1 Critical analyses of nitrous oxide emissions in a full scale activated sludge system
2 treating low carbon-to-nitrogen ratio wastewater
3 M. Spinelli¹, A.L. Eusebi^{1*}, V. Vasilaki², E. Katsou², N. Frison³, D.Cin 2

2

Critical analyses of nitrous oxide emissions in a full scale activated sludge system

treating low carbon-to-nitrogen ratio wastewater

2

M. Spinelli¹, A.L. Eusebi^{1*}, V. Vasilaki², E. Katsou², N. Frison³, Critical analyses of nitrous oxide emissions in a full scale activated sludge system
treating low carbon-to-nitrogen ratio wastewater
M. Spinelli¹, A.L. Eusebi^{1*}, V. Vasilaki², E. Katsou², N. Frison³, D.Cingolani 2 Department of Diotechnology, University of Verona, Strada Le Grazie 15, Verona, IT and Sciences of Civil Engineering; Institute of Engineering; Institute of Engineering; Institute of Engineering; Institute of Environment

- 3 M. Spinelli¹, A.L. Eusebi^{1*}, V. Vasilaki², E. Katsou², N. Frison³, D.Cingolani¹, F. Fatone¹
- 4

5¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce

 2 Department of Civil Engineering and Environmental Engineering; Institute of Environment, Health 8 and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.

³ Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, IT

Critical analyses of nitrous oxide emissions in a full-scale activated sludge system
 Critical analysis of the modified CET
 M. Spinelli¹, A.L. Eusebi¹², V. Vasilaki², E. Katsou², N. Frison³, D.Cingolani¹, Critical analyses of nitrous oxide emissions in a full scale activated sludge system
 **M. Spinelli¹, A.L. Eusebi¹⁰, V. Vasilaki², E. Katsou², N. Frison³, D.Cingolani¹, F. Fatone¹

¹ Dipartimento SIMAU, Fa** Critical analyses of nitrous oxide emissions in a full scale activated sludge system

treating low carbon-to-nitrogen ratio wastewater

M. Spinclil¹, A.L. Euschi¹, V. Vasilaki², E. Katsou², N. Frison³, D.Cingolan **Critical analyses of nitrous oxide emissions in a full scale activated sludge system**
 Critical analysis) M. Spinelli¹, V. V. Vasilaki², **E.** Katsou², N. Frison³, D. Cingolani¹, **F.** Fatone¹

¹ Dipartim **Critical analyses of nitrous oxide emissions in a full scale activated sludge system**
 Critical parameters of the plant and long-term online monitorial parameters
 Critical Parameters of the plant and long-term online Conduct Conduct Conduct Conduct Conduct Considered Market Conductions (Fig. 2014)
 **Consider the analysis considered the effect of off-gas samely P. S. Consider The Section Bureau Binache, 12, 60100 Ancona, IT. a.l.cuscb M. Spinelli¹, A.L. Eusebi¹⁹, V. Vasilaki², E. Katsou², N. Frison³, D. Cingolani¹, F. Fatone¹
¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce

Bianche, 12, 6010 M. Spinclli¹, A.L. Euschi¹^{*}, V. Vasilaki², E. Katsou², N. Frison³, D. Cingolani¹, F. Fatone¹

¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecee Bianche, 12, 60** ¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60100 Ancona, IT. a.l.eusebi@univpm.it

² Department of Civil Engineering and Environmental Engineering; Instit ¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce

Bianche, 12, 60100 Ancona, IT. a.l.eusebi(@univpm.it

² Department of Civil Engineering and Environmental Engineering; Insti ¹ Dipartimento SIMAU, Facoltà di Ingegneria, Università Politecnica delle Marche, Via Brecce

Bianche, 12, 60100 Ancona, IT. a.l.euscbi@univpm.it

² Department of Civil Engineering and Environmental Engineering; Instit Furgarmento SIMARC, reacous our miggeneral, conversau Fondeemica dene Marche, Via Brecce
Bianche, 12, 60100 Ancona, IT. a.l.cuschiggunivpm.it

³ Department of Civil Engineering and Environmental Engineering; Institute of Bianche, 12, 00100 Aneona, 11. a.i.euseongumvpm.it

² Department of Civil Engineering and Environmental Engineering; Institute of Environment, Health

2 Department of Givil Engineering and Environmental Engineering; Ins ² Department of Civil Engineering and Environmental Engineering; Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.
³ Department of Biotcehnolog **Example Constraines** and Societies, Brunel University London, Uxbridge Canpus, Middlesex, UB8 3PH, Uxbridge, UK.
³ Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, IT
Abstract: A critica ² and stripped more of the more of the more of the controls, the controls, the controls, the controls, the controls, the controls of the more nitrow carbon Exparement or Biotecnhology, University or Verona, Strada Le Grazie 13, Verona, 11

Abstract: A critical analysis of nitrous oxide emissions in a full-scale modified Ludzack Eitinger

plant treating municipal wastevater w

Gas sampling assessment, Emission Factors

10

- 11
- 12
- 13
- 14

15 1. Introduction
16 Biological processes are significant sources of greenhouse gases (GH
17 (CO₂) methane (CH₄) and dinitrogen oxide (N₂O) in wastewater 15 **1. Introduction**
16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide
17 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
18 (Ka 15 **1. Introduction**

16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide

17 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)

18 15 **1. Introduction**
16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide
17 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
18 (Ka 15 **1. Introduction**

16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide

17 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)

18 20 **1. Introduction**
20 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide
20 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
20 (Ka 21 **1. Introduction**
21 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide
21 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
20 (Ka 22 **12 I. Introduction**
22 methanoceals are significant sources of greenhouse gases (GHGs), mainly earbon dioxide
22 (CO2), methane (CH4) and dimitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
22 (Kampschre 23 1. **Introduction**
24 16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide
24 (COs), methane (CHs) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)
23 (Kam 15 **1. Introduction**

26 Biological processes are significant sources of greenhouse gases (GHGs), mainly earbon dioxide

21 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)

21 16 Biological processes are significant sources of greenhouse gases (GHGs), mainly carbon dioxide

17 (CO₂), methane (CH₄) and dinitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)

18 (Kampschreur et al., 2 (CO₂), methane (CH₄) and dimitrogen oxide (N₂O) in wastewater treatment plants (WWTPs)

18 (Kampschreur et al., 2008). N₂O emissions are considered as the most potent (-300 more than CO₂)

contributor to global 18 (Kampschreur et al., 2008). N₂O emissions are considered as the most potent (~300 more than CO₂) contributor to global warming. Numerous studies to date have focussed on real-field N₂O monitoring and the understa contributor to global warming. Numerous studies to date have focussed on real-field N₂O monitoring

20 and the understanding of the causes on N₂O formation (IPPC, 2013). Several studies reveal that

21 characteristics and the understanding of the causes on N₂O formation (IPPC, 2013). Several studies reveal that

characteristics of the wastewater, operating parameters, configuration, environmental conditions and

microbiological diver characteristies of the wastewater, operating parameters, configuration, environmental conditions and
22 microbiological diversity of the biological processes have significant impact on N₅O generation and
23 on operationa 31 needed. 33 on operational carbon footprint of WWTPs. Critical effect was found in relation to the carbon to

324 nitrogen ratio both in lab- or pilot- scale biofilm systems (He et al., 2017; Zhang et al, 2016), for

325 aerobic g mitrogen ratio both in lab- or pilot- scale biofilm systems (He et al., 2017; Zhang et al., 2016), for
aerobic granules and suspended activated sludge (Gao et al., 2016; Sun et al., 2014; He et al., 2017;

32 Ge et al., 2 aerobic granules and suspended activated sludge (Gao et al, 2016; Sun et al., 2014; He et al., 2017;

26 Ge et al., 2017). Modelling studies also confirm the phenomena (Jose et al., 2016; Law et al., 2012).

32 To the bes Gic et al., 2017). Modelling studies also confirm the phenomena (Jose et al., 2016; Law et al., 2012).

To the best of authors' knowledge the effect low C:N on N₂O emissions in full scale WWTPs has not

been studied. Mo

27 To the best of authors' knowledge the effect low C:N on N₂O emissions in full scale WWTPs has not
28 been studied. Moreover, there is little evidence of extensive analytical studies in the literature
29 regarding GHG been studied. Moreover, there is little evidence of extensive analytical studies in the literature
regarding GHGs emissions from full scale plants. Therefore, quantifying the N₂O production and
determining an effective regarding GHGs emissions from full scale plants. Therefore, quantifying the N₂O production and
30 determining an effective mitigation approach to employ in existing full scale biological processes is
31 needed.
33 Uncer

39 emissions (Cavazzuti, M. 2013). The full understanding of the uncertainties in GHG emissions and
40 the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
2017 and Daelman e 40 the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al., 41 2017 and Daelman et al., 2015).

