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Examples of SNA approaches to describe FP networks
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Definition of R&D networks using EUPRO

Three main choices in EUPRO

I. organisation to organisation (one-mode)

II. project to project (one-mode)

III. organisation to project (two-mode, bipartite)

Bipartite network has more information than the others; the two projection networks throw 

away information (do you actually need it?)
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Part 1: FP analysis from a SNA perspective

Visualising and describing networks is an important exploratory step in our analyses 

of R&D networks

How many organisations and interactions can be observed in the network under 

consideration?

Where can we find intensive collaboration, dense network areas, etc.?

What is the thematic and/or spatial distribution of the network? 

Investigating network structures of R&D networks

concerning their connectedness, centralisation, cliquishness, and heterogeneity 

Do network structures differ across themes? 

Do network structures differ across political instruments? 

What role do different organisation types play?

What role do different countries play?

What is the backbone of the network? 

Is the network characterized by relevant, thematically distinct community groups?
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Example from EUPRO: Structure of FP networks 

Background and Objectives

Analysis of collaborative networks promoted by the European 

Framework Programmes 

Exploit the richness of FP data through social network analysis to 

contribute to the progress of monitoring the move towards  the 

European Research Area (ERA)

Focal points

Global characteristics of (thematically or spatially distinct) FP networks 

Local characteristics, i.e. who are the central players, and how are they 

inter-connected?

Dynamics of global and local characteristics
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Network visualisations: First exploratory steps and 

illustration of basic network structure

Visualisations using graph-theoretic approaches; 

most often used: spring model inspired visualisations

nodes with higher interactions are positioned nearer to each other; 

highly inter-linked nodes are positioned in the centre of the network

Spatial network visualisations

Nodes are positioned according to their positioning in geographical 

space (e.g. cities, regions). 

Node and link size often visualised proportional to specific network 

analytic measures (e.g. node size corresponding to degree). 
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Network visualisations (I) (spring model approach) 

822.11.2017

Network of actors participating in FP projects 

related to Urban Logistics (FP5-FP7) 



Network visualisations (II) (spring model approach) 
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Thematic clusters in urban research 

project networks 



Network visualisations (III) (spring model approach) 

1022.11.2017

FP4 AEROSPACE CSC 

Organisation core network



Network visualisations (IV) (spring model approach) 
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The cross-country co-patent pharmaceutical network

2006-20102001-2005



Network visualisations (V) (spatial approach) 

FP-network co-patent network

Positive links

Matrix elements 8,896

Sum 268,498

Positive links

Matrix elements 43,693

Sum 1015,336

co-publication network

Positive links

Matrix elements 36,391

Sum 1868,686
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Network visualisations (VI) 

(spring model vs. spatial approach)

A: FP network of Austria B: Co-patent network of Austria
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Basic SNA measures across different FPs
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Graph Characteristic FP1 FP2 FP3 FP4 FP5 FP6

No. of vertices N 2,116 5,758 9,035 21,599 25,840 17,632

No. of edges M 9,489 62,194 108,868 238,585 385,740 392,879

No. of components 53 45 123 364 630 26

N for largest component 1,969 5,631 8,669 20,753 24,364 17,542

Share of total (%) 93.05 97.79 95.95 96.08 94.29 99.49

M for largest component 9,327 62,044 108,388 237,632 384,316 392,705

Share of total (%) 98.29 99.76 99.56 99.60 99.63 99.96

N for 2nd largest component 8 6 9 10 12 9

M for 2nd largest component 44 30 72 90 132 72

Clustering coefficient 0.65 0.74 0.74 0.78 0.76 0.80

Diameter of largest component 9 7 8 11 10 7

l largest component 3.62 3.21 3.27 3.45 3.30 3.03

Mean degree 9.0 21.6 24.1 22.1 29.9 44.6

Fraction of N above the mean (%) 29.4 28.0 23.6 22.4 23.5 26.1

Mean vertex size 3.0 3.1 3.3 3.0 2.8 2.7

Standard deviation 5.0 6.1 7.7 7.9 6.8 5.4



Basic SNA measures for cross-country pharmaceutical 

co-patenting
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Table 1: Indicators for cohesion in the global pharmaceutical network 

