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Abstract— In this paper, a simple relaxation scheme to 
reduce the encoding and decoding complexity of polar codes is 
introduced. Unlike the conventional relaxation schemes, the 
proposed technique relies on selecting relevant 
encoding/decoding nodes based on initialized relaxation 
attribute values and their extension to the remainder of the 
encoder and decoder stages. We show that the proposed 
relaxation scheme provides comparable BLER performance to 
the conventional polar codes by numerical simulations, while 
having significant complexity reduction. 
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I. INTRODUCTION 
The polar codes was introduced in [1] and has been 

studied intensively in the literature due to its capacity 
achieving performance with relatively low complexity. 
Recently, the polar codes has been adopted as a channel 
coding scheme for control channel in 3GPP NR (New Radio) 
standardization [8]. Furthermore, its applicability as one of 
main channel coding candidates for the terabit per second 
and THz communication is also under investigation. [12]  

As a method to reduce complexity and latency of polar 
encoding and decoding, a method denoted as relaxation 
scheme is introduced and analyzed in [2]. The relaxation 
scheme has the benefit of complexity reduction without loss 
of performance under proper selection of relaxed nodes. 

In [3-6], the relaxation scheme is extended as “irregular 
polar code” and it is shown that additional complexity 
reduction gain can be achieved via more sophisticated 
procedures that are based on the calculation of mutual 
information. 

The approaches for relaxation in [2] and [3-6] are based 
on a similar procedure to conventional polar code 
construction [7] where the error probability of all nodes or 
union bound needs to be calculated in conjunction with the 
process of code construction. In this case, floating point 
calculation with high precision is required which incurs 
substantial calculation complexity, and hence limiting the 
practicality of these techniques. 

To tackle this limitation, in one approach, the information 
corresponding to the relaxed nodes can be stored in memory 
after off-line calculations, which than can be used for the 
underlying relaxation operations in encoding and decoding 
process. However, the memory requirements in this approach 
increases exponentially with the block length. Moreover, this 
approach also undermines some problems in code flexibility, 
as that would entail additional memory requirement for each 
possible code rate and block length. 

In this paper, a simple relaxation scheme which can be 
incorporated to polar encoding and decoding is introduced. 
In Section II, we provide the high level summary of the polar 
codes and its encoding operations. In Section III, the 
conventional relaxation methods are shortly described. The 
proposed relaxation scheme is provided in Section IV and 
the numerical results are given in Section V. Section VI 
concludes this paper. 

II. POLAR CODE 
The polar encoding operation can be defined as below 

(cf. [1]) 



where  is a binary input vector with a 
length of ,  is a binary codeword vector generated 
by the multiplication of  and . Here,  have the same 
length as . A part of input bits in  can be set to a fixed 
value (usually 0) and they are called as frozen bits. The 
positions of frozen bits can be represented by the set . The 
remaining positions of input bits with variable information 
bits (unfrozen bits) are denoted as the set . The number of 
elements in  is . The code rate  of polar code is . 
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Fig. 1. Node representation of polar code  

 is an  generator matrix and can be further 
expressed as , with  being -th kronecker 
product of  where  

74978-1-5386-5041-7/18/$31.00 ©2018 IEEE ICTC 2018



 .                                     (2)

In the original configuration of polar code in [1], 
 and  is a bit reversing matrix to interleave 

the input bits in a bit reversing manner, which is omitted in 
this paper for the sake of simplicity. This assumption is also 
made in the description of polar codes in 3GPP NR [8]. 

Polar encoding process can be described as in fig.1 for 
the case of . The encoding diagram can be 
extended to an arbitrary integer  ( ). There 
exist  nodes with  stage (horizontal) indices 
and  bit (vertical) indices. The 0-th stage stands for input 
bits with frozen and unfrozen bits, and the -th stage 
corresponds to output coded bits. The node in the diagram 
can be indicated by , , . 

III. RELAXATION METHOD 
The relaxation method of polarized nodes in polar 

encoding process can be described as in fig. 2. 
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Fig. 2. Relaxation of polarized nodes 

In fig. 2,  in node  and  in node  are 
polarized by an exclusive OR (XOR) operation and as a 
result,  in node  and  in node  are 
generated. When the relaxation operation is applied among 
nodes , ,  and  the XOR 
operation is omitted. That is, the node  has the same 
value as node  as  and the node  has the same 
value as node  as . 

In the decoding process of relaxed polar codes, the 
calculation of log-likelihood Ratio (LLR) values for node 

 and  are calculated from node  and node 
. The calculation can be skipped and the same LLR 

values as in node  and node  can be 
assumed at the stage . 