42 This study addresses in full scale wastewater systems is a pertainties in GHG emissions and
40 the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
41 2017 and Daclman et 43 emissions (Cavazzuti, M. 2013). The full understanding of the uncertainties in GHG emissions and
40 the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
41 2017 and Daclm 44 techniques (online gaseous emissions and statistical analysis) to emissions and the biological processes in full scale was exercuater systems is a pertaining challenge (Massara et al., 2017 and Daelman et al., 2015).
4 44 ebtological processes in full scale wastewater systems is a pertaining challenge (Massara et al., 2017 and Daelman et al., 2015).
41 abtivations and the biological processes in full scale wastewater systems is a pertai 44 the optimal sampling method and to systematically relate the critical role of the systems is a pertaining challenge (Massara et al., 2017 and Dachman et al., 2015).
44 the biological processes in full scale wastewater emissions (Cavazzuti, M. 2013). The full understanding of the uncertainties in GHG emissions and
the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
2017 and Daclman et al., emissions (Cavazzut, M. 2013). Ine ruli understanding of the uncertainties in Orto emissions and
the biological processes in full scale wastewater systems is a pertaining challenge (Massara et al.,
2017 and Daelman et al. 49 and Dachman et al., 2015).

42 and Dachman et al., 2015).

42 This study addresses this gap of knowledge by analysing the results of N₂O emissions in a full-scale

43 WWTP by performing classical (liquid ehemical/phys 2017 and Daciman et at, 2015).

42 This study addresses this gap of knowledge by analysing the results of N₂O emissions in a full-scale

43 WWTP by performing classical (liquid chemical/physical characterization) and new This study addresses this gap of knowledge by analysing the results of

43 WWTP by performing classical (liquid chemical/physical characterize

44 techniques (online gaseous emissions and statistical analysis) to cri-

45 techniques (online gaseous emissions and statistical analysis) to critically examine the related between the monitored variables and N₂O gaseous emissions. The study attempts both to calibule the optimal sampling method between the monitored variables and N₂O gaseous emissions. The study attempts both to calibrate
the optimal sampling method and to systematically relate the gaseous emissions with the main liquid
variables routinely anal the optimal sampling method and to systematically relate the gaseous emissions with the main liquid
variables routinely analysed. Moreover, for the first time the critical role of the C:N ratio is discussed
calculating the

 $m³/d$. Infiltration from groundwater and marine intrusions cause under-loading influent conditions variables routinely analysed. Moreover, for the first time the critical role of the C:N ratio is discussed

alevantating the emission factors (EF) from the full-scale mass balances. Event-based sensitivity

analysis (Tava calculating the emission factors (EF) from the full-scale mass balances. Event-based sensitivity
analysis (Tavakoli et al. 2013 a, b) is applied to identify potential dependencies between the system
variables monitored onl analysis (Tavakoli et al. 2013 a, b) is applied to identify potential dependencies between the system
variables monitored online and the N₂O emissions of the biological reactor.
2. **Material and methods**
2. **2. Naterial** 50 variables monitored online and the N₂O emissions of the biological reactor.

51 **2. Material and methods**

52 **2.1 Wastewater treatment process**

53 The municipal wastewater treatment plant (WWTP) of Falconara Maritt 51 **2. Material and methods**

52 **2.1 Wastewater treatment process**

53 The municipal wastewater treatment plant (WWTP) of Falconara Marittima (Italy) is fed by low C:N

54 ratio wastewater. It has a design capacity of 80 is $13,700 \text{ m}^3$. The aerated compartments are equipped by ceramic fine bubble diffusers; the air supply 22 2.1 Wastewater treatment process

53 The municipal wastewater treatment plant (WWTP) of Falconara Marittima (Italy) is fed by low C:N

54 ratio wastewater. It has a design capacity of 80,000 PE and a design average inf ranges between 1,870 and 9,210 m^3/h . An automatic system controls the four blowers (Robuschi mod. 22 2.1 Wastewater treatment process

53 The municipal wastewater treatment plant (WWTP) of Falconara Marittima (Italy) is fed by low C:N

754 ratio wastewater. It has a design capacity of 80,000 PE and a design average in

RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
 m^3 , with surface ar 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
63 different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
64 m³, with su $m³$, with surface area of 507 m². The nitrification bioreaction volume is 4.900 m³, with surface area SS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (the ferent operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8, with surface area of 507 m². entration of the dissolved oxygen (DO) in the aerobic reactor (three

, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860

. The nitrification bioreaction volume is 4,900 m³, with surface area

one of t 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
63 different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
64 m³, with su RBS LP120) based on the concentration of the dissolved oxygen (DO) in t
different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bio
m³, with surface area of 507 m². The nitrification bioreaction volu 62 **RBS LP120)** based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860 m³, with surfac 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
m³, with surface 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860 m³, with surface 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
m³, with surface 62 RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification biorcaction volume is 8,860 m³, with surface RBS LP120) based on the concentration of the dissolved oxygen (DO) in the aerobic reactor (three
different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860
m³, with surface are 71 in the nitrification reactor was 4.3 ± 0.9 mgO₂/L and the pH was buffered at 8.1 ± 0.2 due to underd3 different operating settings: 0.4, 1.0 and 3.0 mg/L). The denitrification bioreaction volume is 8,860 m³, with surface area of 500 m². This study analyses one of the two parallel lines of the activated sludge biore 64 m³, with surface area of 507 m². The nitrification bioreaction volume is 4,900 m³, with surface area
65 of 560 m². This study analyses one of the two parallel lines of the activated sludge bioreactor. The
66 sy 67 300 m². I mis study analyses one of the two paralier lines of the aerivated sludge bioreactor. The
system is continuously monitored by on-line sensors (Dissolved Oxygen – DO-; Temperature – T-;
Mixed Liquor Suspended Mixed Liquor Suspended Solid-MLSS- and Oxidation Reduction Potential - ORP) and magnetic flow

meters (influent, effluent, recirculation and waste sludge). The average sludge retention time (SRT)

was 10 days and the slud 76 whereas (influent, effluent, recirculation and waste sludge). The average sludge retention time (SRT)

76 was 10 days and the sludge recycle ratio ($Q_{\text{chulge~meyclud}}/Q_{\text{mflame}}$) was 0.5. The MLVSS (Mixed Liquor

70 Volat 69 was 10 days and the sludge recycle ratio (Q_{alidge recycles}/Q_{alibon}) was 0.5. The MLVSS/MLSS 0.61). The DO

71 in the nitrification reactor was 4.3±0.9 mgO₂/L and the pH was buffered at 8.1±0.2 due to under-

12 i

Volatile Suspended Solids) concentration was 3,485±636 mg/L (ratio MLVSS/MLSS 0.61). The DO

in the nitrification reactor was 4.3±0.9 mgO₂/L and the pH was buffered at 8.1±0.2 due to under-

1020 loading characteristies 80 measured in the filtrate obtained after the filtration of the sample through Whatman 0.45 μ m 81 membrane filters. $NO₂–N$, $NO₃–N$ were measured by ion chromatography in samples that were first 2.2 Analytical methods and biomass activity tests

22 Analytical riquot grab samples were collected twice per week from the aerobic and pre-anoxic reactors,

23 Mixed-liquor grab samples were taken twice per week from the Mixed-liquor grab samples were collected twice per week from the aerobic and pre-anoxic reactors,
whereas 24h composite samples were taken twice per week from the influent and once per week from
the effluent. All the sampl Mixed-inquor gran samples were conceted twice per week from the acronic and pre-anoxie reactors,
The effluent. All the samples were taken twice per week from the influent and once per week from
the effluent. All the sample Whereas 24 composite samples were taken twice per week from the influent and once per week from
the effluent. All the samples were analysed in terms of pH, chemical oxygen demand (COD), total
Kejdahl nitrogen (TKN), ammon