Indicator 
1996-2000 2001-2005 2006-2010 

Random 

graph* 

Number of nodes n 26 26 26 26 

Number of edges l 52 70 94 52 

Number of collaborations (weights w) 3210 4563 5431 - 

Density 0.076 0.103 0.139 0.148 

Clustering-coefficient 0.220 0.261 0.448 0.116 

Average path length 2.226 2.110 2.245 2.437 

Mean degree 1.301 1.923 2.846 4.120 

Number of nodes higher mean degree (in %) 9(34.6%) 12 (46.2%) 13 (50.0%) 33.124 

Note that we use the unweighted graph G1 for these indicators.  

*Erdös-Renyi conceptualization of random graphs 



Basis centrality measures on the position of universities
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Univ. Degree Univ. Eigen-
vector

Univ. Between
-ness

Univ. Close-
ness

www.dtu.dk 0.095286 www.cam.ac.uk 0.128687www.kuleuven.be 0.018065www.dtu.dk 0.513087

www.kuleuven.be 0.093381 www.ox.ac.uk 0.126532www.dtu.dk 0.017988www.kuleuven.be 0.510476

www.tudelft.nl 0.080219 www.ethz.ch 0.125548www.tudelft.nl 0.013404www.tudelft.nl 0.507084

www.imperial.ac.uk 0.077413www.dtu.dk 0.122414 www.imperial.ac.uk 0.010850 www.imperial.ac.uk 0.505279

www.manchester.ac.uk 0.073707 www.imperial.ac.uk 0.120929 www.manchester.ac.uk 0.010150 www.manchester.ac.uk 0.504193

www.ethz.ch 0.073014 www.manchester.ac.uk 0.113072 www.ethz.ch 0.010126 www.ethz.ch 0.503183

www.cam.ac.uk 0.072079www.kuleuven.be 0.110657 www.unibo.it 0.009620 www.cam.ac.uk 0.502995

www.ox.ac.uk 0.071283 www.ucl.ac.uk 0.109182 www.ucl.ac.uk 0.009562 www.ox.ac.uk 0.502301

www.ucl.ac.uk 0.068685 www.epfl.ch 0.102404 www.epfl.ch 0.009555 www.unibo.it 0.502035

www.epfl.ch 0.065810www.tudelft.nl 0.098362 www.rwth-aachen.de 0.009486 www.ucl.ac.uk 0.500980

Overview on top ranked universities in FP7 
(three highest degree ranks marked in bold and different colours)

Note: Full ranking and url assignment to university names given in attached xls file



Examples on public transnational research funding networks
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Participation of countries in transnational research 
programmes driven by the decisions of national funding 
agencies -either ministries, research councils, sectoral 
agencies or innovation agencies

JoREP enables to observe the networks of funding agencies 
in European countries participating in transnational EU 
research programs, and how the creation of the mentioned 
linkages changes in the different years



18

ERA-NETs programmes are analysed using data collected in the JoREP 2.0

database (one of the facilities of EUFP7 RISIS project).

JoREP 2.0 stores descriptive information on the characteristics of research

programmes, on RFOs managing the different programmes and on the volume of

funding channelled through these programmes.

Programmes: 47 ERA-NETs

Geographical coverage: EU28 + CH, IL, NO, TR

Reference years: from 2012 to 2014.

