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Propagation of an ele
tron beam over a graphene/diele
tri
 sandwi
h stru
ture is 
onsidered

assuming the distan
e between layers to be large enough to prevent interlayer tunnelling. A disper-

sion equation for the surfa
e ele
tromagneti
 modes propagating along graphene sheets is derived

and

�

Cerenkov syn
hronism between surfa
e wave and non-relativisti
 ele
tron beam is predi
ted at

a
hievable parameters of the system. The generation frequen
y tuning is proposed by varying the

graphene doping, the number of graphene sheets, the distan
e between sheets, et
.
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I. INTRODUCTION

Due to a variety of s
ienti�
 and te
hni
al appli
ations,

there is a great need in the development of 
oherent ter-

ahertz radiation sour
es with tunable frequen
y, see e.g.

Refs. 1,2 and referen
es therein. In parti
ular, the tun-

ability 
an be realized in the devi
es utilizing kineti
 en-

ergy of moving ele
trons and transforming it into the

energy of the emitted ele
tromagneti
 wave

3

. Free ele
-

tron laser (FEL)

4

, travelling wave tube (TWT) and ba
k-

ward wave os
illator (BWO), are the well-known devi
es

of su
h a type. The energy transfer o

urs when pa-

rameters of the ele
tron beam moving with the velo
ity

u and the ele
tromagneti
 wave meet the syn
hronism


ondition (for example ω − ku = 0 in

�

Cerenkov 
ase).

Changing ele
tron velo
ity one 
an smoothly tune the

frequen
y in a wide range. The development of FELs

was initiated, in parti
ular, by this feature. However, the

ele
tron beam sour
es are normally optimized for work-

ing at a given ele
tron energy and do not allow its easy

variation without 
onsiderable e�
ien
y drop. Instead,

the tunability 
ould be a
hieved by exposing the medium

whi
h provides the syn
hronization 
onditions to external

�elds � for example, by varying the undulator magneti


�eld

4

� but again this way appears to be rarely used in

pra
ti
e sin
e undulator is usually designed for a given

operating frequen
y and its e�
ien
y signi�
antly drops

with deviation.

In the 
ase of

�

Cerenkov-type emitter

5

, the radiation

frequen
y depends also on ele
trodynami
 parameters

of the medium providing thus alternative means of the

resonant frequen
y tuning. Among di�erent possibili-

ties, graphene and 
arbon nanotubes (CNTs) are very

promising materials from this point of view sin
e there

are well-known and rather fa
ile methods of their 
on-

stitutive parameters wide-range varying. In parti
ular,

well-developed methods of graphene doping in
lusive of

ele
trostati
 doping allow smooth alteration of the sur-

fa
e 
ondu
tivity

6

. Analogous e�e
t is reported in doped

CNTs

7,8

. Besides, it has been shown that 
arbon nan-

otubes and graphene 
an 
onsiderably slow down surfa
e

ele
tromagneti
 wave

9,10

providing thus better 
onditions

for the syn
hronization of ele
tron beam and ele
tromag-

neti
 surfa
e wave.

�

Cerenkov me
hanism of generation of the 
oherent

stimulated radiation in graphene and 
arbon nanotubes

was theoreti
ally investigated in Refs. 10�15 demonstrat-

ing realizability of the nanotube-based nano-TWT and

nano-FEL at realisti
 parameters of CNTs and ele
tron

beams

14

. In literature has also been dis
ussed the me
h-

anism of generation and ampli�
ation of plasmon os
il-

lations in graphene by opti
al or ele
tri
al pumping

16�21

.

E�
ien
y of emission and in�uen
e of quantum re
oil ef-

fe
t on

�

Cerenkov emission by hot ele
trons in graphene

were studied in Refs. 22,23. A possibility of terahertz

emission in CNTs imposed to transverse and axial ele
-

tri
 �elds due to ele
tri
-�eld indu
ed heating of ele
-

tron gas has been revealed in Refs. 24�28. A periodi-


al systems of graphene nanoribbons has been proposed

as

�

Cerenkov medium with regulation of generation fre-

quen
y by nanoribbon width, spatial period and applied

voltage

29,30

. A similar approa
h exploiting periodi
 di-

ele
tri
 substrate underlaying graphene sheet has been

developed in Refs. 31,32. Variant with analogous to

�

Cerenkov radiation due to ex
itation of dipole polariza-

tion an the array of nanotubes whi
h leads to 
urrent

generation with a superluminal pro�le is 
onsidered in

Refs. 33,34.

