Health
 and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.

9 ³ Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, IT

Abstract: A critical analysis of nitrous oxide emissions in a full-scale modified Ludzack Ettinger plant treating municipal wastewater with low carbon to nitrogen ratio is presented. The results of N₂O emissions were processed by coupling classical (liquid chemical/physical characterization) and new data analytics techniques (online gaseous emissions and statistical analysis). Correlation between the operational parameters of the plant and long-term online monitored nitrous oxide emissions was conducted. The analysis considered the effect of off-gas sampling methods, the variability of feeding characteristics and the main liquid process variables as the principle parameters that may affect nitrous oxide emissions. In order to detect and assess the causal relationships between online monitored system variables and nitrous oxide emissions, statistical and event-based sensitivity analysis was adopted to identify causal relationships between the variables of the system. Observations revealed that lower ratio between carbon and nitrogen (COD:N) resulted in higher N2O emissions. The average nitrous oxide emission factors changed from 0.0089 gN₂O/kgTN_{in} to 0.051 gN₂O/kgTN_{in}, that corresponded to denitrification limited by organic carbon availability. The nitrous oxide dynamics were not significantly influenced by dissolved oxygen variations (within the range of 1.5 - 2 mg/L). However daily peaks of nitrous oxide emissions occurred when aeration flow-rate resulting was higher and stripped more nitrous oxide from liquid.

Keywords: Nitrous oxide emissions, Full-scale monitoring, Activated sludge, Sensitivity analysis; Gas sampling assessment, Emission Factors

- 11
- 12
- 13
- 14

15 **1. Introduction**

16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide 17 (CO_2) , methane (CH_4) and dinitrogen oxide (N_2O) in wastewater treatment plants (WWTPs) 18 (Kampschreur et al., 2008). N₂O emissions are considered as the most potent (~300 more than CO₂) 19 contributor to global warming. Numerous studies to date have focussed on real-field N₂O monitoring 20 and the understanding of the causes on N₂O formation (IPPC, 2013). Several studies reveal that 21 characteristics of the wastewater, operating parameters, configuration, environmental conditions and 22 microbiological diversity of the biological processes have significant impact on N₂O generation and 23 on operational carbon footprint of WWTPs. Critical effect was found in relation to the carbon to 24 nitrogen ratio both in lab- or pilot- scale biofilm systems (He et al., 2017; Zhang et al, 2016), for 25 aerobic granules and suspended activated sludge (Gao et al, 2016; Sun et al., 2014; He et al., 2017; 26 Ge et al., 2017). Modelling studies also confirm the phenomena (Jose et al., 2016; Law et al., 2012). 27 To the best of authors' knowledge the effect low C:N on N₂O emissions in full scale WWTPs has not 28 been studied. Moreover, there is little evidence of extensive analytical studies in the literature 29 regarding GHGs emissions from full scale plants. Therefore, quantifying the N₂O production and 30 determining an effective mitigation approach to employ in existing full scale biological processes is 31 needed.

Uncertainties and potential sources of error of the monitoring equipment (e.g. noise factors) and variability in the sampling chamber and technique can contribute to the lack of accurate and robust measurements of N₂O (Desloover et al., 2016) in full scale plants. The differences in the chamber configuration (Desloover et al., 2011; Ren et al., 2013; Rodrigues Caballero et al., 2015; Hwang et al. 2016), chamber area and material (Abooobakar et al., 2013; Sun et al., 2015) and parameters monitored in the chamber (Pan et al., 2016; Rodriguez-Caballero et al., 2014), contribute to the complexity and to large variations in measurements of the key indicators of plant performance and emissions (Cavazzuti, M. 2013). The full understanding of the uncertainties in GHG emissions and
the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
2017 and Daelman et al., 2015).

42 This study addresses this gap of knowledge by analysing the results of N₂O emissions in a full-scale 43 WWTP by performing classical (liquid chemical/physical characterization) and new data analytics 44 techniques (online gaseous emissions and statistical analysis) to critically examine the relation 45 between the monitored variables and N₂O gaseous emissions. The study attempts both to calibrate the optimal sampling method and to systematically relate the gaseous emissions with the main liquid 46 47 variables routinely analysed. Moreover, for the first time the critical role of the C:N ratio is discussed 48 calculating the emission factors (EF) from the full-scale mass balances. Event-based sensitivity 49 analysis (Tavakoli et al. 2013 a, b) is applied to identify potential dependencies between the system 50 variables monitored online and the N2O emissions of the biological reactor.