Data
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Basic network analysis

Year Nodes Edges
Weighted Density 

(Standardized)
Avg. Degree

Avg. Distance 

(Standardized)

2012 82 396 0.06 4.8 2.922

2013 134 1622 0.09 12.1 2.335

2014 130 1738 0.10 13.4 2.264

Nodes are agencies and edges between them joint funding programms



Examples of regression approaches to analyse FP network
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Determinants of European FP networks from a spatial
interaction modelling perspective

An overview of public funding of transnational research



Regression approaches: Typical questions

Investigation of mechanisms of network constitution and dynamics

What are the determinants of network participation? (e.g., Lepori et al. 2015)

What are the determinants of partner choice in a network? (e.g., Paier and Scherngell 

2011)

Which economic, technological, social and geographic conditions affect the constitution 

of observed collaboration patterns and dynamics? (e.g., Scherngell and Barber 2009 and 

2011, Scherngell and Lata 2013)

Most basic form: regression models focusing on node characteristics 
(such as number of links, e.g. Lepori et al. 2015)

Advanced form: regression models explaining links and their magnitude 
(often spatial interaction models, see, e.g., Scherngell and Lata 2013) 
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A short introduction on the basics of regression analysis

A statistical instrument to investigate the relationship between on 
dependent and one or more independent variables

Regression analysis tests pre-assumed structures, i.e. it is based on a 
strong theoretical foundation

Terminology

y x1, x2, x3, x4, …

Dependent variable independent variable

endogenous exogenous

explained explaining

response variable predictor variable
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The classical linear regression

y dependent variable

x1 , ..., xK independent variable

β1 , ..., βK regression coefficients

β0 constant/ intercept

ε error term

0 1 1 2 2
...

K K
y x x xβ β β β ε= + + + +

IWR-6: 11

In matrix notation

y (n, 1) vector of observations on the dependent variable

X (n, K) matrix of observations on the independent variables

β (K, 1) vector of regression coefficients (inlc. constant β0)

ε (n, 1) vector of error term

= +y Xβ ε

23



explanation by mean

b = explanation by variable X

y

y

x

Residuum

x

( ) ( )
-1 -1

T T T T=b X X X y = + X X Xβ ε

OLS (Ordinary least squares)

The OLS estimator
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Main assumption of OLS regression

Linear functional form

Independent and identically distributed (iid, i.e. same probability

distribution among all variables)

The regressors must be linearly independent from each other (no 

multicollinearity, full rank)

Spherical errors (homoskedisticity, no autocorrelation)

Normality of residuals
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Regression evaluation

Global evaluation
Coefficient of determination (R-squared)

F-Test

Log-Likelihood and information criteria

Evaluation of regression coefficients (t-test)

Model diagnostics for assumptions
Test statistics  for heteroskedasticity (e.g. Breuch-Pagan test)

Test of normality (e.g., Jarque-Bera test)

Multicollinearity condition number

Tests for non-spherical disturbances (e.g. unit root tests, Moran´s for spatial 
autocorrelation)

Residual plots (linear functional form assumption)
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Limited dependent (non-metric) variables …

… as one major source for violating basic assumptions

→ alternative model specifications, most importantly (Long and Freese 2001)

Binary dependent variables: Logit or probit regression models

Ordinal or multinomial categorical outcomes: Ordinal or multinomial logit 
regression models

Count nature of dependent variables: Poisson and Negative Binomial regression 
models (inlc. zero inflated models)

Censored dependent variables: Tobit regression models
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An example of basic regressions analysing FP networks

Such basic regressions explain node characteristics by regression approaches

The represent the most basic approach
Understanding how much network structure is associated with
organizational covariates
Disregarding network effects.

Example: Explaining the participation (degree) of universities in FP networks by
university characteristics

Testing to which extent we can associate the number of participations with
the university characteristics, like size, international reputation, disciplinary
characteristics
Based on the matching of EUPRO with ETER.