Unique physi
al properties of graphene, plane or rolled

up into 
ylinder, are featured in that not only exter-

nal ele
tron beam 
an be used for ex
itation of surfa
e

waves but also graphene's own π ele
trons

10,14,29

. There

are several reasons in favor of su
h a generation s
heme:

First, graphene and nanotubes support extraordinary

large 
ontinuous ele
tri
 
urrent density, > 108 A/
m

2
,

without degradation, see e.g. Refs. 35�37. Then, ma
ro-

s
opi
ally large ballisti
 length (up to several hundred

mi
rons) in graphene and nanotubes is reported

38�41

.

For example, about 16 mi
ron length ele
tron ballis-

ti
 transport in graphene nanoribbons has re
ently been

observed

42

. Therefore, ele
trons 
an emit 
oherently

from this ma
ros
opi
 length. Physi
al basis of su
h a

high ballisti
ity is in Dira
 nature of graphene 
arriers

and Klein paradox

43,44

whi
h helps to over
ome the po-

tential barriers. Lastly, metalli
 CNTs exhibit a strong,

as large as 50-100 times, slowing down of surfa
e ele
tro-

magneti
 waves

9

. In single layer graphene this quantity

appears to be smaller but below we show that this prob-
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lem 
an be resolved using slow a
ousti
 mode in multi-

layered stru
ture due to 
oupling of plasmon-polariton

modes of di�erent layers

10

. Similar e�e
t 
an be a
hieved

by hybridization of graphene plasmon with its mirror

image in the metal plate disposed near graphene layer

that leads, in parti
ular, to strongly 
on�ned asymmetri


mode

45,46

. Thus, as it has been stressed in Ref.14, a 
om-

bination in graphene and CNTs of three key properties,

(i) ballisti
ity of the ele
tron �ow over typi
al length,

(ii) extremely high 
urrent-
arrying 
apa
ity, and (iii)

strong slowing down of surfa
e ele
tromagneti
 waves

9

,

allows proposing them as 
andidates for the development

of nano-sized

�

Cernekov-type emitters. As our estimates

show

14

,the ele
tron mean free path as large as tens of mi-


rons would be enough to provide 
oherent emission and

rea
h the above stated goal. However, pra
ti
al realiza-

tion of su
h a large ballisti
al transport is a 
ompli
ated

task and, in any 
ase, is in
onsistent with the high 
ur-

rent density.

Alternatively, traditional

�

Cernekov and Smith-Pur
ell

generation s
heme 
an be utilized, when an external ele
-

tron beam moves syn
hronously with the ex
ited surfa
e

wave over the graphene surfa
e on the distan
e su�
ient

to negle
t ele
tron 
ollisions with 
arbon atoms. Later


ondition allows ex
lude negative role of ele
trons multi-

ple s
attering whi
h destroys

�

Cerenkov syn
hronism. To

provide ne
essary slowing down we propose to make use

a sandwi
h stru
ture 
onsisted of parallel nonintera
t-

ing graphene layers. In Ref. 10 we have shown that in

two spatially separated graphene layers one of the sur-

fa
e plasmoni
 modes 
an be signi�
antly slowed down,

up to the velo
ity of graphene π-ele
trons. Moreover, a

new me
hanism of the frequen
y tuning appears exploit-

ing the interlayer distan
e varying. Re
ently

47,48

we have

demonstrated a strong graphene intera
tion with radia-

tion. In parti
ular, free standing single graphene layer


an absorb up to 50% of exposing radiation intensity in

mi
rowave and terahertz frequen
y ranges. This per
ent-

age 
an be signi�
antly in
reased under 
orresponding


hoi
e of the substrate. From the Einstein rules follows

that the inverse pro
ess, i.e. stimulated radiation emis-

sion, 
an pro
eed equally e�e
tively.