51 **2. Material and methods**

52 2.1 Wastewater treatment process

53 The municipal wastewater treatment plant (WWTP) of Falconara Marittima (Italy) is fed by low C:N ratio wastewater. It has a design capacity of 80,000 PE and a design average influent flow of 30,000 54 55 m³/d. Infiltration from groundwater and marine intrusions cause under-loading influent conditions 56 during the dry weather. The real influent capacity (calculated on COD basis) is equal to 36,035±1,100 PE during the period of this study. After degritting, desanding and primary settling, the wastewater 57 58 is biologically treated with activated sludge process in two identical parallel lines applying the 59 conventional Modified Ludzack Ettinger scheme. The total volume of the biological compartments 60 is 13,700 m³. The aerated compartments are equipped by ceramic fine bubble diffusers; the air supply ranges between 1,870 and 9,210 m³/h. An automatic system controls the four blowers (Robuschi mod. 61

62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860 63 m³, with surface area of 507 m². The nitrification bioreaction volume is 4,900 m³, with surface area 64 of 560 m². This study analyses one of the two parallel lines of the activated sludge bioreactor. The 65 66 system is continuously monitored by on-line sensors (Dissolved Oxygen – DO-; Temperature – T-; 67 Mixed Liquor Suspended Solid-MLSS- and Oxidation Reduction Potential - ORP) and magnetic flow 68 meters (influent, effluent, recirculation and waste sludge). The average sludge retention time (SRT) 69 was 10 days and the sludge recycle ratio (Q_{sludge recycled}/Q_{influent}) was 0.5. The MLVSS (Mixed Liquor 70 Volatile Suspended Solids) concentration was 3,485±636 mg/L (ratio MLVSS/MLSS 0.61). The DO 71 in the nitrification reactor was 4.3±0.9 mgO₂/L and the pH was buffered at 8.1±0.2 due to under-72 loading characteristics of the influent. The monitoring campaign was lasted 52 days (September-73 November) with average temperature of 17.7±1.5 °C.

74 **2.2** Analytical methods and biomass activity tests

75 Mixed-liquor grab samples were collected twice per week from the aerobic and pre-anoxic reactors, 76 whereas 24h composite samples were taken twice per week from the influent and once per week from 77 the effluent. All the samples were analysed in terms of pH, chemical oxygen demand (COD), total 78 Kejdahl nitrogen (TKN), ammonia nitrogen (NH4-N), soluble COD (sCOD), nitrate nitrogen (NO3-79 N) and nitrite nitrogen (NO₂-N) according to standard methods (APHA, 2005). The soluble COD was 80 measured in the filtrate obtained after the filtration of the sample through Whatman 0.45 µm 81 membrane filters. NO₂–N, NO₃–N were measured by ion chromatography in samples that were first filtered through 0.45 µm Whatman membranes (Dionex DX120). 82

83 Influent NH₄-N was monitored in real-time (by AISE-Ammonium Probe- Hach Lange Ltd) for a 84 relevant week in the influent to the activated sludge reactor. Moreover, influent samples were 85 collected every 2 hours in a day to quantify the typical hourly of the C:N ratio. The mechanisms for N₂O production were not studied by additional dissolved N₂O in the liquid phase because this knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin et al., 2012). However, a significant gap of knowledge concerns the full scale WWTPs especially considering the real variable influent characteristics (i.e. C:N) and gaseous mass loads directly emitted in the atmosphere.

91 Moreover, to monitor the stability of the respiratory activity of the microbial community, nitrification 92 and denitrification kinetics were an analysed by batch tests. To determine the ammonia utilization 93 rate AUR, 1.5 L of mixed liquor was collected from the aerobic reactor and was placed in a flask 94 under continuous aeration (DO > 4 mg/L). After 30 min, the biomass was spiked with ammonium 95 chloride at 40 mgNH₄-N/L initial concentration and the profiles of ammonium, nitrite and nitrate with 96 time were measured. All batch respirometry tests were conducted at room temperature (25 ± 2 °C) 97 and the pH was maintained at 7.4 ± 0.3 . The reported activities were normalized to the reference 98 temperature of 20 °C using the Arrhenius temperature correction equation and to the volatile 99 suspended solids (VSS) of the mixture. The nitrate utilization rate (NUR) tests were conducted with 100 1.5 L of activated sludge placed in a flask, under mild agitation. Subsequently, the biomass was spiked 101 with fixed nitrate concentration and with an external carbon source (acetic acid) and the nitrate 102 profiles were measured.

103 2.3 N₂O sampling and monitoring strategies

 N_2O emissions were continuously monitored with MIR9000CLD analyser (Environment Italia S.p.A.). The analyser measures N_2O , CO_2 and CH_4 through infrared spectroscopy (IRS) and the NO and NO_2 by chemiluminescence (Eusebi et al., 2016). Weekly calibration using standard gas cylinders was performed. The gas flow was pumped, transported by a heating tube at 120°C, filtered for dust removal and cooled at 4°C. More than one type of sampling chamber was tested to optimize the N_2O measurement procedure. In particular, two different types of gas chambers were used: fixed and floating. The main characteristics of the different gas chambers are shown in Table 1 and in Table 2 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow gas suction. The outlet pipe was the same for the different gas hoods (diameter of 10 cm and length of 1 m).