Benedetto Lepori, Valerio Veglio, Barbara Heller-Schuh, Thomas Scherngell, 
Michael Barber (2015), Participations to European Framework Programs of Higher 
Education Institutions and their association with organizational characteristics, 
Scientometrics, 105(3), 2149-2178.
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Advanced regression techniques …

… focus is not on node characteristics, but on the explanation of links and their 

magnitude

Spatial interaction model has come into fairly wide use in this context:

used to model network links between discrete units in geographical space 

(see, e.g., Sen and Smith 1995), 

such as migration, commuting, telecommunication flows, or, more recently, 

knowledge flows and R&D collaborations

Relating magnitude of links to different kinds of variables
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The general spatial interaction model

( , ) ( , ) ( , )i j i j i jY µ ε= +

( , ) ( ) ( ) ( , )i j i j i jC A B Sµ =

i, j = 1, ..., n

Random variable, 

corresponding to observed 

interactions yij between i and j

Disturbance term about the mean

expected mean 

interaction frequency
spatial units (regions)

(1)

30

destination 

function

origin 

function

separation

function

constant

with

Functional specification: the multivariate exponential spatial interaction model 
(see, e.g., Fortheringham and O‘Kelly 1989, Fischer and Wang 2011)

( ) ( ) ( )

11 1

( , ) ( , )exp
q r

Q R K
k

iq jr k

kq r

i j i jC A B S
β γ

µ θ
== =

 
= − 

 
∑∏ ∏

(2)

(3)

R destination 

measures

K separation

measures

Q origin 

measures



Least squares suffers from major drawbacks (Flowerdew and Aitkin 1982) 

due to the discrete nature of spatial interactions leading to biased OLS 

estimates (Cameron and Trivedi 1998)

ML estimation of the parameters under more realistic distributional 

assumptions: (Yij) ~ Poisson is one common assumption, so that

Equidispersion assumption: Equality of conditional mean and variance

For spatial interaction data, overdispersion is common due to spatial 

heterogeneity → Negative Binomial specification as promising solution

The Poisson spatial interaction model
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( , )
( , ) ( , )

( , ) ( , ) | ( , )

( , )

exp[ ][ ]
Pr[ ]

!

y i j
i j i j

i j i j i j

i j

Y y
y

µ µ
µ=

− −
= (4)i, j = 1, ..., n

( , ) ( , ) ( ), ( , ), ( , )

( , ) ( , ) [( , ), ]

[ | ]

exp[ ]

i j i j i j i j

i j i j

E y A B S

A B S

γ

β γ θ

µ =

=

with

(5)i, j = 1, ..., n



An example (Scherngell and Lata 2013)

objective is to estimate progress towards ERA,

by identifying the evolution of separation effects affecting the probability of 

cross-region R&D collaborations in the European network of R&D 

cooperation,

Separation effects involve geographical, technological, cultural and institutional 

barriers

The European network of R&D cooperation is captured by joint participation of 

organisations in R&D projects funded by the FPs 

over the time period 1999-2006,

within a Negative Binomial Spatial Filter Interaction Model Framework
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Data

The core data set used for the study is extracted from EUPRO

→ tracing of the pan-European network of actors performing joint R&D

based on 20,123 collaborative R&D projects, producing about

2.5 million collaboration links in total, 

disaggregated to the years 1999-2006, and to

255 NUTS-2 regions of the 25 pre-2007 EU member states, 

as well as Norway and Switzerland
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Capturing space-time patterns of cross-region networks

11 12 1
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y

y

The cross-region collaboration matrix Y for time period t

for i, j = 1, ..., n; t = 1, ..., T

The regional collaboration matrix Y for a given 

year t contains the collaboration intensities 

between all (i, j)-region pairs, given the 

i = 1, ..., n = 255 regions in the rows and the 

j = 1, ..., n = 255 regions in the columns

The cross-region collaboration matrix Y for time period T
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Spatial patterns of the R&D networks
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1999 2006

Notes: node size corresponds to regional degree centrality, line transparency with the number of joint projects 

between two regions 



The spatial interaction model

(1)

(2)

(3)

(4)