 N_2 O production were not studied by additional dissolved N₂O in the liquid phase because this
87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin
88 et al., 2012). Ho N_2O production were not studied by additional dissolved N_2O in the liquid phase because this

87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin

88 et al., 2012). N₂O production were not studied by additional dissolved N₂O in the liquid phase because this

87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin

88 et al., 2012). Ho N₂O production were not studied by additional dissolved N₂O in the liquid phase because this

87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin

88 et al., 2012). Ho 90 emitted in the atmosphere. N₂O production were not studied by additional dissolved N₂O in the liquid phase because this

87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin

88 et al., 2012). Ho 92 86 N_2O production were not studied by additional dissolved N_2O in the liquid phase because this
87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin

93 N₂O production were not studied by additional dissolved N₂O in the liquid phase because this
87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin
88 et al., 2012). 94 under continuous aeration ($DO > 4$ mg/L). After 30 min, the biomass was spiked with ammonium 89 So Drootecton were not studied by additional dissolved N₂O in the iiquid phase because this
87 knowledge has been provided by other bench- or pilot-scale studies (Mannina et al., 2018; Wunderlin
88 et al., 2012). How 88 et al., 2012). However, a significant gap of knowledge concerns the full scale WWTPs especially considering the real variable influent characteristics (i.e. C:N) and gaseous mass loads directly emitted in the atmospher 98 ct at., 2012). However, a signmeant gap or knowledge concerns the full seate wwitter sepectaty
99 considering the real variable influent characteristics (i.e. C:N) and gaseous mass loads directly
90 emitted in the atmo 99 considering the real variable influent characteristics (i.e. C:N) and gaseous mass loads directly
90 emitted in the atmosphere.
91 Moreover, to monitor the stability of the respiratory activity of the microbial communi 99 subspect of 20 °C using the Arrhenius temperature correction and the nitrate unity, mitrification and denitrification kinetics were an analysed by batch tests. To determine the ammonia utilization rate Δ UR, 1.5 L of 91 Moreover, to monitor the stability of the respiratory activity of the microbial community, nitrification

92 and denitrification kinetics were an analysed by batch tests. To determine the ammonia utilization

93 rate A 101 with fixed nitrate concentration and with an external carbon source (acetic acid) and the nitrate 93 rate AUR, 1.5 L of mixed liquor was collected from the aerobic reactor and wa

94 under continuous acration ($DO > 4$ mg/L). After 30 min, the biomass was spike

95 chloride at 40 mgNH₄-N/L initial concentration and th 24 under continuous acration (*DO* >4 mg/L). After 30 mm, the blomass was spixed with ammonium
25 chloride at 40 mgNH₄-N/L initial concentration and the profiles of ammonium, nitrite and nitrate with
26 time were meas 213 N2O sampling and monitoring strategies

26 September 2014 N2O emissions were conducted at room temperature (25 ± 2 °C)

26 and the pH was maintained at 7.4 ± 0.3. The reported activities were normalized to the referen 105 6 time were measured. All batch respirometry tests were conducted at room temperature (25 + 2 °C)

197 and the pH was maintained at 7.4 ± 0.3. The reported activities were normalized to the reference

198 temperature 2061 97 and the pH was maintained at 7.4 + 0.3. The reported activities were normalized to the reference

2068 temperature of 20⁶°C using the Arrhenius temperature correction equation and to the volatile

2068 suspended

107 was performed. The gas flow Arthenius temperature correction equation and to the volatile
199 suspended solids (VSS) of the mixture. The nitrate utilization rate (NUR) tests were conducted with
107 1.5 L of activated 108 removal and cooled at 4 \degree C. More than one type of sampling chamber was tested to optimize the N₂O 1.5 L of activated sludge placed in a flask, under mild agitation. Subsequently, the biomass was spiked
101 with fixed nitrate concentration and with an external carbon source (acetic acid) and the nitrate
102 profiles we

110 floating. The main characteristics of the different gas chambers are shown in Table 1 and in Table 2
111 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow
112 gas suction 110 floating. The main characteristics of the different gas chambers are shown in Table 1 and in Table 2
111 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow
112 gas suction 112 gas suction. The outlet pipe was the same for the different gas hoods (diameter of 10 cm and length 113 of 1 m). ¹¹⁶ The sampling point to measure the N2O emissions was chosen in the aerobic reactor as basin where

114 Table 1

115 Table 2

110 floating. The main characteristics of the different gas chambers are shown in Table 1 and in Table 2

111 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow

112 gas suct 110 floating. The main characteristics of the different gas chambers are shown in Table 1 and in Table 2

111 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow

118 gas sucti 111 as 3D images, shapes, volumes and configurations. An open tube is located on the surface to allow

112 gas suction. The outlet pipe was the same for the different gas hoods (diameter of 10 cm and length

113 of 1 m).
 112 gas suction. The outlet pipe was the same for the different gas hoods (diameter of 10 cm and length

113 fable 1

114 Table 1

115 Table 2

116 The sampling point to measure the N₂O emissions was chosen in the aerob 113 of 1 m).

114 Table 2

116 The sampling point to measure the N₂O emissions was chosen in the aerobic reactor as basin where

117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling Table 1

115 Table 2

116 The sampling point to measure the N₁O emissions was chosen in the aerobic reactor as basin where

117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling point Table 2

116 The sampling point to measure the N₂O emissions was chosen in the aerobic reactor as basin where

117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling point was

118 pla 113

116 The sampling point to measure the N₂O emissions was chosen in the aerobic reactor as basin where

117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling point was

118 placed a 116 The sampling point to measure the N₁O emissions was chosen in the aerobic reactor as basin where

117 the gaseous products were mainly stripped and emitted in the atmosphere. The sampling point was

118 placed at th 117 the gaseous products were manny stripped and emitted in the atmosphere. The sampling point was

118 placed at the head of the reactor in the acrobic basin for 46 days and at the end for 7 days. The fixed

119 chambers placed at the head of the reactor in the aerobic basin for 46 days and at the end for *f* days. The fixed
chambers were attached to the external wall by steel clamps and the floating chamber was fastened
by ropes. The mini 120 by ropes. The minimum monitoring duration for each gas hood was 7 days. High-density polyethylene (HDPE) was used for the fixed gas hoods and polypropylene (PP) was used for the floating hoods.

122 The base of the fi (HDPE) was used for the fixed gas hoods and polypropylene (PP) was used for the floating hoods.

122 The base of the fixed gas chambers was submersed (about 5 cm) to prevent lateral movement and

123 introduction of exter 122 The base of the fixed gas chambers was submersed (about 5 cm) to prevent lateral movement and

123 introduction of external air. Cylindrical fixed chambers were used with volumes equal to 80 L, 141

124 L and 226 L fo

221 introduction of external air. Cylindrical fixed chambers were used with volumes equal to 80 L, 141

226 L for the small, medium and large chamber. The floating gas chambers had a truncated

225 cone structure and volu 124 L and 226 L for the small, medium and large chamber. The floating gas chambers had a truncated

125 cone structure and volumes equal to 64 L (small), 166 L (medium) and 233 L (big) (Table 2).

126 At the end of the co 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O
134 data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
135 tube o 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N_2O
134 data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
135 tube 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O
134 data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
135 tube o 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O
134 data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
135 tube o in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O
data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
tube of the gases a 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O
134 data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the
135 tube o is in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the tube of the gas 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the tube of the ga 133 in the same relevant period (from hrs 9.30 to hrs 12:30). Each test was carried out acquiring the N₂O data for 1 hour with one type of chamber. At the end of the acquisition time the connection of the tube of the ga the stable conditions in the liquid phase were monitored and verified by the analysis of the main

issolved nitrogen and organic forms (NH₄-N, NO₂-N, NO₂-N, CODs). Therefore, the liquid

onditions during the differe

$$
S \quad \left(\frac{L}{m^3/h}\right) = \frac{V\left(\frac{H}{g}S\right)}{A\cdot S}
$$
 Equation 1

Where:

Air Supply (m^3/h) = Inlet air flow to the aerobic reactor

139 conditions during the different short tests were comparable.