114

Table 1

115

Table 2

116 The sampling point to measure the N₂O emissions was chosen in the aerobic reactor as basin where 117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling point was 118 placed at the head of the reactor in the aerobic basin for 46 days and at the end for 7 days. The fixed 119 chambers were attached to the external wall by steel clamps and the floating chamber was fastened by ropes. The minimum monitoring duration for each gas hood was 7 days. High-density polyethylene 120 121 (HDPE) was used for the fixed gas hoods and polypropylene (PP) was used for the floating hoods. 122 The base of the fixed gas chambers was submersed (about 5 cm) to prevent lateral movement and 123 introduction of external air. Cylindrical fixed chambers were used with volumes equal to 80 L, 141 124 L and 226 L for the small, medium and large chamber. The floating gas chambers had a truncated 125 cone structure and volumes equal to 64 L (small), 166 L (medium) and 233 L (big) (Table 2).

126 At the end of the continuous monitoring phase, the emission factors were calculated as emitted N_2O 127 mass load from the aerobic reactor and they were related to the total influent nitrogen load.

128 **2.4 N2O emissions and gas chamber headspace: optimization of the sampling methodology**

Initial calibration tests (N° 36) were performed to optimize the sampling method. The main objective of the tests was to identify the best sampling methodology in terms of different types/dimensions of the applied chambers shown in Table 1 and Table 2. The tests were carried out during the first 15 days of dry weather. The sampling point was set at the head of the reactor. The tests were performed in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the tube of the gases analyser was quickly moved from one chamber to another (small, medium or large, both floating and fixed) and another test started. Before and after this few-minutes operating time, the stable conditions in the liquid phase were monitored and verified by the analysis of the main dissolved nitrogen and organic forms (NH₄-N, NO₃-N, NO₂-N, CODs). Therefore, the liquid conditions during the different short tests were comparable.

140 The N₂O data was linked with two variables: 1) the air supply and 2) the Sampler Ratio (SR).

141 This second coefficient was set and calculated for each test according to equation 1:

$$S \left(\frac{L}{m^3/h}\right) = \frac{V\iota}{A} \frac{H}{S}$$
 Equation 1

Where:

Volume Head Space (L) changes for each type of sampling chamber Air Supply $(m^3/h) =$ Inlet air flow to the aerobic reactor

For the same type of chamber, the SR values dynamically varied because of the change of the air supply in the main biological reactor. Thus, the optimal dimension of the sampling chamber compared to the inlet airflow was studied to avoid over-estimation of N₂O concentrations and/or overpressure phenomena.

146 **2.5 Event based data processing and sensitivity analysis**

An un-biased event-based sensitivity analysis was carried out in order to investigate dependencies between the N_2O emissions and the parameters that were routinely monitored in biological process (APHA, 2005; Tavakoli et al., 2013) along the periods monitored by the different gas chambers (EventiC; Danishvar et al, 2017). This technique enables the identification of patterns (strength of 151 relations) between the monitored variables (DO, blowers flow rate, MLSS, Qin) and gas fluxes (N₂O). Tangible and reasonable changes to the signals of the sensors in the system were translated into 152 153 events. In order to track events in a sensor signal the standard deviation of the signal fluctuation for all the time period is calculated. Several thresholds were tested (ranging from 5% - 35% of the 154 155 standard deviations of the variables) and presented the results that maximize the Event-based 156 sensitivity analysis coefficients. The thresholds consider as events the following changes in the variables: i) DO >0.2 mg/l (>15% of the standard deviation); ii) $N_2O > 0.1$ kg/h (>5% of the standard 157 158 deviation); iii) MLSS> 20 (>5% of the standard deviation); iv) Qin>20 m3/h (>5% of the standard 159 deviation); v) Blowers flow-rate > 110 m^3/h (>5% of the standard deviation). The event-base 160 sensitivity analysis enables the identification of cause-effect relationship between the causes of state 161 change in the system and the system response and therefore provides insight on which input variables (i.e. ammonia, DO) impact a specific output (i.e. N₂O). The un-biased sensitivity analysis detects and 162 163 defines the most relevant variables (many to one and many to many relationships) by implementing 164 the algorithm in the data from the different groups the influential variables in a look-up table. A 165 detailed description of the method can be found in the study of Danishvar et al. (2017).

166 **3. Results and discussion**

167 **3.1 Wastewater characteristics and plant performances**

The main influent and effluent characteristics are shown in Table 3. The influent flow-rate is 14,210 \pm 4,652 m³/d. The TN concentration in the influent is 28.6 \pm 10.5 mg/L, mainly as ammonium nitrogen (25.1 \pm 3.2 mg/L). The average effluent mass loads were 2.87 \pm 2.00 and 196.50 \pm 86.05 kgN/d of NH₄-N and TN. The TN and COD removal efficiencies were 40 \pm 20% and 59 \pm 13% respectively (Table 3).