In the present paper we study ex
itation of surfa
e

waves propagating in graphene sandwi
h stru
tures and

resonantly intera
ting with an ele
tron beam, aiming at

the reveal of the generation 
onditions and methods of

the smooth frequen
y tuning by variation of the system

parameters. The remainder of the paper is organized as

follows. In Se
t. II the problem formulation and basi


equations are presented. A solution of the boundary-

value problem for a single layer graphene sheet, possibil-

ity of ele
tromagneti
 wave slowing down and frequen
y

tuning in that 
ase is presented in Se
t. III. Se
tion IV

presents results 
on
erning surfa
e ele
tromagneti
 wave

in two-layer graphene system, enhan
ed wave slowing

down for a
ousti
al mode and addi
tive 
hange of e�e
-

tive 
hemi
al potential for opti
al mode. Both these ef-

fe
ts give possibility to regulate the generated frequen
y

and resonan
e ele
tron beam energy. Dispersion equa-

tion for graphene system with external ele
tron beam is

presented in V. Solution of this equation gives in
re-

ment of instability and estimation of required for gener-

ation parameters. Se
t. VI 
ontains analysis 
on
erning

possibilities of generation and frequen
y tuning based on

previous 
al
ulations and 
on
lusion remarks.

II. BASIC EQUATIONS

Consider an ele
tron beam propagating along the x
axis parallel to a graphene sheet or multi-layer graphene

sandwi
h stru
ture 
omprising graphene sheets separated

by layers of a mediums with diele
tri
 fun
tions εi. The
index i marks the double layer graphene+underlying

medium in the sandwi
h, see Fig. 1. On its way over the

sandwi
h the beam intera
ts with the surfa
e ele
tromag-

neti
 wave retained by the graphene stru
ture. For the


oherent radiation generation, the beam motion should

be syn
hronized with the ele
tromagneti
 wave on the

beam propagation length over the stru
ture. In parti
-

ular, for the

�

Cerenkov emission me
hanism the ele
tron

beam velo
ity must 
oin
ide with the phase velo
ity vph
of ele
tromagneti
 wave. That is, sin
e the ele
tron ve-

lo
ity is smaller the speed of light, the surfa
e wave slow-

ing down is the ne
essary 
ondition of syn
hronization.
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FIG. 1: Geometry of the problem

Let us examine propagation of surfa
e waves along the

sandwi
h in free spa
e, assuming the distan
es between

graphene layers large on the atomi
 s
ale and, therefore,

negle
ting ele
tron interlayer tunnelling in the sandwi
h.

Further we follow the pro
edure developed in Refs.

47�49

.

The eigenwaves under study satisfy the Maxwell equa-

tions, boundary 
onditions at the graphene surfa
es in

ea
h layer, and the 
ondition that there are no exterior


urrent sour
es at in�nity. From the Maxwell equations

we express the �eld of TM wave in pie
ewise 
ontinuous

form:

H(i)
y = eiqx

(

c
(i)
1 exp{ik(i)z z}+ c

(i)
2 exp{−ik(i)z z}

)

. (1)

Here axis z is perpendi
ular to the graphene layers,

k
(i)
z =

√

ω2εi/c2 − q2 is the z-proje
tion of the wave ve
-
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tor in the i-th layer, q is the tangential 
omponent of the

wave ve
tor. Further we assume εi = 1. Generalization
the 
ase εi 6= 1 
an easily be performed and, what is im-

portant, does not bring to essential 
hanges. To �nd the

surfa
e eigenmodes we need to determine the unknown


oe�
ients c(i). The boundary 
onditions state 
onti-

nuity of the ele
tri
 �eld tangential 
omponent on the

graphene surfa
e while tangential 
omponent of magneti


�eld undergoes dis
ontinuity proportional to the surfa
e


urrent jt ex
ited in graphene

47�49

:

H (zi + 0)−H (zi − 0) =
4π

c
[jt (zi)× n] . (2)

Here n is the unit ve
tor along the z axis. As it has been
shown in Ref.