140 The N₂O data was linked with two variables: 1) the air supply and 2) the Sampler Ratio (SR).

141 This second coefficient was set and calculated for 140 The N₂O data was linked with two variables: 1) the air supply and 2) the Sampler Ratio (SR).

141 This second coefficient was set and calculated for each test according to equation 1:

143 S $(L/m^3/h) = \frac{V_L}{A} = \frac{H}{S}$ 144 to the inlet airflow was studied to avoid over-estimation of N_2O concentrations and/or overpressure 145 phenomena. $S \left(\frac{L}{m^3/h} \right) = \frac{1}{16} \frac{R}{s}$ Equation 1

Where:

Volume Head Space (L) changes for each type of sampling chamber

Air Supply (m³/h) = Inlet air flow to the aerobic reactor

142 For the same type of chamber, the S Where:

Volume Head Space (L) changes for each type of sampling chamber

Air Supply (m³/h) = Inlet air flow to the aerobic reactor

142 For the same type of chamber, the SR values dynamically varied because of the chang

Volume Head Space (L) changes for each type of sampling chamber

Air Supply (m³/h) = Inlet air flow to the acrobic reactor

142 For the same type of chamber, the SR values dynamically varied because of the change of the 149 (APHA, 2005; Tavakoli et al., 2013) along the periods monitored by the different gas chambers 150 (EventiC; Danishvar et al, 2017). This technique enables the identification of patterns (strength of

151 relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_{in}) and gas fluxes (N₂O).
152 Tangible and reasonable changes to the signals of the sensors in the system were translated into
153 events. I 152 Tangible and reasonable changes to the signals of the sensors in the system were translated into 153 events. In order to track events in a sensor signal the standard deviation of the signal fluctuation for 151 relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_{in}) and gas fluxes (N₂O).
152 Tangible and reasonable changes to the signals of the sensors in the system were translated into
153 events. 155 standard deviations of the variables) and presented the results that maximize the Event-based 156 sensitivity analysis coefficients. The thresholds consider as events the following changes in the 151 relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_m) and gas fluxes (N₂O).

152 Tangible and reasonable changes to the signals of the sensors in the system were translated into

153 cvents. 151 relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_m) and gas fluxes (N₅O).

152 Tangible and reasonable changes to the signals of the sensors in the system were translated into

153 events. relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_{in}) and j
Tangible and reasonable changes to the signals of the sensors in the system were
vents. In order to track events in a sensor signal the relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_{in}) and gas fluxes (N₂O).

152 Tangible and reasonable changes to the signals of the sensors in the system were translated into

153 events. In 161 relations) between the monitored variables (DO, blowers flow rate, MLSS, Q_m) and gas fluxes (N₂O).

1620 Tangible and reasonable changes to the signals of the sensors in the system were translated into

1615 event 161 change in the system and the system response and therefore provides insight on which input variables 162 (i.e. ammonia, DO) impact a specific output (i.e. N_2O). The un-biased sensitivity analysis detects and 154 all the time period is calculated. Several thresholds were tested (ranging from 5% - 35% of the standard deviations of the variables) and presented the results that maximize the Event-based sensitivity analysis coeffi 164 the algorithm in the data from the different groups the influential variables in a look-up table. A 165 detailed description of the method can be found in the study of Danishvar et al. (2017). variables: 1) DO ->0.2 mg/t (-1.3% of the standard deviation); ii) N₂O ->1
158 deviation); iii) MLSS> 20 (>5% of the standard deviation); iv) Qin>2
159 deviation); v) Blowers flow-rate > 110 m³/h (>5% of the standard
 158 deviation); iii) MLSS> 20 (>5% of the standard deviation); iv) Qin>20 m3/h (>5% deviation); v) Blowers flow-rate > 110 m³/h (>5% of the standard deviation).

160 sensitivity analysis enables the identification of ca 159 deviation); v) Blowers flow-rate > 110 m³/h (>5% of the standard deviation). The event-base

160 sensitivity analysis enables the identification of cause-effect relationship between the causes of state

161 change i 160 sensitivity analysis enables the identification of cause-effect relationship between the causes of state

161 change in the system and the system response and therefore provides insight on which input variables

162 (

14,210 \pm 4,652 m³/d. The TN concentration in the influent is 28.6 \pm 10.5 mg/L, mainly as ammonium 170 nitrogen (25.1±3.2 mg/L). The average effluent mass loads were 2.87±2.00 and 196.50±86.05 kgN/d 162 (i.e. ammonia, DO) impact a specific output (i.e. N₂O). The un-biased sensitivity analysis detects and

163 defines the most relevant variables (many to one and many to many relationships) by implementing

164 detai 163 defines the most relevant variables (many to one and many to many relatio

164 the algorithm in the data from the different groups the influential variabl

165 detailed description of the method can be found in the st

173 Table 3

174 The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that
175 limits the denitrification process. On the other hand, complete nitrification was achieved.
176 Additionally, the A 174 The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that

175 limits the denitrification process. On the other hand, complete nitrification was achieved.

176 Additionally, the 174 The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that

175 Iimits the denitrification process. On the other hand, complete nitrification was achieved.

176 Additionally, the 177 was 0.057±0.028 kgNOx-N/kgMLVSS/d. 174 The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that

175 limits the denitrification process. On the other hand, complete nitrification was achieved.

180 Additionally, the 174 The low TN removal efficiency is related with the low biodegradable carbon to nitrogen ratio that

1175 limits the denitrification process. On the other hand, complete nitrification was achieved.

1180 Additionally, t

- 178
- 179

174 Inc. tow ITV reintractively is related with the for obsologication can be limited and the dentification process. On the other hand, complete intrification was achieved.

176 Intis the AUR was 0.111±0.024 kgNH₄-N/kgML 173 mmts (act commincaton process). On the other hands, complete intimetaton was actived.

176 Additionally, the AUR was 0.111+0.024 kgNH₄-N/kgMLVSS/d and the average denitrification rate

183 3.2 N₂O emissions and gas 217 was 0.057+0.028 kgNO₂-N/kgMLVSS/d.

184 was 0.057+0.028 kgNO₂-N/kgMLVSS/d.

184 3.2 N₂O emissions and gas chamber headspace: optimization of the sampling methodology

181 The N₂O concentrations obtained during 178

178

179

180 **3.2 N:O emissions and gas chamber headspace: optimization of the sampling methodology

181 The N₂O concentrations obtained during the calibration tests for the optimization of the sampling

181 The N** 178

180 **3.2 N:O emissions and gas chamber headspace: optimization of the sampling methodology**

181 The N₂O concentrations obtained during the calibration tests for the optimization of the sampling

182 methodology ar 179

180 3.2 N₂O emissions and gas chamber headspace: optimization of the sampling methodology

181 The N₂O concentrations obtained during the calibration tests for the optimization of the sampling

182 methodology ar 3.2 N₂O emissions and gas chamber headspace: optimization of the sampling methodology
The N₂O concentrations obtained during the calibration tests for the optimization of the sampling
methodology are shown in Figure 1 188 both for floating and for fixed chambers. Differently, the Sampler Ratio $(SR-L/m³/h)$ was calculated 3.2 N:20 emissions and gas channer neadspace: optimization of the sampling methodology

181 The N:0 concentrations obtained during the calibration tests for the optimization of the sampling

189 enthodology are shown in F 181 The N₃O concentrations obtained during the calibration tests for the optimization of the sampling

182 methodology are shown in Figure 1 for different air flows both for the fixed and for the floating gas

183 chamb influent air flux has been found in other works (Ribeiro et al., 2017). In the eurrent work this
behaviour has been observed only for the floating chambers (Figure 1-b). Scattered distribution was
found for the fixed cham 184 influent air flux has been found in other works (Ribeiro et al., 2017). In the current work this

185 bchaviour has been observed only for the floating chambers (Figure 1-b). Scattered distribution was

186 found for 185 behaviour has been observed only for the floating chambers (Figure 1-b). Scattered distribution was

186 found for the fixed chambers (Figure 1-a). No evident relation was found between the increment of

187 the N₁O 186 found for the fixed chambers (Figure 1-a). No evident relation was found between the increment of

187 the N₂O concentrations and the dimension (Small-Medium-Large) of the chamber used for sampling

186 both for flo

191 Figure 1-a-b-c-d

the N₂O concentrations and the dimension (Small-Medium-Large) of the chamber used for sampling
both for floating and for fixed chambers. Differently, the Sampler Ratio (SR-L/m³/h) was calculated
according to Equation 187 the N₂O concentrations and the dimension (Small-Medium-Large) of the chamber used for sampling

198 both for floating and for fixed chambers. Differently, the Sampler Ratio (SR-L/m³/h) was calculated

199 accordin 188 both for floating and for fixed chambers. Differently, the Sampler Ratio (SR-L/m³/h) was calculated

189 according to Equation 1. The results showed that the N₂O concentrations are linked with the SR value

190 (F

197 influenced by the SR variations (Figure 1-d); the same floating avoids potential over pressure

198 phenomena in the head-space.

