
  
 

 Formation of social network structure 
 Working with graph distributions 

EXPONENTIAL RANDOM GRAPH 
MODELS: 

 BASIC CONCEPTS 



I eat (predominantly) vegetarian food 

• Ethical 
• Economics 
• Health 
• Taste 

Individual Approach Network Approach 

Vegetarian  
partner x 

Individualizing social structure is problematic 
Emirbayer’s (1997)  “Manifesto for a Relational Sociology” 



The social is by definition relational 
If we want to understand the social we need to understand social relations 

We are “actors in social relations” 
(Abbott, 1997: 1152) 

To understand social relationships, we need a relational methodology 
(not a methodology that assumes every individual is independent) 



Elements for social network theory 

• Locally emergent 
• Local patterns form global structure  

• Network ties self-organize 
• Through dependency among ties:  
• The presence of one tie may lead to another 

• Network patterns  are evidence of ongoing structural processes 
• Static trace of dynamic social processes 

• Multiple processes can operate simultaneously  
• Social networks are structured, yet stochastic 

• Structure and randomness 



Centrality: How important a node is 
Degree centrality: the degree of each node 

High degree 
centrality 

Low degree centrality 



Reciprocity 

After hours socialising network 



Clustering in networks 

Friendship network 

(Robins, 2002) 



Homophily 

• Birds of a feather flock together 

High School friendship 
Moody, 2001 – colours indicate 
white/black/other 



Local, everyday social “rules” 

• You scratch my back, I’ll scratch yours 
 

• A friend of a friend is a friend 
 

• Brokerage 
 

• Birds of a feather flock together 
 

• Follow the crowd 

No single rule explains why ALL network ties occur 



Dependency 
 

• You scratch my back, I’ll scratch yours 
 
 

 
 
• One tie may follow the other in time 
• The models may express the outcomes of an implicit longitudinal 

process 



Tie 
 
Reciprocity 
 
 
Activity 
 
 
Popularity 
 
 
Triads 
 
Brokerage 

Multiple social processes 



Network self-organisation 

Ties occur due to the presence (or absence) of other ties 



Actor-relation effects 

“I trust my colleague  
who has lots of experience” 

Ties occur due to the presence of actor attributes 



Exogenous effects 

Formal reporting lines affect informal social ties 

“I trust my boss” 

Ties occur due to the presence of other “fixed” or “formal” ties 



Which social process? 

• Would anyone suggest that a network is explained ONLY by: 
• Reciprocity? 
• Transitive closure? 
• Preferential attachment? 
• Brokerage? 
• Homophily? 
 

• If not, then we need a model  that can examine a network for ALL of 
these processes at the same time 



Exponential random graph models (ERGM) 
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A probability   distribution of 
graphs 

A normalising constant 
(probability of all graphs must add to 1) 

Sum over all configurations Q 
(dependence assumption determines which 
configurations) 

Statistic for Q 
(Is Q in the observed graph x?) 

Parameter for Q 
(how important is Q in the model) 

(Frank & Strauss, 1986; Wasserman & Pattison, 1996; Robins et al, 2009; Snijders et al, 2006 

 

Why do social network ties occurs?  
(i.e. ERGM is a tie-based model)    

 



DEPENDENCE AND SIMPLE ERGMs 

 The general form of an ERGM 
 Bernoulli models 
 Markov models 



Some notation 

We conceive of the Graph as a collection of 

Tie variables: {Xij: i,j ∈  V}  

 i 
(i , j) 

 j 



Some notation 

We conceive of the Graph as a collection of 

on 

off Ge
ne

ra
lly

 b
in

ar
y xij = 1 

Tie variables: {Xij: i,j ∈  V}  

 i 
(i , j) 

 j 

xij = 0 



Some notation 

We conceive of the Graph as a collection of 
Tie variables: {Xij: i,j ∈  V}  

john pete 

mary 

paul 

i - xij xik xil 

j xji - xjk xjl 

k xki xkj - xkl 

l xli xlj xlk - 

x = 
i - 1 1 0 

j 0 - 0 0 

k 0 1 - 0 

l 0 1 0 - 

 = 
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Some notation 

Regard each network tie as a random variable (often binary) 
 
 Notation 
       
 Xij = 1 if there is a network tie from person i to person j 

     = 0 if there is no tie 
for i, j members of some set of actors N. 
 
A directed network: Xij and Xji are distinct. 
A non-directed network: Xij = Xji 
 
X … matrix of all variables 
x … matrix of observed ties (the network) 
 
(For nodal attributes, we use Yi as the variable to indicate the measure of the attribute for node i.) 