49

, the surfa
e 
urrent ex
ited in graphene

layer is related to the ele
tri
 �eld by

jt = σEt = αgsgv
T

π~
ln
[

2 cosh
( µ

2T

)] ic

ω + iΓ
Et , (3)

where σ is the sheet 
ondu
tivity of graphene monolayer,

µ is the 
hemi
al potential of ele
tron subsystem, T is

the temperature in energy units, Γ is the broadening pa-

rameter (
ollision frequen
y), and α is the �ne stru
ture


onstant. In further 
al
ulations we assume Γ ∼ 10 THz
in a

ordan
e with our previous experiments on the ele
-

tromagneti
 radiation absorption in graphene sandwi
h

stru
tures

47,48

. Note that in our approa
h any deviations

of graphene from idealness (defe
ts, doping, strains, non-

homogeneities, et
.) are taken into a

ount by variation

of 
hemi
al potential and broadening parameter Γ.
The 
oe�
ients gs and gv are due to spin and valley

degenerations

49

and for graphene 
an be a

epted both

as equal 2. In Eq. (3)we only restri
t ourselves to intra-

band transitions. At realisti
 values of 
hemi
al poten-

tial this is 
orre
t for the terahertz and mi
rowave fre-

quen
y ranges and inappli
able in opti
al and NIR ranges

where interband transitions 
ome into play. If 
hemi
al

potential proves to be less the operating frequen
y, inter-

band transitions should also be a

ounted for even at low

frequen
ies. However, to rea
h su
h a situation spe
ial

e�orts are required during the graphene synthesis and

storage

50

.

III. SURFACE WAVES IN SINGLE-LAYER

SYSTEM

Applying the pro
edure des
ribed to the sandwi
h

stru
ture 
onsisting of n layers, we arrive at the homo-

geneous system of 2n linear equations for 2n 
oe�
ients

c
(i)
1,2. Dispersion equation of the system arises when we

set the determinant of the system equal to zero and de-

termines the frequen
y dependen
e of the surfa
e wave

waveve
tor. For single graphene layer the system 
om-

prises 2 equations for 2 
oe�
ients:

c2 + c1 = 0 , c2(1 + σ0)− c1 = 0 . (4)

Here σ0 = (4π/ω)kzσ is a dimensionless parameter with

σ given by Eq. (3) under assumption gs, gv = 2. Assum-
ing 
hemi
al potential 
onsiderably ex
eeding the tem-

perature, from (4) follows the equation

2µα

~ω

√

q2c2 − ω2

ω + iΓ
= 1 , (5)

whi
h des
ribes dispersion of surfa
e ele
tromagneti


wave propagating in graphene. Dispersion equation (5)

leads to

q2c2 = ω2 +

[

~ω (ω + iΓ)

2µα

]2

. (6)

This equation demonstrates frequen
y dependen
e of the

surfa
e wave waveve
tor 
hara
teristi
 for degenerated

2D quantum systems. In the 
ase of potential �elds, when

we 
an negle
t the �rst term in the right-hand part of Eq.

(6), we arrive at the dependen
e

51 q ∼ ω2
or ω ∼ √

q).
Note that su
h a dependen
e drasti
ally di�ers from the

dependen
e inherent in the 3D 
ase where eigenfrequen
y

is proportional the Langmuir plasma frequen
y and does

not depend on the waveve
tor

52

. Spe
i�
 dispersion law

admits strong slowing down of surfa
e waves in 2D sys-

tems. The slowing down of surfa
e wave at di�erent µ is

1 2 3
0
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c/vPh
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FIG. 2: The phase velo
ity slowing down for surfa
e wave in

an isolated graphene layer for di�erent values of the 
hemi
al

potential: µ = 0.05 eV (1 ), µ = 0.1 eV (2 ), µ = 0.2 eV (3 ).

illustrated by Fig. 2. It is seen that the e�e
t 
an vary in

a wide range of values depending on the frequen
y and


hemi
al potential.

The dependen
e of the

�

Cerenkov resonant frequen
y

(the frequen
y 
orresponding to the syn
hronism 
on-

dition) ν on 
hemi
al potential is depi
ted on Fig. 3

at di�erent values of the ele
tron beam energy. Fig. 4

demonstrates the

�

Cerenkov resonant frequen
y variation

by 
hanging the ele
tron beam energy. Cal
ulations were

made for typi
al value of the 
hemi
al potential µ = 0.1
eV and µ = 0.2 eV.