199 33 N₂O emission profiles during continuous monitoring 198 phenomena in the head-space. 197 influenced by the SR variations (Figure 1-d); the same floating avoids potential over

198 phenomena in the head-space.

199 3.3 N₂O emission profiles during continuous monitoring

199 The N₂O emissions rate at th

201 Individually the SR variations (Figure 1-d); the same floating avoids potential over pressure

200 B. 3.3 N₂O emission profiles during continuous monitoring

200 The N₂O emissions rate at the head of the reactor v 201 influenced by the SR variations (Figure 1-d); the same floating avoids potential over pressure

201 **3.3 N₂O emission profiles during continuous monitoring**

202 The N₂O emissions rate at the head of the reactor v 202 influenced by the SR variations (Figure 1-d); the same floating avoids potential over pressure
202 phenomena in the head-space.
202 3.3 N₂O emission profiles during continuous monitoring
202 The N₂O emissions rate

203 Figure 2

204 The variability of the daily N₂O emissions rate can be mainly attributed to the actually variable can be mainly attributed to the N₂O emissions rate at the head of the reactor varied from 66.82 to 4,174.37 mg/h wi 203 Interacts by the one variables (11gare 1-0), the same notaing avoids potential over possure
200 Interaction profiles during continuous monitoring
201 Interaction ratios (18.2=0.8 °C in Washer Change 1-0.2) that was no 3.3 N:O emission profiles during continuous monitoring

200 The N₂O emissions rate at the head of the reactor varied from 66.82 to 4,174.37 mg/h with average

201 load equal to 31.99+24.33 gN₂O/d during the monitoring 207 **3.3 N:O emission profiles during continuous monitoring**

200 The N₂O emissions rate at the head of the reactor varied from 66.82 to 4,174.37 mg/h with average

202 load equal to 31.99±24.33 gN₂O/d during the moni 200 The N₂O emissions rate at the head of the reactor varied from 66.82 to 4,174.37 mg/h with average

201 load equal to 31.99424.33 gN₂O/d during the monitoring period (Figure 2). The N2O emission profile

202 was no 201 load equal to 31.99±24.33 gN₂O/d during the monitoring period (Figure 2). The N2O emission profile
202 was not affected by temperature variations (18.2–0.8 °C in wastewater).
203 Figure 2
204 The variability of the 210 sequencing batch reactors; integrated fixed film activated sludge membrane bioreactor, respectively) 203

204 The variability of the daily N₂O emissions rate can be mainly attributed to the actually variable

205 influent carbon to nitrogen ratios (COD:TN: 1.3 to 5.2) that was always low. The average N₂O

2016 emissi Figure 2
204 The variability of the daily N₂O emissions rate can be mainly attributed to the actually variable
205 influent carbon to nitrogen ratios (COD:TN: 1.3 to 5.2) that was always low. The average N₂O
206 emiss 204 The variability of the daily N₂O emissions rate can be mainly attributed to the actually variable

205 influent carbon to nitrogen ratios (COD:TN: 1.3 to 5.2) that was always low. The average N₂O

206 emission rat 205 influent carbon to nitrogen ratios (COD:TN: 1.3 to 5.2) that was always low.

206 emission rate was equal to 0.856 ± 0.905 gN₂O/h when the COD:TN was about

207 while it increased to 1.850 ± 0.972 gN₂O/h at lowe 200 cmssion rate was equat to 0.856+0.973 gN₂O*m* when the COD:1N was about 3.2 (1¹⁻²20⁻² days),
207 while it increased to 1.850±0.972 gN₂O/h at lower COD:TN ratio:1.9. The latter is in accordance to
208 the resul 2016 monitoring were very low (0.174±0.90 gN₂O/h) at the end of the reactor. The latter is in accordance to the results reported in literature (Quan et al., 2012; Mannina et al., 2017). Similar limiting C:N ratios resul 208 the results reported in literature (Quan et al., 2012; Mannina et al., 2017). Similar limiting C:N ratios
209 resulted in N₂O increase in previous studies applying different processes (aerobic granular sludge
3210 a zoy

218 be action N2O increase in previous studies applying different processes (aerobic granuar studes

218 sequencing batch reactors; integrated fixed film activated sludge membrane bioreactor, respectively)

218 at pl

sequencing batch reactors; integrated integral methods sludge membrane bioreactor, respect
at pilot scale. Mannina et al. (2018) demonstrated that limiting C:N ratio of 2 gCOD/gTN result
5 times increase of N₂O emission

220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically
221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emission 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically
221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emission 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically
221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emission 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically
221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emission 224 (Aboobakar et al, 2013; Daelman et al., 2013; Rodriguez-Caballero et al., 2014). 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically

221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O

222 emissi 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically

221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O

222 emissi 220 Moreover, the N₂O emissions, the main operative variables and the daily variations were statistically
221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emission

225 Figure 3

221 analysed to better understand the role of the liquid variables. The boxplots of the hourly N₂O
222 emissions in the nitrification reactor are shown in Figure 3. N₂O emissions' dynamics are
223 characterized by sig emissions in the nitrification reactor are shown in Figure 3. N₂O emission

characterized by significant daily variability in accordance with the results of

224 (Aboobakar et al., 2013; Daelman et al., 2013; Rodriguezcharacterized by significant daily variability in accordance with the results of previous studies

224 (Aboobakar ct al., 2013; Daclman ct al., 2013; Rodriguez-Caballero ct al., 2014).

225 Figure 3

226 The minimum daily (Aboobakar et al, 2013; Daelman et al., 2013; Rodriguez-Caballero et al., 2014).

225 Figure 3

226 Figure 3

226 Figure 3

228 The minimum daily N₂O fluxes are observed between 03:00 am and 10:00 am, while a subsequent

233 17.5 and 19.4 mg/L for ammonia nitrogen and between 61.6 and 20.1 mg/L for COD were observed 226 The minimum daily N₂O fluxes are observed between 03:00 am and 10:00 am, while a subsequent

227 peak occurs between 18:00 pm and 20:00 pm. No specific correlation between the N₂O emissions

228 and the liquid inf 236 In eminimum daily N₂O fluxes are observed between 03:00 am and 10:00 am, while a subsequent

227 peak occurs between 18:00 pm and 20:00 pm. No specific correlation between the N₂O emissions

228 and the liquid inf 236 emissions during the day. 239 Figure 4

239 Figure 4. Hourly variability is shown in Figure 4. Hourly variations between

232 concentrations. A typical example of daily variability is shown in Figure 4. Hourly variations between

233 17.5 and 19.4 232 concentrations. A typical example of daily variability is shown in Figure 4. Hourly variations between

233 17.5 and 19.4 mg/L for ammonia nitrogen and between 61.6 and 20.1 mg/L for COD were observed

234 with peaks

237 Figure 4

238 The cumulative emitted N₂O mass loads (LN_2O) and the influent TN (LTN) values are shown in 233 17.5 and 19.4 mg/L for ammonia nitrogen and between 61.6 and 20.1 mg/L for COD were observed

234 with peaks of COD:TN during 12:00-16:00, where the N₂O distribution showed almost minimum

235 N₂O emissions. The l with peaks of COD:TN during 12:00-16:00, where the N2O distribution showed almost minimum

N₂O emissions. The latter reveals that the variation of the COD:TN ratio strongly affects the N₂O

emissions during the day.