Exponential random graph models 
(Frank & Strauss, 1986; Wasserman & Pattison, 1996) 

 The summation is over all “configurations” Q 
Local subgraphs that are hypothesized as the ‘building 
blocks’ of the network 
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Exponential random graph models 

 

( )1Pr( ) exp Q Q
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∑X x x

      A probability   distribution 
of graphs 

A normalising constant 
(probability of all graphs must add to 1) 

Sum over all configurations Q 
(dependence assumption determines which 
configurations) 

Statistic for Q 
(Is Q in the observed graph x?) 

Parameter for Q 
(how important is Q in the model) 



What are we trying to do? 

Estimate model parameters  
 Positive parameter estimates indicate more configurations observed in the 

network than expected by chance. 
 Negative parameter estimates indicate fewer configurations than expected 

by chance. 
 

We want to know how the global network structure might have been built up 
out of small local substructures.  

The parameter estimates permit us to make inferences about this. 



Dependences 

Once we move beyond simple random graph models, we introduce 
dependences among network tie variables 

 
These express various types of network self organization. 
 
A dependence assumption picks out certain types of network patterns – 

network configurations – that are possible in the model. 
In other words, we assume that the network is built up of these configurations. 

 



Markov random dependences (and graphs) 
(Frank & Strauss, 1986, JASA) 

• Frank and Strauss drew on the work of Besag (1974) in spatial 
statistics 

• In particular, the Hammersley-Clifford theorem that sets out constraints on 
model form implied by dependence assumptions. 

• Dependence graph 
 

• They proposed a network dependence assumption (Markov 
dependence): 

• Two tie variables are conditionally independent unless they share a node. 

 



Markov random graphs  

Suppose that edges are conditionally dependent if and 
only if they share a node. (Frank & Strauss, 1986) 
 
Frank and Strauss showed that configurations in this 

model comprised edges, stars and triangles. 
 
 

edge 

2-star     3-star            4-star  ...  

triangle 



A Markov random graph model:  
Undirected networks 

• Edge parameter (θ) 
L … number of edges 

 
 

• Star parameters (σk)  
Propensities for individuals to 
have connections with multiple 
network partners 
 

 

• Triangle parameter (τ) 
represents network closure 

 
 

           Pr(X = x) = (1/κ) exp{θ L + σ2S 2 + σ3S 3 + τ T} 

If θ  is the only nonzero parameter, this is a Bernoulli random graph model. 



Simulated results from Bernoulli graph model 

Statistics from 
simulated samples 
Blue = Bernoulli 

Observed statistics 



Simulated results from Markov graph model 
Edge, 2star parameters 

Statistics from 
simulated samples 
Blue = Bernoulli 
Green = L,2star 

Observed statistics 



Simulated results from Markov graph model 
Edge, 2star, 3star, triangle parameters 

Statistics from 
simulated samples 
Blue = Bernoulli 
Green = L,2star 

Observed statistics 



Simulated results from Markov graph model 
Edge, 2star, 3star, triangle parameters 

Observed statistics 

This ‘leakage’ shows a 
common problem 
with Markov models – 
they are not always 
stable; and may be 
degenerate. 



But, be careful! 

• Markov random graph distributions provide statistical 
models for social networks based on plausible 
assumptions and importantly can represent clustering 
through the triangle parameter! 
 

• THEY DON’T ALWAYS WORK! 
 

 



Network ties self-organize within 4-cycles.  
(Pattison & Robins, 2002; Snijders et al, 2006) 

Two possible network ties are conditionally dependent if 
they would form a 4-cycle. 
Social circuit dependence 

r s 

t u 

Social circuit dependences 



Configurations/model parameters for 
social circuit models 

Parameters correspond to configurations of the following types: 
 
Edges                                                                                                                   
 
Stars 
(k-stars) 
 
 

Multiple paths 
(k-2-paths) 
 
 
Multiple triangles 
(triangulation) 
 



Centralization parameter: Alternating k-stars 
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Interpretation: 
Positive parameter indicates centralization through a small number of high degree nodes  

core-periphery based on popularity 
More dispersed degree distribution 

 
Negative parameter: “truncated” (less dispersed) degree distribution; nodes tend not to have 
particularly high degrees. 
 