173

Table 3

The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that
limits the denitrification process. On the other hand, complete nitrification was achieved.
Additionally, the AUR was 0.111±0.024 kgNH₄-N/kgMLVSS/d and the average denitrification rate
was 0.057±0.028 kgNO_x-N/kgMLVSS/d.

- 178
- 179

180 **3.2** N₂O emissions and gas chamber headspace: optimization of the sampling methodology

181 The N₂O concentrations obtained during the calibration tests for the optimization of the sampling 182 methodology are shown in Figure 1 for different air flows both for the fixed and for the floating gas 183 chambers (Figure 1 -a Fixed and -b Floating). A linear increase of the N₂O concentrations at higher 184 influent air flux has been found in other works (Ribeiro et al., 2017). In the current work this behaviour has been observed only for the floating chambers (Figure 1-b). Scattered distribution was 185 186 found for the fixed chambers (Figure 1-a). No evident relation was found between the increment of the N₂O concentrations and the dimension (Small-Medium-Large) of the chamber used for sampling 187 188 both for floating and for fixed chambers. Differently, the Sampler Ratio (SR-L/m³/h) was calculated 189 according to Equation 1. The results showed that the N2O concentrations are linked with the SR value 190 (Figure 1-c and –d) especially for the fixed chambers (Figure 1-c).

191

Figure 1-a-b-c-d

During the tests with high aeration flow-rate (SR <0.05 L/m³/h) in the fixed gas hoods, incremental N₂O emissions peak were recorded. This is potentially attributed to compression phenomena in the head space of the fixed chambers and abrupt changes of the liquid level in the reactor. Therefore, during the continuous monitoring, N₂O values with SR lower than 0.05 L/m³/h are not considered for the assessment of the N₂O emission factor. The floating chambers performed better and were not influenced by the SR variations (Figure 1-d); the same floating avoids potential over pressurephenomena in the head-space.

199 **3.3** N₂O emission profiles during continuous monitoring

The N₂O emissions rate at the head of the reactor varied from 66.82 to 4,174.37 mg/h with average load equal to 31.99 ± 24.33 gN₂O/d during the monitoring period (Figure 2). The N2O emission profile was not affected by temperature variations (18.2±0.8 °C in wastewater).

203

Figure 2

204 The variability of the daily N₂O emissions rate can be mainly attributed to the actually variable 205 influent carbon to nitrogen ratios (COD:TN: 1.3 to 5.2) that was always low. The average N₂O emission rate was equal to 0.856±0.905 gN₂O/h when the COD:TN was about 3.2 (1st-20th days), 206 207 while it increased to 1.850±0.972 gN₂O/h at lower COD:TN ratio:1.9. The latter is in accordance to 208 the results reported in literature (Quan et al., 2012; Mannina et al., 2017). Similar limiting C:N ratios 209 resulted in N₂O increase in previous studies applying different processes (aerobic granular sludge 210 sequencing batch reactors; integrated fixed film activated sludge membrane bioreactor, respectively) 211 at pilot scale. Mannina et al. (2018) demonstrated that limiting C:N ratio of 2 gCOD/gTN resulted in 212 5 times increase of N₂O emissions from 0.12% to 5% (expressed as emitted N₂O compared with the 213 influent TN). Furthermore, in an Anammox process, C:N ratios of 3.0-0.65 were responsible for the 214 increment of N₂O production (Zhang et al., 2015).

Daelman et al. (Daelman et al., 2015) reported that the N₂O emissions during the continuous monitoring were very low (0.174 \pm 0.90 gN₂O/h) at the end of the reactor. The geometry of the reactor was considered even in this study. The aerated activated sludge basin (length 35 and width 15 m) can be assimilated to n.3 completely stirred tank reactors that can lead to secondary behaviours observed in plug-flow configuration (Ming, 2016). Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O emissions in the nitrification reactor are shown in Figure 3. N₂O emissions' dynamics are characterized by significant daily variability in accordance with the results of previous studies (Aboobakar et al, 2013; Daelman et al., 2013; Rodriguez-Caballero et al., 2014).

225

Figure 3

The minimum daily N_2O fluxes are observed between 03:00 am and 10:00 am, while a subsequent peak occurs between 18:00 pm and 20:00 pm. No specific correlation between the N_2O emissions and the liquid influent flowrate was observed (Figure 3). Similar flow (about 500 m3/h) was recorded after hours 11:00 am without clear relation between the hydraulic overloading conditions and the peaks of N_2O emissions.

Therefore, further analysis was undertaken by studying the hourly influent ammonia and COD concentrations. A typical example of daily variability is shown in Figure 4. Hourly variations between 17.5 and 19.4 mg/L for ammonia nitrogen and between 61.6 and 20.1 mg/L for COD were observed with peaks of COD:TN during 12:00-16:00, where the N₂O distribution showed almost minimum N₂O emissions. The latter reveals that the variation of the COD:TN ratio strongly affects the N₂O emissions during the day.