In the above analysis we 
onsidered the TM wave,

whose magneti
 �eld ve
tor is 
oplanar with graphene
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FIG. 3:

�

Cerenkov resonant frequen
y vs 
hemi
al potential at

the ele
tron beam energy 4 KeV (1), 10 KeV (2) and 60 KeV

(3).
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FIG. 4: The

�

Cerenkov frequen
y dependen
e on the ele
tron

beam energy. Chemi
al potential µ = 0.1 eV (1) and µ = 0.2
eV (2).

and waveve
tor is normal to magneti
 �eld. Analogously,

boundary 
onditions 
an stated for TE wave and 
orre-

sponding dispersion equation 
an be obtained:

4µα

~
√

q2c2 − ω2

ω

ω + iΓ
= −2 . (7)

see (5) for 
omparison. Sin
e TE wave 
an exist only

when the real part of

√

q2c2 − ω2
is positive, from (7)

one 
an 
on
lude that graphene does not supports TE
wave in the frequen
y range under 
onsideration. Ex
i-

tation of TE waves in isolated graphene layer is possible

at mu
h higher frequen
ies when 
ontribution of inter-

band transitions be
omes signi�
ant

53

.

IV. SURFACE WAVES IN DOUBLE-LAYER

SYSTEM

A double-layer graphene system 
an be used for the

generation of

�

Cerenkov radiation by an ele
tron beam

10

.

The advantage being a
hieved by graphene doubling is

the appearan
e of the a
ousti
 mode among plasmon

os
illations inherent in the system. This mode whose

frequen
y is proportional to di�eren
e of frequen
ies of

plasmoni
 os
illations in layers. As a result, the phase

velo
ity of this wave appears to be mu
h less than that

a
hievable in monolayer. Owing to su
h a large slowing

down one 
an meet the

�

Cerenkov syn
hronism even for

graphene π ele
trons whose velo
ity is ≈ 300 less then

the speed of light.

It should be noted that the Eq. (3) for surfa
e 
ondu
-

tivity dedu
ed in Ref. 49 holds only true if ω ≫ qvF . If
this 
ondition is not valid, a more pre
ise expression for


ondu
tivity should be applied, see Eq. (39) in Ref. 10:

σ′ = αgsgv
T

π~
log

[

2 cosh
( µ

2T

)] ic(ω + iΓ)

v2F q
2

× (ω + iΓ)−
[

(ω + iΓ)2 − v2F q
2
]1/2

[(ω + iΓ)2 − v2F q
2]

1/2
. (8)

Here vF is the π-ele
trons velo
oty at the Fermi level. In
the 
ase ω ≫ vF q, Eq. (8) is redu
ed to (3).

Let us analyze surfa
e ele
tromagneti
 modes in two

graphene layers separated by the distan
e l. Magneti


�eld of the TM wave 
an be written as

Hy = exp {iqx}

×







a exp {−ikzz} , z < 0,
c1 exp {ikzz}+ c2 exp {−ikzz} , 0 < z < l,
d exp {ikz(z − l)} , z > l.

(9)

In regions before (z < 0) and after (z > l) stru
ture, sys-
tem (9) 
ontains only waves exponentially de
aying with

the distan
e from graphene. The boundary 
onditions

allowing evaluation of four 
oe�
ients a, d, c1, c2 are

given by:

c1 − c2 + a = 0 ,
c1 + c2 − a(1 + σ′

0) = 0 ,

c1 exp{−
√

q2 − ω2/c2l}
−c2 exp{

√

q2 − ω2/c2l} − d = 0 ,

c1 exp{−
√

q2 − ω2/c2l}
+c2 exp{

√

q2 − ω2/c2l} − d(1 + σ′

0) = 0 ,

(10)

where, as in previous se
tion, σ′

0 = (4π/ω)kzσ
′
and σ′

is given by Eq. (8) under assumption gs, gv = 2. The

resulting dispersion equation

2 + σ′

0 ± σ′

0 exp{−
√

q2 − ω2/c2l} = 0 (11)

manifests appearan
e of opti
al and a
ousti
 modes (up-

per and lower signs, respe
tively). At distan
es l mu
h
less than the wavelength, a
ousti
 mode slows down mu
h
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faster. This is be
ause the terms proportional to 
ondu
-

tivity in (11) are mutually suppressed in that 
ase. Thus,

in a
ousti
 mode the wavenumber q must be su�
iently

large in order to satisfy the dispersion equation.