Equivalent to geometrically weighted degree distribution parameter (Hunter, 2007) 

Usually we set λ = 2. Hunter & 
Handcock (2006) show how to 
estimate lambda 



Network Closure parameter: Alternating k-triangles 
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Interpretation: 
 

a.  Positive parameter suggests triangles tend to “clump” together in denser regions of the network. 
 

b. Models the edgewise shared partner distribution: 
For each pair of tied nodes, how many partners do they share?  (Hunter, 2007) 



Connectivity Parameter: Alternating 
k-2paths 

Interpretation: 
 

a.  Localized structural equivalence 
b. With the AKT parameter in the model, this indicates presence of structural holes. 
 

c. Models the pairwise shared partner distribution: 
For each pair of nodes (tied or not), how many partners do they share?  (Hunter, 
2007) 



Larger network configurations emerge: 
Parameters for degree sequences, denser regions of triangulation, multiple 
connectivity. 
 

These models fit much better. 
A dependence assumption that captures emergence may be necessary 
to model real social networks. 

(Robins, Snijders, Wang, Handcock & Pattison, 2007) 

Social circuit dependences 



ERGMs for directed networks 



Dyadic parameters 
Arc Reciprocity 

Degree-based parameters 

Popularity spread (centralization) 
Alternating in-stars 

Activity spread (centralization) 
Alternating out-stars 

Also: 
Sources: nodes with 0 in-degree 
Sinks: nodes with 0 out-degree 
Isolates: nodes with 0 in- and 0 out-degree 



Connectivity parameters 
(alternating 2-paths) 

 Multiple 2paths (A2P-T) 
(T = “transitive”) 

 Shared activity (A2P-U) 
(U = “up”) 

 Shared popularity (A2P-D) 
(D= “down”) 

Interpretation: Localized 
connectivity 

Interpretation: Activity-based 
structural equivalence 

Interpretation: Popularity-based 
structural equivalence 

Also, Simple connectivity 
(Markov 2path parameter) 

Interpretation: Correlation 
between in- and out-degrees 



Closure parameters 
(alternating triads) 

 Path closure (AT-T) 

 Activity closure (AT-U) 

 

 Popularity closure (AT-D) 

 Cyclic closure(AT-C) 

 

Generalized transitivity (AT-TDU) includes all of first three 

c1 

Interpretation: Closure of 
2paths 

Interpretation: Activity-based 
structural homophily 

Interpretation: Popularity-based 
structural homophily 

Interpretation: Generalized 
exchange 



Actor attributes and dyadic 
covariates 



Social selection 
 

• Actors select network partners based on actor attributes. 
• a process of tie formation 
 

• Possible mechanisms 
• Homophily: actors of similar attributes tend to form ties (McPherson et al, 

2001). 
• homophily in itself cannot explain the emergence of hierarchy in relations (so 

difference may also be important) 
• more generalized selection: individuals select social positions for themselves. 

 



Social selection 
 

• Also actor main effects 
• Nondirected  - activity: Actors with certain attributes might be more 

active (involved in more ties) 
• Directed 

• Sender effects: Actors with certain attributes may send out more ties (more 
active or expansive) 

• Receiver effects: Actors with certain attributes may received more ties (more 
popular) 

 



Terminology and notation: Network variables 

For node set N 
Let Xij = 1 if there is a tie from node i to node j 
           = 0 if there is no tie from i to j. 

A binary network 
 

Let Xii = 0 for all nodes i. 
 
Define X as the matrix of variables [Xij ] 
Define x as the adjacency matrix, the matrix of observed network ties 



Terminology and notation: Attribute variables 

For node set N 
Let Yi = 1 if node i has attribute Y 
           = 0 otherwise. 

A binary attribute (e.g. gender) 
Alternatively Yi can represent categories (e.g. political party) 
Or can be continuous (e.g. age) 

 

Define Y as the vector of variables [Yi ] 
Define y as the attribute vector, the vector of observed attributes. 



Three types of attribute variables 

1. Binary – eg male/female 
            
2. Categorical – eg Workteams within a company 
 
3. Continuous – eg Age, attitudes 
 
 



ERGM Social selection models 

 Second summation is over all selection configurations R 

( ) ( )1Pr( | ) exp ,Q Q R R
Q R

z zλ λ
κ

 
= = = + 

 
∑ ∑X x Y y x x y

 Probability of observing graph x GIVEN 
observed attribute vector y 

structural part  

– just as before 

selection part  

– interaction of ties 
and attributes 



Possible binary attribute configurations 
 (non-directed graphs) 

Activity 
Positive parameter indicates 
node with attribute has many 
ties 

Interaction 
Positive parameter indicates 
nodes with attribute tend to 
share ties 

Statistic: For each tie, count the number of attributed nodes 
  Xij(Yi + Yj) 
Then sum across all ties: 

Statistic: For each tie, count those where both nodes are attributed 
  XijYi Yj 
Then sum across all ties. 