In decoding of relaxed polar code, the conventional 
successive cancellation (SC) based decoding and belief 
propagation (BP) based decoding can be performed based on 
the described LLR transfer steps [9-11]. 

A relaxation attribute value , similar to the 
one in [2], is used in the remaining part of this paper. When 

 and , the polarization unit (as in [3]) 
among nodes , ,  and  are 
relaxed and the XOR operation among the nodes are skipped. 
When  or , there is no relaxation among 
nodes , ,  and , and the 
conventional polarization process is applied and the XOR 
operation is retained. 

 and  indicates the indexes of paired nodes that go 
through XOR operation at the stage   and  under 
the configuration of polar code in fig. 1. 

The complexity reduction gain ( ) by relaxation can be 
defined as the ratio between the number of XOR operations 
after the relaxation and the original number of XOR 
operation without relaxation as in [2]. The original number 
of nodes XOR operations without relaxation can be . 

 .            (3) 

The conventional relaxation schemes developed in [2] 
and [3-6] are based on similar procedure to polar code 
construction. The schemes introduced by [2] and [3-6] are 
based on the calculation of error probability in each node 
(e.g. the nodes shown in fig. 1) and requires heavy 
computational load or large memory capabilities to provide 
flexibility depending on  and . 

A. Relaxed polar codes in [2] 
The concept of relaxation for polar codes is introduced 

by [2], where the so-called good channel relaxation for 
overly polarized nodes and the bad channel relaxation for 
nodes which cannot give further contribution to the code 
construction are proposed. 

In the proposed relaxation method in [2], starting from 
nodes ,  as shown in fig. 3, the error 
probability of each stage is calculated and the nodes at which 
the relaxation operation starts are determined once the error 
probability of specific nodes is less than or larger than the 
predetermined threshold value. In the good channel 
relaxation, a lower threshold , whereas for the bad channel 
relaxation an upper threshold  is applied. After 
determination of the first relaxation node, the nodes that are 
connected to the starting nodes in the subsequent stages are 
all applied with the relaxation operation as in fig. 2. 

In [2], it is proved in lemma 5 that the union bound on 
the block error rate (BLER) of relaxed polar code is not less 
than the union bound on the BLER of polar code without 
relaxation. 

B. Irregular polar codes in [3-6] 
In [3-6], the concept of relaxation in [2] is generalized 

and the so-called irregular polar code by inactivation is 
introduced. The inactivation process in irregular polar codes 
is the same as the relaxation in [2] for a single pair of 
involved nodes. However, the selection of inactivated nodes 
over the full polar coded block follows a different method. 

In [3], the mutual information for each node and 
corresponding union bound of error rate is calculated 
depending on the selection of inactivated polarization units. 
The group of selected polarization units that has the lowest 
error probability is finally determined and used for overall 
inactivation. The selection of inactivated polarization units 
by exhaustive methods are impractical as the combination of 
selected group can be excessive (for instance, it is  
combinations in case of  [3]). To overcome this 
issue, a greedy, lower-complexity approach is proposed 
where code construction of selecting frozen bits can also be 
derived with the inactivation group selection. [3] 
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The irregular polar code can have better complexity gain 
than the relaxed polar code as it includes more combinations 
of candidate nodes group for inactivation. In [3], a simple 
example that demonstrates a better error rate performance by 
inactivated polar codes compared with the standard polar 
codes is provided under BEC (Binary Erasure Channel). 

IV. PROPOSED RELAXATION SCHEME 
In [2], the construction scheme for relaxed polar code in 

general binary memoryless symmetric (BMS) channel is 
proposed. In the proposed scheme of [2], the good channel 
relaxation starts from the nodes where the calculated error 
probability is lower than the predetermined threshold value 

 in the process of polarization as shown in fig. 3. 

The relaxation operation that starts from an initial relaxed 
node (red colored circle) is extended to the remaining stages 
until the level of input bit nodes is reached. (level 0 or stage 
0) The selection of initial relaxation node can be equivalent 
to the selection of corresponding group of input bit indices at 
stage 0. 

From this observation, the relaxation algorithm based on 
input domain indices and the reliabilities of input bit nodes 
can be developed. 
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Fig. 3. Relaxation construction proposed in [2] 

The proposed relaxation scheme in this paper is depicted 
in Algorithm 1. The algorithm involves both the good 
channel and the bad channel relaxation elements. The bad 
channel relaxation is performed by selecting most unreliable 

 indices in the initialization step (step 1) of Algorithm 1. 
For the good channel relaxation, the most reliable  bit 
indices are selected as attributes of initialization for  in 
step 2. 

In the proposed scheme, two relaxation attributes 
between two nodes involved by XOR operation should have 
the same value (0 or 1) and the case where different attribute 
combinations is excluded for the remaining steps. The steps 
3-7 employ this exclusion. 