(5)
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ijt ijt ijty X ε= +

ijt it jt ijtX O D S=

i, j = 1, ..., n; t = 1, ..., T

Number of R&D 

collaborations between 

regions i and j at time t

with

Disturbance term

Function of 

covariates

( )

1

exp
K

k

ijt kt ijt

k

S sβ
=

 
=  

 
∑

Separation measures

k = 1 geographical  distance between  region i and j 

k = 2 neighbouring region effects 

k = 3 neighbouring country effects 

k = 4 country border effects 

k = 5 language border effects 

k = 6 technological distance between region i and j

255 Nuts2 regions Time Period (1999-2006)

1t

it itO o
α=

2 t

jt jtD d
α=

1 2 ( )

1

expt t

K
k

ijt it jt kt ijt ijt

k

y o d s
α α β ε

=

 
= + 

 
∑

Origin function: Number of organizations in region i in time period t

Destination function: Number of organizations in region j in time period t

Incorporating (2) and (3)-(5) in (1) yields

(6)



Least squares suffers from major drawbacks (Flowerdew and Aitkin 1982) 

due to the discrete nature of spatial interactions (Cameron and Trivedi 1998)

ML estimation under more realistic distributional assumptions: 

(Yij) ~ Poisson with heterogeneity (Negative Binomial)

The Negative Binomial spatial interaction model
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with

( ) ( )* ( )

0 1 2

1

exp log log
K

k

ijt ijt t t it t jt kt ijt ijt

k
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=
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∑

with

exp (ξijt) ~ Γ (γ)

( )
( )

( )
1

* 1/

1
Pr | 1

! ( )

ijtyijt

ijt ijt ijt ijt ijt

ijt

y
y X

y

γ
Γ γ

µ θ θ
Γ γ

−

−

+
= = −

  

Gamma function 

Stochastic heterogeneity term

(6)

(7)

1 1/ ( )ijtθ γ γ µ− −= +

(8)

Dispersion parameterConditional mean



Recent extensions: Accounting for spatial autocorrelation

The problem of spatial autocorrelation of flows violating ML estimates 

has been highlighted recently (see Chun 2008)

Theoretical and statistical motivation for taking into account spatial 

autocorrelation of flows (Scherngell and Lata 2013)

Eigenvector spatial filtering approach (Fischer and Griffith 2008)

→ applicable to different distributional assumptions but spatial information is 

filtered out

Spatial autoregressive form (LeSage and Fischer 2010) 

→ not yet efficiently applicable to Poisson specifications
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Spatial filtering approach

Spatial filtering approach, following Griffith (2007), extracts En

eigenvectors from a modified spatial weights matrix W*

Eigenvectors serve as surrogates for spatially autocorrelated
missing origin and destination variables (Tiefelsdorf and Boots 1995, 
Griffith 1996)
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= 
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Spatial filtering specification

Select a subset of eigenvectors Em with a Moran’s I value higher 

than 0.25;

Adaption of the selected eigenvectors to the n2-by-n2 dimension of 

our spatial interaction modelling framework is done by Kronecker
products
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Application of the extracted origin and destination filters leads to 
the Negative Binomial Spatial Filter Interaction Model:

(10)

Origin spatial filters Destination spatial filters



Estimation results: Model fit

41

1999 2000 2001 2002 2003 2004 2005 2006

Negative Binomial Spatial Interaction Models

Log Likelihood -217,282.23 -231,895.05 -248,731.40 -261,892.51 -264,208.46 -286,688.18 -282,816.69 -269,961.74

Residual deviance 63,994 64,927 68,104 68,564 69,023 72,396 71,854 72,184

Moran’s I (error) 0.043*** 0.039*** 0.032*** 0.043*** 0.029*** 0.031*** 0.029*** 0.026***

Negative Binomial Spatial Filter Interaction Models

Log Likelihood -215,933.28 -230,571.75 -247,491.04 -260,764.37 -263,125.21 -285,703.82 -282,021.01 -269,352.88