243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N
244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher
245 COD:TN ratio (0.0 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N
244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher
245 COD:TN ratio (0.0 245 COD:TN ratio (0.0505 gN2O/kgTN, R2=0.8853). 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N

244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher

245 COD:TN ratio (0

247 The biomass-based EF was equal to 2.11 ± 0.98 and 5.01 ± 2.09 mgN₂O/kgMLVSS/d for the first and 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N

244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher

245 COD:TN ratio (0 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N

244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher

245 COD:TN ratio (0 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N

244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher

245 COD:TN ratio (0 243 emissions are observed when the influent COD:N ratio is higher than 4. The lower was the COD:N

244 ratio the higher was the emitted N₂O: about 5 times higher compared to the periods with higher

245 COD:TN ratio (0 252 TN in a plug-flow reactor. 245 COD: TN ratio (0.0505 gN₂O/kgTN, R2=0.8853).

246 Figure 5

247 The biomass-based EF was equal to 2.11±0.98 and 5.01±2.09 mgN₂O/k

248 second period with different COD:N ratios. The EF of current study i

249 repo 246 Figure 5

247 The biomass-based EF was equal to 2.11±0.98 and 5.01±2.09 mgN₂O/kgMLVSS/d for the first and

248 second period with different COD:N ratios. The EF of current study is lower than the EF values

249 repo 247 The biomass-based EF was equal to 2.11±0.98 and 5.01±2.09 mgNzO/kgMLVSS/d for the first and
248 second period with different COD:N ratios. The EF of current study is lower than the EF values
249 reported in other stud 248 second period with different COD:N ratios. The EF of current study is lower than the EF values

249 reported in other studies that monitor on-line gaseous emissions at full-scale. Yan et al., 2014, found

250 emission reported in other studies that monitor on-line gaseous emissions at full-scale. Yan et al., 2014, found
emission factors ranging from 0.04 to 0.1% of the TN influent for an Anaerobie-Anoxie-Oxie system.
Similarly, Rodrigu

257 when the floating hood was applied with SR higher than 0.05 L/m³/h. 259 Constrained States and States relationship was carried out in order to dentify the relationship between the
259 An-event based sensitivity analysis was carried out in order to identify the relationship between the
259

258 Table 4

252 258

261 concentration in the monitored parameters. The results are given Table 4. The gaseous emissions

260 emissions and the monitored parameters. The results are given Table 4. The gaseous emissions

260 from the 253 3.2 Statistical and sensitivity analysis

254 An-event based sensitivity analysis was carried out in order to identify the relationship between the

255 N2O emissions and the monitored parameters. The results are give 263 An-event based sensitivity analysis was carried out in order to identify the relationship between the
255 N2O emissions and the monitored parameters. The results are given Table 4. The gaseous emissions
256 from the n 255 N2O emissions and the monitored parameters. The results are given Table 4. The gaseous emissions
256 from the nitrification reactor have been examined with reference to the variables monitored online
257 when the floa 264 2264 226 226 Transmission reactor have been examined with reference to the variables monitored online
257 when the floating hood was applied with SR higher than 0.05 L/m³/h.
269 1. Table 4
269 1. Table 4
269 1.5 – 2 257 when the floating hood was applied with SR higher than 0.05 L/m³/h.

258 Table 4

259 A weak relationship was identified between the N₂O emissions, the air flow-rate and the DO

260 concentration in the reactor. I

266 According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes.
267 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the aeration flow-rate and with the
268 266 According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes.
267 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the aeration flow-rate and with the resi 266 According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes.

267 The typical N₂O emissions (*g*/h) profile is shown in Figure 6 with the acration flow-rate and with the
 266 According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes.
267 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the acration flow-rate and with the
268 266 According to event-based sensitivity analysis, the blowers' flow-rate affects the N₂O emission fluxes.

267 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the acration flow-rate and with the

26 4.1±1.6 mgDO/l during 21st-45th 273 and the constant nitrigate of virth the aeration flow-rate and with the residual DO for two days of monitoring. Low concentrations of residual dissolved oxygen was not a limiting factor 273 days 4.1 ± 1.6 mg/l). 267 The typical N₂O emissions (g/h) profile is shown in Figure 6 with the aeration flow-rate and with the

268 residual DO for two days of monitoring. Low concentrations of residual dissolved oxygen was not a

270 limit residual DO for two days of monitoring. Low concentrations of residual dissolved oxygen was

limiting factor (Figure 6). The latter supports the obtained results during the experimental camp

considering the low-impact of 268 residual DO for two days of monitoring. Low concentrations of residual dissolved oxygen was not a

269 limiting factor (Figure 6). The latter supports the obtained results during the experimental campaign

270 conside 279 limiting factor (Figure 6). The latter supports the obtained results during the experimental campaign

270 considering the low impact of the DO concentrations (4.610.7 mg DO /l during $1^{n-20^{th}}$ days and

4.1±1.6 mgD

274 **Figure 6** Figure 6

278 increase N2O stripping phenomena and related N2O emissions. 271 4.1±1.6 mgDO/1 during 21st-45th days) and the constant nitrification rates

272 N/kgMLVSS/d during 1st-20th days and kn of 0.118±0.031 kgNH₄-N/k

273 days 4.1±1.6 mg/l).

274 Figure 6

275 The dynamics of th 280 A full scale activated sludge plant treating low carbon:nitrogen ratio municipal wastewater vastes increase N2O stripping phenomena and related N2O emissions.
280 A full scale activated sludge plant treating low carbo The dynamics of the variables are different. However, daily peaks of N₂O emissions occurred when

the aeration flow-rate was higher than 3,500 m³/h. Therefore, although higher N2O emissions were

related to the low C:N 284 a) the optimization of the sampling methods was carried out by testing different types of chambers.
284 a) the same sample method of the sampling phenomena and related N2O emissions.
284 **4 Conclusions**
284 A full s

281 continuously analysed for 52 days to study N2O emissions.

282 This long-term continuous critical monitoring led to the following conclusions related to: a) the

278 Incertainties of the N₂O concentrations were observed when the Sampling Patition and Telectiviste plant treating low carbon:nitrogen ratio municipal wastewater was
280 A full scale activated sludge plant treating lo **Conclusions**
**A full scale activated sludge plant treating low carbon:nitrogen ratio municipal wastewater was
continuously analysed for 52 days to study N2O emissions.
This long-term continuous critical monitoring le 4 Conclusions**

286 A full scale activated sludge plant treating low carbon:nitrogen ratio municipal wastewater was

281 continuously analysed for 52 days to study N2O emissions.

282 This long-term continuous critic **4 Conclusions**
280 A full scale activated sludge plant treating low carbon:nitrogen ratio municipal
281 continuously analysed for 52 days to study N2O emissions.
282 This long-term continuous critical monitoring led

-
-

288 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 288 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 288 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 291 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
291 to 292 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
292 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 293 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 294 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
290 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 295 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen ratio
299 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to 298 b) the N₂O load emitted directly from the aeration basin was related to the carbon to nitrogen rat mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and le to 5-times hi 298 of Me N₂O load emitted directly from the aeration basin was related to the carbon to introgen ratio
289 mainly and to the variability of the influent load. Low COD:N ratio limited the denitrification and led
290 to manny and to the variability of the influent toad. Low COD: N ratio immted the dentification and ice

298 to 5-times higher N₂O emissions. Major differences were observed around the COD: N = 4:

291 0.856±0.905 gN₂O/h 290 to 3-times ingner NgO emissions. Major direcrences were observed around the COD:TN = 4:

291 0.856+0.905 gN₂O/h when COD:TN > 4 versus 1.850+0.972 gN₂O/h when COD:TN < 4. The

31 0.856+0.905 gN₂O/h when COD:TN > 203 emissions are higher when the COD:N ratio is lower. The sensitivity analysis showed that the N:O

204 dynamics are not significantly affected by DO variations (within the range of $1.5 - 2$ mg/L). However,

201 daily p

300 Acknowledgements

dynamics are not significantly affected by DO variations (within the range of $1.5 - 2$ mg/L). However,

daily peaks of N₂O emissions are observed at higher aeration flow-rate that result in higher stripping

of the prod 303 acknowledge the Royal Society for the funding of the current research: Ad-Bio, Advanced 296 of the produced and dissolved N₂O.