237

Figure 4

The cumulative emitted N₂O mass loads (LN₂O) and the influent TN (LTN) values are shown in Figure 5. The emission factors were reported for the periods characterized by COD:N lower than 4 (1st-20th days), COD:N higher than 4 (21st-45th days) and when the sampling was carried out at the end of the reactor (Figure 5). The average N₂O emission factor is 0.001 and 0.005 % of TN in the influent, respectively for the first (1st-20th days) and for the second period (21st-45th days). Lower emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher COD:TN ratio ($0.0505 \text{ gN}_2\text{O/kgTN}$, R2=0.8853).

246

Figure 5

The biomass-based EF was equal to 2.11±0.98 and 5.01±2.09 mgN₂O/kgMLVSS/d for the first and second period with different COD:N ratios. The EF of current study is lower than the EF values reported in other studies that monitor on-line gaseous emissions at full-scale. Yan et al., 2014, found emission factors ranging from 0.04 to 0.1% of the TN influent for an Anaerobic-Anoxic-Oxic system. Similarly, Rodriguez-Caballero et al., 2014, reported N₂O emissions equal to 0.116% of the influent TN in a plug-flow reactor.

253 **3.2** Statistical and sensitivity analysis

An-event based sensitivity analysis was carried out in order to identify the relationship between the N2O emissions and the monitored parameters. The results are given Table 4. The gaseous emissions from the nitrification reactor have been examined with reference to the variables monitored online when the floating hood was applied with SR higher than $0.05 \text{ L/m}^3/\text{h}$.

258

Table 4

A weak relationship was identified between the N₂O emissions, the air flow-rate and the DO concentration in the reactor. In line with the results of this study, Rodriguez-Caballero et al. (2014) found that the N₂O dynamics were not significantly affected by DO variations (within the range of 1.5 - 2 mg/L) when the nitrification efficiency was constant. Moderate relationship was identified between the influent flow-rate and the N₂O fluxes; the latter is supported by the daily behaviour of N₂O emissions (Figure 3). Additionally, the MLSS concentration was relatively steady during the monitoring campaign and therefore, it is not directly linked with the behaviour of N₂O emissions.

According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes. 266 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the aeration flow-rate and with the 267 268 residual DO for two days of monitoring. Low concentrations of residual dissolved oxygen was not a 269 limiting factor (Figure 6). The latter supports the obtained results during the experimental campaign considering the low impact of the DO concentrations (4.6±0.7 mg DO /l during 1st-20th days and 270 4.1±1.6 mgDO/l during 21st-45th days) and the constant nitrification rates (kn of 0.116±0.016 kgNH₄-271 N/kgMLVSS/d during 1st-20th days and kn of 0.118±0.031 kgNH4-N/kgMLVSS/d during 21st-45th 272 273 days 4.1±1.6 mg/l).

274

Figure 6

The dynamics of the variables are different. However, daily peaks of N_2O emissions occurred when the aeration flow-rate was higher than 3,500 m³/h. Therefore, although higher N2O emissions were related to the low C:N ratios that limited heterotrophic denitrification, higher aeration flow rates increase N2O stripping phenomena and related N2O emissions.

279 4 Conclusions

A full scale activated sludge plant treating low carbon:nitrogen ratio municipal wastewater wascontinuously analysed for 52 days to study N2O emissions.

This long-term continuous critical monitoring led to the following conclusions related to: a) the sampling methods; b) the full scale observed effects of influent and operating variables. In particular:

a) the optimization of the sampling methods was carried out by testing different types of chambers.

- 285 Uncertainties of the N₂O concentrations were observed when the Sampling Ratio between the
- chamber volume and the air supply was lower than 0.05 L/m³/h. Finally, the floating chambers were
- 287 more reliable compared to the fixed sampling systems.

288 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio 289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led 290 to 5-times higher N_2O emissions. Major differences were observed around the COD:TN = 4: 291 0.856 ± 0.905 gN₂O/h when COD:TN > 4 versus 1.850 ± 0.972 gN₂O/h when COD:TN < 4. The 292 statistical elaboration of N₂O emissions further supported those conclusions: hourly N2O peak 293 emissions are higher when the COD:N ratio is lower. The sensitivity analysis showed that the N₂O 294 dynamics are not significantly affected by DO variations (within the range of 1.5 - 2 mg/L). However, 295 daily peaks of N₂O emissions are observed at higher aeration flow-rate that result in higher stripping 296 of the produced and dissolved N₂O.

Finally, when COD:N ratio was higher than 4, the cumulative emitted N_2O mass loads (EF) varied from 0.051 gN₂O/kgTN_{influent} to 0.0089 gN2O/kgTN_{influent}. Therefore, the equalization of the influent can be advantageous even in terms of N_2O emissions.