Possible binary attribute configurations 
 (directed graphs) 

Sender 

 

Positive parameter indicates nodes 
with attribute tend to be more 
expansive (active) 

Interaction 

     Receiver 

 

Positive parameter indicates nodes 
with attribute tend to be more 
popular 

Homophily: Positive parameter 
indicates nodes with attribute tend to 
have ties with each other (over and 
above sender and receiver effects) 



Possible categorical attribute configurations 
 (non-directed graphs) 

Match 

category 

Positive parameter indicates 
ties within categories are 
more likely 



Possible continuous attribute configurations 
 (non-directed graphs) 

Difference 
For each pair of tied nodes the 
statistic is the absolute 
difference between the 
attribute values – (then summed 
over all pairs) 

Negative parameter indicates that a smaller absolute 
difference is associated with the presence of a tie: 

Ties are more likely when nodes have similar attribute 
values - HOMOPHILY 

| |ij i jX Y Y−



Possible continuous attribute configurations 
 (non-directed graphs) 

Activity (sum) 

Positive parameter indicates that pairs of nodes with large 
(average) attribute values tend to be tied. 

For each pair of tied nodes the 
statistic is the sum of the 
attribute values – (then summed 
over all pairs) 

( )ij i jX Y Y+



Possible continuous attribute configurations 
 (directed graphs) 

Sender 

(Activity) 

For each node, the statistic is 
attribute value × outdegree. 

(Then summed over all nodes) 

Positive parameter for activity indicates that nodes with large 
attribute values tend to be more active. Positive parameter for 
popularity indicates that nodes with large attribute values 
tend to be more popular. 

Receiver 

(Popularity) 

For each node, the statistic is 
attribute value × indegree. 

(Then summed over all nodes) 



Possible continuous attribute configurations 
 (non-directed graphs) 

Difference 
For each pair of tied nodes the 
statistic is the absolute 
difference between the 
attribute values – (then summed 
over all pairs) 

Negative parameter indicates that a smaller absolute 
difference is associated with the presence of a tie: 

Ties are more likely between nodes with similar attribute 
values - HOMOPHILY 



Krackhardt hi-tech managers: Mutual advice network 

Binary attribute: Level 
yellow = senior (coded 1) 
blue = junior  (coded 0) 



Krackhardt hi-tech managers: Mutual advice network 

Bernoulli model for level 
 
 
Parameter  Estimate Standard error Convergence 
    
Edge  -1.96*  0.29   0.07 
 
Interaction    1.40  1.00  0.002 
(Homophily) 
 
Activity   0.97*  0.40  0.02 
 
 



Krackhardt hi-tech managers: 
Mutual advice network – Continuous attributes 

Binary attribute: Level 
yellow = senior (coded 1) 
blue = junior  (coded 0) 

Continuous attribute: Age 
Larger node size = older 



REMEMBER: Continuous attributes 

Difference 
For each pair of tied nodes the 
statistic is the absolute 
difference between the 
attribute values – (then summed 
over all pairs) 

| |ij i jX Y Y−



REMEMBER: Continuous attributes 

Activity (sum) 
For each pair of tied nodes the 
statistic is the sum of the 
attribute values – (then summed 
over all pairs) 

( )ij i jX Y Y+



Krackhardt hi-tech managers: Mutual advice network 

Bernoulli model for age 
Parameter estimates from pnet: 
 
Parameter Estimate Standard error Convergence 
    
Edge:    0.85  1.31   -0.01 
sum age  -0.022  0.018  -0.003 
difference age  -0.045  0.029  0.01 
 
Small values of parameter estimates for sum and 
difference reflect the scale of age – these estimates may 
get multiplied by 60 or more in calculating log-odds. 