Residual deviance 63,738 64,646 67,918 68,458 68,941 72,309 71,749 72,117

Moran’s I (error) 0.003 0.002 0.000 0.004 0.001 0.003 0.005 0.004

LR-Test 256.241*** 281.032*** 185.548*** 106.303*** 82.454*** 87.159*** 105.668*** 67.575***

*** significant at the 0.001 level, ** significant at the 0.01 level, * significant at the 0.05 level



Negative Binomial Spatial Filter Interaction Models

1999 2000 2001 2002 2003 2004 2005 2006

Origin and Destination

[α1] = [α2]

0.970***

(0.003)

0.977***

(0.003)

0.977***

(0.002)

0.976***

(0.002)

0.979***

(0.002)

0.980***

(0.002)

0.980***

(0.002)

0.980***

(0.002)

Geographical distance

[ ß1]

-0.320***

(0.006)

-0.275***

(0.006)

-0.239***

(0.005)

-0.218***

(0.005)

-0.210***

(0.005)

-0.176***

(0.008)

-0.160***

(0.005)

-0.146***

(0.005)

Country border effects

[ ß2]

-0.176***

(0.018)

-0.150***

(0.017)

-0.114***

(0.016)

-0.079***

(0.015)

-0.064***

(0.015)

-0.036*

(0.014)

-0.025***

(0.014)

-0.012

(0.015)

Language area effects

[ ß3]

-0.200***

(0.034)

-0.224***

(0.015)

-0.193***

(0.014)

-0.163***

(0.013)

-0.161***

(0.013)

-0.165***

(0.012)

-0.156***

(0.013)

-0.160***

(0.013)

Neighbouring region

[ ß4]

0.325***

(0.023)

0.307***

(0.022)

0.267***

(0.020)

0.236***

(0.019)

0.251***

(0.019)

0.257***

(0.018)

0.229***

(0.018)

0.210***

(0.019)

Neighbouring country

[ ß5]

0.004

(0.010)

0.005

(0.009)

0.019*

(0.008)

0.010

(0.008)

0.013

(0.008)

0.010

(0.007)

0.019*

(0.007)

0.011

(0.008)

Technological Distance  

[ ß6]

-0.683***

(0.083)

-0.622***

(0.077)

-0.452***

(0.068)

-0.400***

(0.065)

-0.295***

(0.063)

-0.303***

(0.061)

-0.342***

(0.062)

-0.341***

(0.062)

# of origin filters Q 19 19 19 20 19 20 18 15

# of destination filters R 18 19 21 20 19 19 15 14

Constant [α0]
-9.596***

(0.093)

-10.213***

(0.088)

-10.820***

(0.078)

-11.171***

(0.075)

-11.387***

(0.073)

-11.819***

(0.071)

-11.844***

(0.072)

-11.819***

(0.073)

(γ)
4.149***

(0.065)

4.628***

(0.068)

5.814***

(0.087)

6.193***

(0.088)

6.519***

(0.093)

6.436***

(0.088)

6.494***

(0,089)

6.529***

(0,097)

AIC 216,027 230,668 247,591 260,864 263,221 285,802 282,107 269,431

*** significant at the 0.001 level, ** significant at the 0.01 level, * significant at the 0.05 level; standard errors in brackets



Magnitudes of the estimates
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Conclusions

Evidence that FPs contribute to the integration of European research

Geographical distance effect gradually declines over time, i.e. results suggest 

increasing probability for large distance collaborations

FPs are conducive to abolishing barriers for research collaborations within the FPs 

constituted by country borders

Negative language area effects seem to be reduced in general, but relatively slowly

Technological distance is the most important determinant of cross-region R&D 

collaborations, but also decreases over time

Methodologically the results provide evidence for the importance of taking into 

account spatial autocorrelation in an interaction context
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