300 Acknowledgements

This study was supported by the Horizon 2020 research and innovation programme, within the SMART-Plant Innovation Action (grant agreement No 690323). The authors would like to acknowledge the Royal Society for the funding of the current research: Ad-Bio, Advanced Fellowship-2015/R2. The authors gratefully acknowledge the local water utility Multiservizi S.p.A. for its availability and practical support during the tests in the WWTP of Falconara Marittima (Ancona, Italy).

307

308

310 References

311	Aboobakar, A. Cartmell, E. Stephenson, T. Jones, M. Vale, P. Dotro, G. (2013) Nitrous oxide
312	emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment
313	plant, Water Research 47 524–534. doi:10.1016/j.watres.2012.10.004.

- APHA, 2005, Standard methods for the examination of water and wastewater, Am. Public Health
 Assoc. APHA Wash. DC USA. (2005).
 www.just.edu.jo/CoursesAndLabs/ENVIRONMENTAL%20ANALYTICAL%20CHEMISTRY
 CHEM734/chem%20734.doc. Last access September 2017.
- Bollon, J. Filali, A. Fayolle, Y. Guerin, S. Rocher, V. Gillot, S. (2016) N2O emissions from full-scale
 nitrifying biofilters, Water Research 102 41–51. DOI:10.1016/j.watres.2016.05.091
- Daelman, M.R. van Voorthuizen, E.M. van Dongen, U.G. Volcke, E.I. van Loosdrecht, M.C. (2015)
 Seasonal and diurnal variability of N 2 O emissions from a full-scale municipal wastewater
 treatment plant, Science Total Environment 536 1–11.
 https://doi.org/10.1016/j.scitotenv.2015.06.122
- Daelman, M.R.J. van Voorthuizen, E.M. Van Dongen, L. Volcke, E.I.P. Van Loosdrecht, M.C.M.
 (2013) Methane and nitrous oxide emissions from municipal wastewater treatment–results from
 a long-term study, Water Science Technology 67 2350–2355. DOI:10.2166/wst.2013.109
- 327 Danishvar, M. Mousavi, A. Broomhead, P. (2017) Modelling the Eco-System of Causality: The Real 328 Time Unaware Event-Data Clustering (EventiC), accepted to IEEE Trans Systems, Man and
 329 Cybernetics.
- 330 Desloover, J. De Clippeleir, H. Boeckx, P. Du Laing, G. Colsen, J. Verstraete, W. Vlaeminck, S.E.
 331 (2011) Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O

- 332 emissions, Water Research 45 2811–2821. doi:10.1016/j.watres.2011.02.028.
 333 https://doi.org/10.1016/j.watres.2011.02.028
- Eusebi, A.L., Cingolani, D., Spinelli, M, Passserini, G., Carletti, S., Battistoni, P. (2016) Dinitrogen
 oxide (N2O) emission in the treatment of urban wastewater via nitrite: Influence of liquid kinetic
 rates. Water Science and Technology, 74 (12), pp. 2784-2794 DOI: 10.2166/wst.2016.445
- Guanghuan Ge, Jianqiang Zhao, Xiaoling Li, Xiaoqian Ding, Aixia Chen, Ying Chen, Bo Hu, and
 Sha Wang, (2017) Effects of influent COD/N ratios on nitrous oxide emission in a sequencing
- biofilm batch reactor for simultaneous nitrogen and phosphorus removal. Scientific Report 2017;
- 340 7: 7417 doi: 10.1038/s41598-017-06943-0
- He, Q., Zhu, Y., Fan, L., Ai, H., Huangfu, X., Chen, M. (2017) Effects of C/N ratio on nitrous oxide
 production from nitrification in a laboratory-scale biological aerated filter reactor. Water Science
 and Technology, 75, (6), pp1270-1280 DOI: 10.2166/wst.2016.447
- Hwang, K.-L. Bang, C.-H. Zoh, K.-D. (2016) Characteristics of methane and nitrous oxide emissions
 from the wastewater treatment plant, Bioresource Technology 214 881–884.
 doi:10.1016/j.biortech.2016.05.047. DOI:10.1016/j.biortech.2016.05.047
- 347 IPCC, The physical science basis. Contribution of working group I to the fifth assessment report of
 348 the intergovernmental panel on climate change, USA: Cambridge University Press, 2013.
- 349 Kampschreur, M.J. van der Star, W.R. Wielders H.A., Mulder, J.W. Jetten, M.S. van Loosdrecht,
- 350 M.C. (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water
- 351 treatment, Water Research 42 812–826. https://doi.org/10.1016/j.watres.2007.08.022