Dyadic covariate (or dyadic attribute) 

• Some other relationship among nodes that could influence the 
network structure: 

Examples: 
• Formal organisation structure 
• Geography 
• Another network 



The machinery of simulation and 
estimation 



Markov Chain Monte Carlo Maximum Likelihood 
Estimation (MCMCMLE) 

• Simulate a distribution of random graphs from a starting set of 
parameter values 

• Change the parameter values by comparing the distribution of 
graphs against the observed graph 

• Repeat until the parameter estimates stabilize. (convergence) 
 



Markov Chain Monte Carlo (MCMC): 
important points 

• To simulate a distribution of graphs we generate graphs using a random 
walk, changing one edge at a time 

• You have to make sure 
• Process has forgotten about the past (burn-in) 
• Chain is “moving freely” 

• The “multiplication factor” controls this 
• Large -> more iterations for exploring 
• Large -> more iterations means longer time 

 



Fixed number of nodes; fixed parameter values 
 

1. Start from a random graph 
2. For each step, propose to change one edge at a time 

If the probability of the graph increases, make the change 
If the probability decreases, don’t make the change (EXCEPT SOMETIMES – this makes it 
a proper statistical distribution) 

3. Throw away the early iterations so the starting graph has no effect on the 
distribution – “burn-in” 
4. Sample as many graphs as needed (e.g. every 1000th) 
5. Stop after a suitable number of iterations 



Random walk for drawing graphs 

Make sure you are drawing from target distribution 
update x1 x2 update x3 update xT 

Simulate graphs 



Random walk for drawing graphs 

Make sure you are drawing from target distribution 
update x1 x2 update x3 update xT 

Not 
“converged” 
Not settled!!! 



Random walk for drawing graphs 

Make sure you are drawing from target distribution 
update x1 x2 update x3 update xT 

Bad mixing 
Too large 
moves 



Random walk for drawing graphs 

Make sure you are drawing from target distribution 
update x1 x2 update x3 update xT 

Bad mixing 
Too small 
moves 



The technicalities: 
Maximum Likelihood- “Method of moments” 

Find those parameter values such that the average number of 
configurations in the distribution equals the observed values 

We get the same number 
of configurations (in 

expectation – i.e. average) 

…as we have 
observed 



Snijders (2002):  
 
Algorithm for solving equation 
 Eθ{z(X)} = z(xobs) for θ:  

 

 Phase 1: Initialize 
 Phase 2: Estimate 
 Phase 3: Check! 

The technicalities: 
Maximum Likelihood- “Method of moments” 



• Phase 1: Gets the process started to reach some very rough and ready 
parameter “guesses” 

 
• Phase 2: Several subphases: 

• In each subphase we simulate distributions of graphs.   
• Check the observed graph against the simulation 
• Change the parameter estimate 
• Stop at the end of the specified number of subphases 

 
• Phase 3: Simulates from the final parameter estimates, checks convergence 

and estimates standard errors 
 

The technicalities: 
Maximum Likelihood- “Method of moments” 



NOTE:  CONVERGENCE IS NOT GUARANTEED!! 
 

 

• So: 
• If hard to get convergence, try with bigger multiplication factor 

 
• If close to convergence, can use a smaller gaining factor (already quite 

precise) 
 

• Results differ slightly from run to run – this is a stochastic algorithm 
 



Parameter interpretation 

 
• Note that for purely structural (i.e., endogenous) network effects: 

• Negative parameter  =  less of such substructures 
• Positive parameter  =  more of such substructures 

This can differ for actor-relation (attribute) effects 



Goodness of fit 

ERGM workshop, Lugano, 2015 



DATA 

MODEL 

IS THE DATA EXTREME IN THE 
DISTRIBUTION? 

MODEL 
PARAMETER 
ESTIMATES 

With thanks to Steve Goodreau 

SIMULATE A DISTRIBUTION 
OF GRAPHS 

TAKE A SAMPLE OF SIMULATED GRAPHS 
AND INSPECT DISTRIBUTION OF ANY 

GRAPH STATISTIC OF INTEREST 

INSPECT THE 
GRAPH STATISTIC 

FROM DATA 

NO:  AS FAR AS THIS GRAPH FEATURE 
IS CONCERNED THE DATA COULD 

HAVE COME THIS MODEL 

YES:  THIS 
MODEL CANNOT 

EXPLAIN THIS 
STATISTIC 

GOODNESS OF FIT 

Goodness of fit 



Goodness of fit (GOF) 

• Estimate parameters 
• Simulate a distribution of graphs using these parameters 
• From the simulation, collect graph statistics of any sort 
• Compare the observed data with the collected statistics: 

• If the data is not extreme (e.g. |t |<2.0), then the model plausibly explains that 
feature of the data 

• For parameters in the model, we want the data to be central in the distribution 
(say, |t |<0.2), else model may not have converged. 



Goodness of fit (GOF) 
A well-known example in social networks: 
 



Model fit 
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