Figure 5 presents the phase velo
ity dependen
e of the

surfa
e asymmetri
 ele
tromagneti
 mode on frequen
y.
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FIG. 5: Phase velo
ity slowing down for the a
ousti
 mode

in stru
ture with two graphene layers. In 
urves 1 − 5, the
distan
es between layers are 10 nm,20 nm, 50 nm, 100 nm and

1µm, respe
tively. Chemi
al potential in all 
ases is µ = 0.1
eV.
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FIG. 6: The a
ousti
 mode slowing down as a fun
tion of

interlayer distan
e in double graphene stru
ture at di�erent

values of 
hemi
al potential: µ = 0.05(
urve 1), 0.1 (
urve 2),

0.2 (
urve 3)

Comparing the 
urves on this plot with 
urve 2 from

Fig. 2 whi
h has been plotted for the single layer at the

same value of 
hemi
al potential µ = 0.1 eV, one 
an

see that the the a
ousti
 mode slows down in double-

layer stru
ture mu
h faster than in monolayer graphene.

Figure 5 also demonstrate a weak frequen
y dependen
e

of the slowing down fa
tor in the range 
onsidered. On

the 
ontrary, the dependen
e of this fa
tor on interlayer

distan
e is essential, see Fig. 6. This gives us a tool of

the e�e
t 
ontrol by varying the distan
e.

There is also opti
al mode in the double-layer stru
ture

under 
onsideration ("+" in (11)). When wavelength

ex
eeds signi�
antly the interlayer distan
e, the disper-

sion equation of opti
al mode di�ers from the single-layer


ase in that only that 
hemi
al potential should be dou-

bled in all expressions. In parti
ular, this means that

the slowing down of this mode is less than in a single

graphene layer. When intertlayer distan
e is 
onsider-

ably less then the wavelength, it 
an easily be seen that

for opti
al mode whi
h 
orresponds to sign "+" in (11),

the e�e
tive sheet 
ondu
tivity is doubled as 
ompared to

the 
ase of graphene monolayer. Analogous e�e
t holds

true for sandwi
h graphene stru
ture with number of lay-

ers more then two. For this 
ase, e�e
tive 
ondu
tivity is

equal to sum of layers 
ondu
tivities. Su
h an additivity

has been observed experimentally in studying of ele
tro-

magneti
 wave transmission through sandwi
h graphene

stru
tures

47,48

.

Note that in the above 
onsideration we restri
ted our-

selves to the 
ase µ ≫ T . When this inequality is vio-

lated, the system 
an be des
ribed by the e�e
tive 
hem-

i
al potential

µeff = 2T log
[

2 cosh
( µ

2T

)]

, (12)

as it 
an easily be dedu
ed from (3)and (8). Figure 7

shows temperature dependen
e of the ratio µeff/µ for

di�erent values of 
hemi
al potentials. One 
an see that

temperature has low in�uen
e on the ratio for µ > 0.1 eV
up to PMMA melting point. what is why in our transmis-

sion/absorption experiments with CVD graphene

47,48

,

where 
hemi
al potential was estimated as µ ∼ 0.14−0.17
eV, we did not observe temperature dependen
e. More

"pure" graphene is expe
ted to be more sensitive to tem-

perature 
hange.

V. DISPERSION EQUATION IN GRAPHENE

STRUCTURES IN THE PRESENCE OF

ELECTRON BEAM

Let the ele
tron beam of the width δ propagates on

the distan
e h from the two-layer graphene stru
ture.

The dispersion equation 
an be derived in the manner

des
ribed in the previous se
tion. The di�eren
e 
on-

sists in the appearan
e of additional region o

upied by

the ele
tron beam. In this region the z-proje
tion of the

waveve
tor is given by:

kbz = kz

√

1− ω2
l

γ3(ω − qu)2
, (13)

where ωL =
√

4πe2ne/me is the Langmuir frequen
y of

the ele
tron beam and γ = 1/
√

1− u2/c2 its Lorentz
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2
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FIG. 7: Temperature dependen
e of the e�e
tive 
hemi-


al potential for di�erent values of 
hemi
al potential: µ =

0.05(
urve 1), 0.1 (
urve 2), 0.2 (
urve 3)

fa
tor, u is the velo
ity of ele
trons, ne is the ele
-

tron density and e and me are the ele
tron 
harge and

mass.System of boundary 
onditions in this 
ase is dis-


ussed in Appendix A. It leads to the following dispersion

equation

Ib = − (2 + σ′

0)
2 − (σ′

0)
2 exp{−2

√

q2 − ω2/c2l}
σ′

0

[

2 + σ′

0 + exp{−2
√

q2 − ω2/c2l}(2− σ′

0)
] ,

(14)

where

Ib = exp(2ikzh)

× (k2bz − k2z) {exp(ikbzδ)− exp(−ikbzδ)}
(kbz − kz)

2
exp(ikbzδ)− (kbz + kz)

2
exp(−ikbzδ)

.