The steps 8-14 describe extension of relaxation 
operations from the initialization stage  to the 
remaining stages. When all  from  to 

 has value of 1, all  from  to 
 and from  to  This 

corresponds to the full relaxation of the component polar 
code starting from input bit index  with a size of . The 
value of  corresponds to full polar code and the 

detection of a node group with consecutive ones (attribute 
value for relaxed nodes) proceed until the minimum block 
size of 2. In the loop step , exploration of a smaller group 
that is already included in a selected group of relaxation is 
not required. After Algorithm 1, all attribute values of 
relaxation  can be determined. 

 

Algorithm 1 Proposed relaxation scheme 
Initialization 
1:   Select most reliable  indices 

  
      from all input bit indices. 
2:    for all ,  
3:   for =1 to   with increment 1 do 
4:      if  or  
5:          ,  
6:      endif 
7:   endfor 
Begin 
8:   for =   to 1 with decrement 1 do 
9:      for =1 to  with increment  do 
10:        if  for all  
11:                   for all , 
                                                    and  
12:        endif 
13:    endfor 
14: endfor 
End 

 

Heuristically,  for good channel relaxation can be 
determined for the consideration of performance and 
complexity gain by relaxation, 

 

                     ,    when . 

,    else .  (4) 
 

In case of bad channel relaxation by , the bad channels are 
corresponding to starting relaxation from frozen bits. 

 can be set to maximize complexity gain by the 
bad channel relaxation. Usually frozen bits are set to a value 
of zero and there is no actual XOR operations in the 
encoding process and no decoding procedures are needed for 
the related nodes. The special case  can be 
called as “full frozen bit relaxation” where  is not altered 
and hence no changes in the original polar decoding process 
is required. No performance degradation in comparison to 
the standard polar codes is observed in this case. 

Contrary to bad channel relaxation, the good channel 
relaxation alters  compared with the original polar coded 
bits obtained from the same . Also as a result, the good 
channel relaxation changes the error performance of the 
original polar code. 

76



V. NUMERICAL RESULTS 
The simulation conditions adopted for numerical results 

are summarized in TABLE I and the simulation results are 
shown in fig. 3, fig. 4 and fig. 5. 

The polar code construction in the simulation is based on 
the reliability sequence described in [8] and CRC 
polynomials used for CRC aided successive cancellation list 
(CA-SCL) decoding [10] is also based on 24 bit (CRC24C) 
polynomials defined in [8] 

The values of  and  for each code rate in TABLE I 
are derived from (4). 

In fig. 4 and fig. 6, the BLER performance of relaxed 
polar code by the proposed scheme with code rates ( =1/4, 
1/2 and 3/4) are not degraded by relaxation and at BLER 
=  have comparable BLER performance to the 
conventional polar code without relaxation.  

In TABLE II, the complexity reduction gains are 
summarized. As shown in the table, the proposed relaxation 
scheme can achieve a relaxation gain ( ) of 20.0% with 
code rate =3/4 by applying good channel relaxation and 
33.48 % with code rate =1/4 by applying both good and 
bad channel relaxation. s in the table are calculated from 
(3). 
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Fig. 4. BLER performance comparison in case of  =1/4 
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Fig. 5. BLER performance comparison in case of  =1/2 
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Fig. 6. BLER performance comparison in case of  =3/4 

TABLE I.  SIMULATION CONDITIONS 

Conditions Parameters 
 1024 

(including CRC) 280, 536, 792 
Code rate ¼, ½, 3/4 

CRC 3GPP NR 24 bit (CRC24C) in [5] 
Decoding scheme CA-SCL (list size=1 and 8) 

Code construction 3GPP NR polar code sequence 
(based on Table 5.3.1-2 in [5]) 

Modulation QPSK (gray mapping) 
Channel model AWGN 

Minimum counted error 100 block error 

TABLE II.  COMPLEXITY REDUCTION GAIN FOR SIMULATED CASES 

Code rate Parameters  

1/4 
=140 2.54% 

=140, =744 33.48% 

1/2 
=268 6.8% 

=268, =488 22.3% 

3/4  20.0%  
=612, =232 25.37% 

 

VI. CONCLUSION 
In this paper, a simple relaxation scheme to provide 

practical implementation of polar codes is proposed and the 
scheme is numerically evaluated in terms of BLER 
performance and complexity reduction in XOR operations. 
For the code rates of 2/3 and 3/4, complexity reductions in 
the order of 20-33% are observed with no or negligible 
BLER performance degradation.  

As future work, extension of this work to achieve higher 
gain of error performance and complexity reduction can be 
studied. 
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