352	Law, Ye, Pan, Yuan, (2012), Law Nitrous oxide emissions from wastewater treatment processes.
353	Philosophical Transactions of the Royal Society B 2012 May 5; 367(1593): 1265-1277.
354	DOI:10.1098/rstb.2011.0317

- Mannina, Capodici, Cosenza, Di Trapani M.C.van Loosdrechtd (2017) Nitrous oxide emission in a
 University of Cape Town membrane bioreactor: The effect of carbon to nitrogen ratio. Journal of
 Cleaner Production. Volume 149, Pages 180-190. doi.org/10.1016/j.jclepro.2017.02.089
- Mannina, Ekama, Capodici, Cosenza, Di Trapani, Ødegaard, M.C.van Loosdrechtd, (2018) Influence
 of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge
 Membrane BioReactor plant, Journal of Cleaner Production Volume 176, Pages 1078-1090
 doi.org/10.1016/j.jclepro.2017.11.222
- Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D. (2018) Nitrous oxide from integrated fixedfilm activated sludge membrane bioreactor: Assessing the influence of operational variables.
 Bioresource Technology Volume 247, January 2018, Pages 1221-1227
 doi.org/10.1016/j.biortech.2017.09.083
- 366 Massara, T.M. Malamis, S. Guisasola, A. Baeza, J.A. Noutsopoulos, C. Katsou, E. (2017) A review on nitrous oxide (N 2 O) emissions during biological nutrient removal from municipal wastewater 367 368 sludge reject water. Science Total Environment 596 106-123. DOI: and 10.1016/j.scitotenv.2017.03.191 369
- 370 Ming, Glasser, Hildebrandt, Glasser, Metzer Fundamental Reactor Type, First published: 23
 371 September 2016 Wiley Online Library
- Mingming Gao, Sen Yang, Mingyu Wang, Xin-HuaWang, (2016), Nitrous oxide emissions from an
 aerobic granular sludge system treating low-strength ammonium wastewater. Journal of

- Bioscience and Bioengineering Volume 122, 5, 601-605
 https://doi.org/10.1016/j.jbiosc.2016.04.004
- 376 Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the spatial
- 377 variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment
- 378 plant, Scientific Report 6. doi:10.1038/srep20792.
- Quan, X. Zhang, M. Lawlor, P.G. Yang, Z. Zhan, X. (2012) Nitrous oxide emission and nutrient
 removal in aerobic granular sludge sequencing batch reactors, Water Research 46 4981–4990.
 https://doi.org/10.1016/j.watres.2012.06.031
- 382 Ren, Y. g. Wang, J. h. Li, H. f. Zhang, J. Qi, P. y. Hu, Z. (2013) Nitrous oxide and methane emissions
- from different treatment processes in full-scale municipal wastewater treatment plants,
 Environmental Technology 34 2917–2927. doi:10.1080/09593330.2012.696717.
- 385 Ribeiro P., Renato F. Bueno, Rodrigo P. Piveli, C. Kligerman, Roque Débora, de Mello, William Z.
- 386 Oliveira Jaime L. M., (2017), The response of nitrous oxide emissions to different operating
- 387 conditions in activated sludge wastewater treatment plants in Southeastern Brazil. Water Science
- 388 Technology, 76, 3. DOI: 10.2166/wst.2017.399
- Rodriguez-Caballero, A. Aymerich, I. Marques, R. Poch, M. Pijuan, M. (2015) Minimizing N2O
 emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor, Water
 Research 71 1–10. doi:10.1016/j.watres.2014.12.032.
- 392 Rodriguez-Caballero, A. Aymerich, I. Poch, M. Pijuan, M. (2014) Evaluation of process conditions
- 393 triggering emissions of green-house gases from a biological wastewater treatment system, Science
- 394 Total Environment 493 384–391. doi:10.1016/j.scitotenv.2014.06.015.

- Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction strategy of nitrous
 oxide during wastewater treatment by different processes, Environmental Science Pollution
 Research 22 4222–4229. doi:10.1007/s11356-014-3654-5.
- 398 Tavakoli, S. Mousavi, A. Broomhead, P. (2013) Event tracking for real-time unaware sensitivity
- analysis (EventTracker), IEEE Transaction Knowledge Data Engineering 25 348–359. DOI:
 10.1109/TKDE.2011.240
- 401 Tavakoli, S. Mousavi, A. Poslad, S. (2013) Input variable selection in time-critical knowledge
 402 integration applications: A review, analysis, and recommendation paper, Advanced Engineering
 403 Information 27 519–536. https://doi.org/10.1016/j.aei.2013.06.002
- Wunderlin, P. Mohn, J. Joss, A. Emmenegger, L. Siegrist H. (2012), Mechanisms of N2O production
 in biological wastewater treatment under nitrifying and denitrifying conditions Water Research,
 46 (4) pp. 1027-1037 doi.org/10.1016/j.watres.2011.11.080
- Yan, X. Li, L. Liu, J. (2014) Characteristics of greenhouse gas emission in three full-scale wastewater
 treatment processes, Journal Environmental Science 26 256–263. https://doi.org/10.1016/S10010742(13)60429-5
- Zhang Y, Ji G, Wang R. (2016) Drivers of nitrous oxide accumulation in denitrification biofilters
 with low carbon:nitrogen ratios. Water Research 2016 Dec 1;106:79-85. DOI:
 10.1016/j.watres.2016.09.046
- 413 Zheng, M. Tian, Y. Liu, T. Ma, T. Li, L. Li, C. Ahmad, M. Chen, Q. Ni, J. (2015) Minimization of
- 414 nitrous oxide emission in a pilot-scale oxidation ditch: Generation, spatial variation and microbial
- 415 interpretation, Bioresource Technology 179 510–517. doi.org/10.1016/j.biortech.2014.12.027