It is obvious, that in the 
ase when distan
e between

layers signi�
antly ex
eeds the distan
e of the surfa
e

wave dumping, the above dispersion equation is redu
ed

to the equation for a single layer. Mathemati
ally this

is a
hieved by negle
ting small exponential terms in nu-

merator and denominator in the right part of (14).

As an example, we depi
ted in Fig. 8 the instability

in
rement (imaginary part of the surfa
e wave tangential

wavenumber q) as a fun
tion of the frequen
y. Negativity
of the in
rement is the ne
essary 
ondition of the genera-

tion start. In the �gure we 
ompare the frequen
y depen-

den
ies for sandwi
h stru
tures with 4, 8 and 9 graphene

layers at µ = 0.2 eV in ea
h layer. All 
urves are 
hara
-

terized by pronoun
ed minima at the

�

Cerenkov resonant

frequen
ies (generation frequen
ies) with the linewidths

di
tated by the broadening parameter. These frequen-


ies appear to be in the THz range and signi�
antly shift

to short-wave side with the number of graphene layers.

Simultaneously, the in
rement strongly growth in abso-

lute value. Maximal absolute values of the instability

in
rements presented in Figs. 8 show us that the strong

ampli�
ation regime 
an already be realized at the in-

tera
tion length of the order of several 
entimeters. At

smaller lengthes, in
orporation into the system of a feed-

ba
k (for example, mirror) allows a
hieving generation in

the weak 
oupling regime.

10 20 30

-0.25

-0.20

-0.15

-0.10

-0.05

2 3
1

 (THz)

Im
(q

) (
cm

-1
)

FIG. 8: Frequen
y dependen
e of the instability in
rement

(Im(q)) for 4 (1), 8 (2) and 9 (3) graphene layers with 
hem-

i
al potential of a single layer µ = 0.2 eV. Ele
tron beam

energy E = 10 keV, Γ = 10 THz.

Figure 9 demonstrates the in
rement frequen
y de-

penden
ies for graphene monolayer at smaller ele
tron

beam energy and two di�erent 
hemi
al potential. In this


ase the generation frequen
y is redu
ed to several tera-

hertz with simultaneous dropping the in
rement absolute

value. Thus, multilayer graphene sandwi
h provides us

with mu
h better generation 
onditions as 
ompared with

the monolayer and admits resonant frequen
y tuning.

0.0 2.5 5.0

-0.25

-0.20

-0.15

-0.10

-0.05

2

1

 (THz)

Im
(q

) (
cm

-1
)

FIG. 9: Frequen
y dependen
e of the instability in
rement

(Im(q)) for a single graphene layer. Ele
tron beam energy

E = 4 keV, 
hemi
al potential is µ = 0.1 eV (1) and µ = 0.2
eV (2).
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VI. CONCLUSION

In the present paper, we have studied propagation in

graphene sandwi
h stru
tures of surfa
e waves exited by

an ele
tron beam moving over the sandwi
h surfa
e. We

have demonstrated existen
e in the multi-layered stru
-

ture of strongly slowed down a
ousti
 mode whi
h al-

lows syn
hronization of the beam and the surfa
e wave

at mu
h less beam energy. Moreover, a smooth frequen
y

tuning be
omes possible by varying the system parame-

ters, su
h as beam energy, 
hemi
al potential and inter-

layer distan
e.