297 Finally, when COD:N ratio was higher than 4, the cumulative emitted N₂O mass loads (EF) varied

304 from 0.051 gN₂O/kgTN_{mluen} to 0.0089 gN2O/kgTN_{mluen}. Therefore, the 297 Finally, when COD:N ratio was higher than 4, the cumulative emitted N₂O mass loads (EF) varied
298 from 0.051 gN₂O/kgTN_{infleent} to 0.0089 gN2O/kgTN_{infleen}. Therefore, the equalization of the influent
209 can b 306 (Ancona, Italy).

307

308

309

References

- APHA, 2005, Standard methods for the examination of water and wastewater, Am. Public Health Assoc. APHA Wash. DC USA. (2005). www.just.edu.jo/CoursesAndLabs/ENVIRONMENTAL%20ANALYTICAL%20CHEMISTRY _CHEM734/chem%20734.doc. Last access September 2017. 311 Aboobakar, A. Cartmell, E. Stephenson, T. Jones, M. Vale, P. Dotro, G. (2013) Nitrous oxide

2312 emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment

2313 plant, Water Resear
- Bollon, J. Filali, A. Fayolle, Y. Guerin, S. Rocher, V. Gillot, S. (2016) N2O emissions from full-scale
-
- Daelman, M.R. van Voorthuizen, E.M. van Dongen, U.G. Volcke, E.I. van Loosdrecht, M.C. (2015) 313 plant, Water Research 47 524–534. doi:10.1016/j.watres.2012.10.004.

314 APHA, 2005, Standard methods for the examination of water and wastewater, Am. Public Health

315 Assoc. APHA Wash. DC USA. (2005).

316 www.just. 314 APHA, 2005, Standard methods for the examination of water and wastewater, Am. Public Health

315 Assoc. APHA Wash. DC USA. (2005).

316 www.just.cdu.jo/CoursesAndLabs/ENVIRONMENTAL%20ANALYTICAL%20CHEMISTRY

317 _CHEM73 https://doi.org/10.1016/j.scitotenv.2015.06.122 318 Bollon, J. Filali, A. Fayolle, Y. Guerin, S. Rocher, V. Gillot, S. (2016) N20 emissions from full-scale

2319 a itrifying biofilters, Water Research 102 41–51. DOI:10.1016/j.watres.2016.05.091

232 Daelman, M.R. van Vo
- Daelman, M.R.J. van Voorthuizen, E.M. Van Dongen, L. Volcke, E.I.P. Van Loosdrecht, M.C.M. (2013) Methane and nitrous oxide emissions from municipal wastewater treatment–results from
- Danishvar, M. Mousavi, A. Broomhead, P. (2017) Modelling the Eco-System of Causality: The Real- Time Unaware Event-Data Clustering (EventiC), accepted to IEEE Trans Systems, Man and Cybernetics.
- Desloover, J. De Clippeleir, H. Boeckx, P. Du Laing, G. Colsen, J. Verstraete, W. Vlaeminck, S.E. (2011) Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O
- emissions, Water Research 45 2811–2821. doi:10.1016/j.watres.2011.02.028.
333 https://doi.org/10.1016/j.watres.2011.02.028
334 Eusebi A.L. Cingolani D. Sninelli M. Passserini G. Carletti S. Battistoni P. (2016) Dinitrogen 333 https://doi.org/10.1016/j.watres.2011.02.028
- 334 Eusebi, A.L., Cingolani, D., Spinelli, M, Passserini, G., Carletti, S., Battistoni, P. (2016) Dinitrogen 335 oxide (N2O) emission in the treatment of urban wastewater via nitrite: Influence of liquid kinetic emissions, Water Research 45 2811–2821. doi:10.1016/j.watres.2011.02.028.

333 https://doi.org/10.1016/j.watres.2011.02.028

334 Eusebi, A.L., Cingolani, D., Spinelli, M. Passserini, G., Carletti, S., Battistoni, P. (2016) emissions, Water Research 45 2811–2821. doi:10.1016/j.watres.2011.02.028.

https://doi.org/10.1016/j.watres.2011.02.028

334 Eusebi, A.L., Cingolani, D., Spinelli, M., Passerini, G., Carletti, S., Battistoni, P. (2016) Din
- 337 Guanghuan Ge, Jianqiang Zhao, Xiaoling Li, Xiaoqian Ding, Aixia Chen, Ying Chen, Bo Hu, and 338 Sha Wang, (2017) Effects of influent COD/N ratios on nitrous oxide emission in a sequencing
-
- 340 7: 7417 doi: 10.1038/s41598-017-06943-0
- 2333 https://doi.org/10.1016/j.watres.2011.02.028

334 Eusebi, A.L., Cingolani, D., Spinelli, M., Passserini, G., Carletti, S., Battistoni, P. (2016) Dinitrogen

335 oxide (N2O) emission in the treatment of urban wastewate 334 Busebi, A.L., Cingolani, D., Spinelli, M., Passecrini, G., Carletti, S., Battistoni, P. (2016) Dinitrogen
335 oxide (N2O) emission in the treatment of urban wastewater via nitrite: Influence of liquid kinetic
336 rates oxide (N2O) emission in the treatment of urban wastewater via nitrite: Influence of liquid kinetic
rates. Water Science and Technology, 74 (12), pp. 2784-2794 DOI: 10.2166/wst.2016.445
Guanghuan Ge, Jianqiang Zhao, Xiaolin
- 344 Hwang, K.-L. Bang, C.-H. Zoh, K.-D. (2016) Characteristics of methane and nitrous oxide emissions 337 Guanghuan Ge, Jianqiang Zhao, Xiaoling Li, Xiaoqian Ding, Aixia Chen, Ying Chen, Bo Hu, and
338 Sha Wang, (2017) Effects of influent COD/N ratios on nitrous oxide emission in a sequencing
339 biofilm batch reactor for 346 doi:10.1016/j.biortech.2016.05.047. DOI:10.1016/j.biortech.2016.05.047 7: 7417 doi: 10.1038/s41598-017-06943-0

341 He, Q., Zhu, Y., Fan, L., Ai, H., Huangfu, X., Chen, M. (2017) Effects of C/N ratio on nitrous oxide

342 production from nitrification in a laboratory-scale biological aerated and Technology, 75, (6), pp1270-1280 DOI: 10.2166/wst.2016.447
344 Hwang, K.-L. Bang, C.-H. Zoh, K.-D. (2016) Characteristics of methane and nitrous oxide emissior
345 from the wastewater treatment plant, Bioresource Techn
- 347 IPCC, The physical science basis. Contribution of working group I to the fifth assessment report of
- 349 Kampschreur, M.J. van der Star, W.R. Wielders H.A., Mulder, J.W. Jetten, M.S. van Loosdrecht,
- 350 M.C. (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water
-

- University of Cape Town membrane bioreactor: The effect of carbon to nitrogen ratio. Journal of Cleaner Production. Volume 149, Pages 180-190. doi.org/10.1016/j.jclepro.2017.02.089
- Mannina, Ekama, Capodici, Cosenza, Di Trapani, Ødegaard, M.C.van Loosdrechtd, (2018) Influence of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge Membrane BioReactor plant, Journal of Cleaner Production Volume 176, Pages 1078-1090 doi.org/10.1016/j.jclepro.2017.11.222
- Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D. (2018) Nitrous oxide from integrated fixed- film activated sludge membrane bioreactor: Assessing the influence of operational variables. Bioresource Technology Volume 247, January 2018, Pages 1221-1227 doi.org/10.1016/j.biortech.2017.09.083
- Massara, T.M. Malamis, S. Guisasola, A. Baeza, J.A. Noutsopoulos, C. Katsou, E. (2017) A review of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge

Membrane BioReactor plant, Journal of Cleaner Production Volume 176, Pages 1078-1090

doi.org/10.1016/j.jclepro.2017.11.22 Membrane BioReactor plant, Journal of Cleaner Production Volume 176, Pages 1078-1090

doi.org/10.1016/j.jelepro.2017.11.222

Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D. (2018) Nitrous oxide from integrated fixed 10.1016/j.scitotenv.2017.03.191 362 Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D. (2018) Nitrous oxide from integrated fixed-

364 Elioresource Technology Volume 247, January 2018, Pages 1221-1227

365 diorg/10.1016/j.biortech.2017.09.083

366 M
- September 2016 Wiley Online Library
- Mingming Gao, Sen Yang, Mingyu Wang, Xin-HuaWang, (2016), Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater. Journal of
- Bioscience and Bioengineering Volume 122, 5, 601-605 https://doi.org/10.1016/j.jbiosc.2016.04.004 374 Bioscience and Bioengineering Volume 122, 5, 601-605
https://doi.org/10.1016/j.jbiosc.2016.04.004
376 Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the spatial
377 variation 374 Bioscience and Bioengineering Volume 122, 5, 601
https://doi.org/10.1016/j.jbiosc.2016.04.004
376 Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the sp
377 variation of nitrou
- Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the spatial
-
-
- Quan, X. Zhang, M. Lawlor, P.G. Yang, Z. Zhan, X. (2012) Nitrous oxide emission and nutrient 374 Bioscience and Bioengineering Volume 122, 5, 601-605

2315 https://doi.org/10.1016/j.jbiosc.2016.04.004

336 Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the spatial

238 v https://doi.org/10.1016/j.watres.2012.06.031 236 Pan, Y. van den Akker, B. Ye, L. Ni, B.-J. Watts, S. Reid, K. Yuan, Z. (2016) Unravelling the spatial

2373 variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment

238 pan, X. Z
- Ren, Y. g. Wang, J. h. Li, H. f. Zhang, J. Qi, P. y. Hu, Z. (2013) Nitrous oxide and methane emissions
- from different treatment processes in full-scale municipal wastewater treatment plants, 1933 From different treatment processes in full-scale municipal wastewater

1934 Environmental Technology 34 2917–2927. doi:10.1080/09593330.2012.6967

1935 Ribeiro P., Renato F. Bueno, Rodrigo P. Piveli, C. Kligerman, Roq
- Ribeiro P., Renato F. Bueno, Rodrigo P. Piveli, C. Kligerman, Roque Débora, de Mello, William Z.
- Oliveira Jaime L. M., (2017), The response of nitrous oxide emissions to different operating
- conditions in activated sludge wastewater treatment plants in Southeastern Brazil. Water Science
- Technology, 76, 3. DOI: 10.2166/wst.2017.399
- Rodriguez-Caballero, A. Aymerich, I. Marques, R. Poch, M. Pijuan, M. (2015) Minimizing N2O 885 Ribeiro P., Renato F. Bueno, Rodrigo P. Piveli, C. Kligerman, Roque Débora, de Mello, William Z.

0 Iiveira Jaime L. M., (2017), The response of nitrous oxide emissions to different operating

conditions in activated Oliveira Jaime L. M., (2017), The response of nitrous oxide emissions to different conditions in activated sludge wastewater treatment plants in Southeastern Brazil. Water
Technology, 76, 3. DOI: 10.2166/wst.2017.399
Rodri
- emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor, Water
-
- Rodriguez-Caballero, A. Aymerich, I. Poch, M. Pijuan, M. (2014) Evaluation of process conditions
-
-
- Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction strategy of nitrous 395 Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction strategy of nitrous
396 oxide during wastewater treatment by different processes, Environmental Science Pollution
397 Research 22 4222-4229 Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction

396 oxide during wastewater treatment by different processes, Environmental

397 Research 22 4222–4229. doi:10.1007/s11356-014-3654-5.

398 Ta 395 Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes, Environmental Science Pollution
Research 22 4222–4229. doi:10 Sun, S. Bao, Z. Sun, D. (2015) Study on emission characteristics and reduction strategy of nitrous

oxide during wastewater treatment by different processes, Environmental Science Pollution

Research 22 4222–4229. doi:10.1
- Tavakoli, S. Mousavi, A. Broomhead, P. (2013) Event tracking for real-time unaware sensitivity
- 10.1109/TKDE.2011.240
- Tavakoli, S. Mousavi, A. Poslad, S. (2013) Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper, Advanced Engineering
- Wunderlin, P. Mohn, J. Joss, A. Emmenegger, L. Siegrist H. (2012), Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions Water Research, 46 (4) pp. 1027-1037 doi.org/10.1016/j.watres.2011.11.080 10.1109/TKDE.2011.240

401 Tavakoli, S. Mousavi, A. Poslad, S. (2013) Input variable selection in time-critical knowledge

402 integration applications: A review, analysis, and recommendation paper, Advanced Engineering

4 integration applications: A review, analysis, and recommendation paper, Advanced Engineering

403 Information 27 519–536. https://doi.org/10.1016/j.aei.2013.06.002

404 Wunderlin, P. Mohn, J. Joss, A. Emmenegger, L. Siegri 103

404 Wunderlin, P. Mohn, J. Joss, A. Emmenegger, L. Siegrist H. (2012), Mechanisms of N2O production

404 Wunderlin, P. Mohn, J. Joss, A. Emmenegger, L. Siegrist H. (2012), Mechanisms of N2O production

406 in biologic
- Yan, X. Li, L. Liu, J. (2014) Characteristics of greenhouse gas emission in three full-scale wastewater 0742(13)60429-5
- 10.1016/j.watres.2016.09.046 in biological wastewater treatment under nitrifying and denitrifying conditions Water Research,

46 (4) pp. 1027-1037 doi.org/10.1016/j.watrcs.2011.11.080

407 Yan, X. Li, L. Liu, J. (2014) Characteristics of greenhouse ga 407 Yan, X. Li, L. Liu, J. (2014) Characteristics of greenhouse gas emission in three full-scale wastewater
treatment processes, Journal Environmental Seience 26 256–263. https://doi.org/10.1016/S1001-
409 0742(13)60429-5

-
- nitrous oxide emission in a pilot-scale oxidation ditch: Generation, spatial variation and microbial
-

Table 2: 3D Images, shapes and volumes of the sampling gas chambers

Table 3: Daily influent and effluent characteristics and kinetic rates (Average and Standard Deviation)

tivity analysis algorithm grouping the system parameters in which coincided (dark grey: high impact, light grey: moderate impact).		
	N_2O	
	(ppm) 0.52	
$\overline{Qin(m^3/h)}$	0.37	
DO(mg/L)	0.44	
Blowers flow-rate (m^3/h) MLSS	0.39	

Table 4: Event-based sensitivity analysis algorithm grouping the system parameters in which
events have systematically coincided (dark grey: high impact, light grey: moderate impact).
 N_2O
(ppm) events have systematically coincided (dark grey: high impact, light grey: moderate impact).

List of Figures

Figure 1: N_2O emissions during the tests for the calibration of the sampling chambers

List of Figures
Figure 1: N₂O emissions during the tests for the calibration of the sampling chambe
Figure 2: N₂O emissions in nitrification reactor
interquarile range, whiskers: lines extending from the 5th to 95^t **Figure 3:** Boxplots of the daily variability of N2O emissions and Influent Flow (grey boxes: interquartile range, whiskers: lines extending from the $5th$ to $95th$ percentile, median: line across the **Example 1:** N₂O emissions during the tests for the calibration of the sampling chambers
Figure 2: N₂O emissions in nitrification reactor
Figure 3: Boxplots of the daily variability of N2O emissions and Influent F box; grey triangles: average liquid influent flow rate) **Example 1:** N₂O emissions during the tests for the calibration of the sampling chambers
 Figure 2: N₂O emissions in nitrification reactor
 Figure 3: Boxplots of the daily variability of N2O emissions and Influent

Figure 5: Cumulative mass load of N₂O emitted and TN influent (Averages and Standard Deviations).

Figure 6: Profile of the N_2O emissions, air flow-rate and DO data for the nitrification reactor

Figure 1: N_2O emissions during the tests for the calibration of the sampling chambers

interquartile range, whiskers: lines extending from the 5th to 95th percentile, median: line across the

flow

Deviations).