417	List of Tables
418	Table 1: Characteristics of the sampling gas chambers
419	Table 2. 3D Images, shapes and volumes of the sampling gas chambers
420	Table 3: Daily influent and effluent characteristics and kinetic rates (Average and Standard
421	Deviation)
422	Table 4: Event-based sensitivity analysis algorithm grouping the system parameters in which events
423	have systematically coincided (dark grey: high impact, light grey: moderate impact)
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	Table 1: Characteristics of the sampling gas chambers
	Type Shape Size

Туре	Shape	Size					
			Surface (m ²)	Min	Max	Average	Std. Dev
Fixed	Cylinder	Small	0.157	0.086	0.100	0.095	0.005
		Medium	0.174	0.130	0.238	0.184	0.045
		Large	0.246	0.210	0.289	0.251	0.035

	Floating	Truncated Cone	Small	0.125	0.101	0.185	0.139	0.032
			Medium	0.325	0.090	0.130	0.106	0.011
			Large	0.457	0.097	0.105	0.102	0.003
438								
439								
440								
441								
442								
443								
444								
445								
446								
447								
448								
449								
450								
451								

Table 2: 3D Images, shapes and volumes of the sampling gas chambers

Real kd	%	0.017	(± 0.005)		·		ı
kd _{max}	%	0.057	(± 0.028)		•		ı
kn	kgNH4- N/kgMLVSS/d	0.111	(± 0.024)		•		·
NO ₃ -N	mg/L	6.0	(± 0.8)	12.0	(± 4.6)		I
NO ₂ -N	mg/L	0.3	(± 0.2)	0.0	(± 0.0)		ı
NH4-N	mg/L		(7·C±) 1·C7	0.2	(± 0.2)	66	(主1)
TKN	mg/L	28.6	(± 10.5)	14.5	(± 5.3)	40	(±20)
CODs	mg/L	41.6	(± 20.5)		I		I
COD	mg/L	88.7	(± 33.5)	35.1	(± 5.5)	59	(主13)
TSS	mg/L	36.8	(± 15.0)	5.1	(±2.4)		ı
Ηd		8.1	(± 0.2)	7.9	(± 0.1)		ı
		Laflurant	mann	L 401.004	EIIIU	Efficiency	(%)

Table 3: Daily influent and effluent characteristics and kinetic rates (Average and Standard Deviation)

	N_2O
	(ppm)
Qin (m ³ /h)	0.52
DO (mg/L)	0.37
Blowers flow-rate (m ³ /h)	0.44
MLSS	0.39

Table 4: Event-based sensitivity analysis algorithm grouping the system parameters in which events have systematically coincided (dark grey: high impact, light grey: moderate impact).

List of Figures

Figure 1: N₂O emissions during the tests for the calibration of the sampling chambers

Figure 2: N₂O emissions in nitrification reactor

Figure 3: Boxplots of the daily variability of N2O emissions and Influent Flow (grey boxes: interquartile range, whiskers: lines extending from the 5th to 95th percentile, median: line across the box; grey triangles: average liquid influent flow rate)

Figure 4: Daily variability of NH₄-N and COD concentrations in the influent liquid flow

Figure 5: Cumulative mass load of N₂O emitted and TN influent (Averages and Standard Deviations).

Figure 6: Profile of the N₂O emissions, air flow-rate and DO data for the nitrification reactor

Figure 1: N₂O emissions during the tests for the calibration of the sampling chambers

Figure 2: N₂O emissions in nitrification reactor

Figure 3: Boxplots of the daily variability of N₂O emissions and Influent Flow (grey boxes: interquartile range, whiskers: lines extending from the 5th to 95th percentile, median: line across the box; grey triangles: average liquid influent flow rate)

Figure 4: Typical daily variability of COD/NH₄-N and NH₄:N concentrations in the influent liquid flow

Figure 5: Cumulative mass load of N₂O emitted and TN influent (Averages and Standard Deviations).

Figure 6: Profile of the N₂O emissions, air flow-rate and DO data for the nitrification reactor