At a given beam energy the frequen
y 
an smoothly

be tuned by varying the 
hemi
al potential µ by means

of ele
trostati
 doping, see Fig. 3. At a �xed 
hemi
al

potential the tuning is attained by the ele
tron beam

energy variation as is demonstrated by Fig. 4. If the

graphene sandwi
h stru
ture allows alteration of the in-

terlayer distan
e, the spe
trum tuning 
an be realized

even at a �xed 
hemi
al potential and beam energy, see

Fig. 5. This is be
ause in multi-layered graphene stru
-

tures there are ele
tromagneti
 modes whose phase ve-

lo
ities 
an be both essentially smaller and ex
eed the

the surfa
e wave phase velo
ity rea
hable in a single-

layer graphene. All the fa
tor mentioned allow mat
h-

ing the ele
tron beam energy, the 
hemi
al potential and

the interlayer distan
e (and number of layers) to syn
hro-

nize ele
tron beam and surfa
e ele
tromagneti
 wave at

a �xed frequen
y, while external ele
trostati
 �eld (ele
-

trostati
 doping) provides additional possibility for �ne

frequen
y tuning.

It should be emphasized that the graphene layers in

sandwi
h should not be obligatory whole. In order to pro-

vide intera
tion of the ele
tron beam with the graphene

on the several 
entimeters length, it is su�
ient to have a

mosai
 surfa
e 
omprising disoriented in plane graphene

blo
ks. Moreover, sin
e 
ylindri
al and tubular beams

are widespread in ele
troni
 engineering, planar geome-

try 
onsidered in the present paper (see Fig. 1) 
an eas-

ily be rearranged to 
ylindri
al by, for example, sta
king

graphene layer on a 
ylinder.

Thus, based on the analysis 
arried out, one 
an 
on-


lude that multi-layered graphene/diele
tri
 stru
tures

with negligible interlayer tunnelling provide enhan
ed


onditions for the terahertz

�

Cerenkov radiation gener-

ation ex
ited by an external non-relativisti
 ele
tron

beam. New methods of the generation frequen
y tun-

ing 
an be realized by varying the graphene doping, the

number of graphene sheets, the distan
e between sheets,

et
.
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APPENDIX A: ELECTRON BEAM

ACCOUNTING

Consider ele
tron beam propagating over some plane

stru
ture, see Fig. 1. In further 
onsideration we make

use the pro
edure developed in Ref. 54. Linealized equa-

tions des
ribing ele
tron beam dynami
s are well-known

and given by:

∂δvx
∂t

+ u
∂δvx
∂x

=
e

mγ3
Ex

∂δn

∂t
+

∂

∂x
(n0δvx + uδn) = 0

(A1)

Fourier transform of (A1) leads to

(

k2bzc
2 − ω2

)

Ex − qkbzc
2Ez = −ω2

Lω
2

∆2γ3
Ex

−qkbzc
2Ex +

(

q2c2 − ω2
)

Ez = 0
(A2)

that gives the dispersion equation as follows

k2b c
2 − ω2 =

ω2
L

∆2γ3

(

q2c2 − ω2
)

, (A3)

where k2b = q2 + k2bz and ∆ = ω − qu. Solutions of

this equation is given by (13). Boundary 
onditions fot

the ele
tromagneti
 wave (1) intera
ting with ele
tron

beam are produ
ed by analogy with the 
ase 
onsidered

in Se
ts. III-IV by imposing 
onditions on tangential


omponents of ele
tri
 and magneti
 �elds on the bound-

aries. The only di�eren
e is that in the beam, the follow-

ing relation di
tated by Maxwell equation

Ex =
k20zc

ωkbz
Hy. (A4)

is used for tangential 
omponents of ele
tri
 and mag-

neti
 �elds. Parti
ulary, for the ele
tron beam with the

thi
kness δ propagating over two layer graphene on the

distan
e h we have a system for eight 
oe�
ients. Two

of them, a1 and a2 
orrespond to regions below stru
-

ture and above the beam, respe
tively, while 
oe�
ients

c1,2 and d1,2 des
ribe waves inside two-layer stru
ture

and between stru
ture and beam. Finally, 
oe�
ients

f1,2 
orrespond to two 
ounter-propagating waves in the

beam:

Hy = exp {iqx}

×



























a1 exp {−ikzz} , z < 0,
c1 exp {ikzz}+ c2 exp {−ikzz} , 0 < z < l,
d1 exp {ikz (z − l)}

+d2 exp {−ikz (z − l)} , l < z < h,
f1 exp {ikbzz}+ f2 exp {−ikbzz} , h < z < h+ δ
a2 exp {ikzz} , z > h+ δ.

Assuming determinant of this linear system to be zero

we 
ome to Eq. (14).
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