
Introducing R

• What is R?
• The logic behind R
• Conventions and good practices
• Useful objects

What is R?

• The R statistical programming language is a free open source package based
on the S language developed by Bell Labs.

• The language is very powerful for writing programs.

• Many statistical functions are already built in.

• Contributed packages expand the functionality to cutting edge research.

• Since it is a programming language, generating computer code to complete
tasks is required.

Getting Started
• Where to get R?
• Go to
www.r-project.org
• Downloads:
CRAN

http://www.r-project.org/

Getting Started

• Set your Mirror: Anyone is fine.

• Select Windows or other OS.

• Select base.

• Select R-3.2.3-win32.exe
• The others are if you are a

developer and wish to change
the source code.

http://www.biometrics.mtu.edu/CRAN/bin/windows/base/R-2.4.1-win32.exe

Stata or Spss logic

• One single data set at a time.
• Data sets have a row-by-column structure.
• Each row represents a case.
• Each column is a variable.
• Each variable may have various attributes, like a variable label, value

labels, user missing values, a data type, etc.
• Most data management and statistical procedures operate on a `row after

row' basis.

R logic

• All entities that R creates are known as objects
• Data structures are contained in objects of various sizes, shapes, and types.
• Objects have names. If you want to interact with an object, you have to call it by

its name.
• Functions take objects as arguments and give results.
• Objects are resident in the computer's main memory and will disappear when R is

stopped, unless you save them.
• Results from statistical calculations are themselves objects that can be further

processed.
• R's objects bear much similarity to the `variables' of a typical programming

languages

Getting Started

• At start a window with a drop-down
menu opens. This is your working
environment.

• Inside it a sub-window entitled `R
Console' is your interface with the
statistical engine.

• More windows with graphical output or
data editors can be opened in your
working environment.

• The objects you create form a
workspace.

Getting Started

• Opening a script.
• This gives you a script window.

How to input commands

• You can enter commands one at a time at the command prompt
(>) or run a set of commands from a source file.

• There is a wide variety of data types, including vectors

(numerical, character, logical), matrices, dataframes, and lists.

• To quit R, use >q()

How to input commands

• Using R as a calculator

How to input commands

• Generating and calling objects:

• Listing all user-defined objects in the active R session:

A few conventions and good practices

• R language is case sensitive
• This assignment syntaxes are (almost) equivalent, but the first one is preferred:

• Both double and single quotes can be used, but the firsts are preferred:

• Long objects names should preferably be in the form:

Session folders and Saving data

• The golden rule: one project, one directory
• Control it through the menu: File > Change Directory

• All user-created objects are saved in .RData
• All commands issued are saved in .Rhistory. Objects can also be saved

individually

Calling for help

• Help function can be used to get information, defaults and examples

R objects: Vectors

• Vectors are the simplest data structure: an unordered collection of elements

R objects: Vectors

• Vectors can be manipulated and modified:

R objects: Matrices

• Matrices are multidimensional generalizations of vectors.

• Matrices are sequences of values of the same type (numeric, logical,
character) with one additional attribute, the dimensionality.

 The dimensionality can be recalled from and assigned to an object via dim().
• Rows and columns of matrices can have names. These are set and obtained by

the functions rownames() and colnames() - the same way as names() does for
names of elements of a vector.

• By default a matrix is filled with the rows increasing fastest (so called column-
major order)

Creating Matrices

Manipulating Matrices

• Row vectors of a matrix M can be accessed (i.e. extracted and assigned
to) by e.g. M[1,], M[2,], M[3,], etc. while column vectors can be
accessed by e.g. M[,1], M[,2], M[,3], etc.

• Single cells can be accessed by M[1,1], M[1,2], M[2,1], M[2,2],
M[1,3], etc.

• Submatrices can be accessed by e.g. M[1:2,1:3]. In this example,
M[1:2,1:3] is the submatrix composed of the first two rows and the
first three columns of matrix M.

Matrix Operations

• Usually, operators that work elementwise like +, -, *, /, can also
applied to matrices. Recycling works only if the recycled operator is
not a matrix

• R also provides special matrix algebra operators:
• Matrix product: %*%

• Matrix transpose: t(A) gives the transpose of A
• Cross products: crossprod(X,Y) is a shorthand and computationally

efficient version of t(X) %*% Y

How to import matrices from files

• From .txt files

• From .xlsx files

• From other file formats

Introducing SNA with R

• R packages for SNA
• Importing SNA data in R
• Descriptive SNA in R
• Exporting SNA data

Available tools

• The statnet suite
• R packages for SNA

• Importing SNA data in R
• Descriptive SNA in R
• Exporting SNA data

Introducing SNA with R

• The statnet suite (see http://csde.washington.edu/statnet/):
• Network
• sna (see http://erzuli.ss.uci.edu/R.stu/)
• degreenet
• Latentnet
• Networksis
• ergm

• igraph (see http://igraph.sourceforge.net/)
• tnet
• RSiena

http://csde.washington.edu/statnet/

Statnet versus igraph

• The statnet suite
• use the same data structure, the network object, for both
• descriptive analysis and modelling
• focusses specifically on social networks
• Has a very supportive community

• The igraph package
• is meant for speed
• appears to have superior graphical capabilities
• appears to be better equipped for community detection (it does cohesive

blocking)
• Has an equally supportive community

Statnet versus igraph

• Both igraph and the statnet suite can be used at the same time, however
some functions share the same name and are masked from the first
package you load

• In this case you can use some.package.name::some.function.name

to specify the package you want to use

• A simple two-way conversion between the two data structures they use,

network and graph, does not exist

Install and load the Statnet suite

• On a computer on which you have administrative privileges either
• install.packages("statnet")
• Or navigate through the menus: Packages > Install packages... And

choose a near server

• In order to load statnet use library(statnet)

• Note that the statnet suite, like any other contributed packages, can
be automatically loaded at start-up by modifying R's configuration
scripts

Statnet suite

• An object class specifically suited for network data

• Functions that will work on network objects, but also on matrices,
and arrays or list of them (at least in most cases)

• Functions that will work on actor-level measures recursively

• Specific plotting functions for network visualisation

Matrices and network objects

library (statnet)

data (flo)

class (flo)

attributes (flo)

summary (flo)

nflo <- network (flo, directed = FALSE)

class (nflo)

summary (nflo)

plot (nflo, displaylabels =TRUE , boxed.labels = FALSE)

The network class

The network class data structure has two main advantages
• it can store meta-information on vertices, edges, and the network as a whole
• it allows more efficient computations

It accepts as inputs
• Adjacency matrices
• Edge lists
• Incidence matrices
• Bipartite adjacency matrices

Vertex IDs and Vertex names

• Vertices and edges are labelled internally by the network() function in order of
entry.

• It is assumed that this is maintained for vertices.

• Removing vertices therefore requires internal relabeling of vertices to keep the ID
list continuous.

• It is preferable to set a vertex attribute with meaningful names for your vertices.
This attribute will remain in your control and avoid confusion.

• The network class has a reserved vertex attribute, vertex.names, for this exact
purpose.

Vertex IDs and Vertex names

• If vertex names are not specified, they default to the internal vertex IDs

• In the case of matrices with named dimensions, e.g. flo, vertex names are

automatically stored

• Vertex names can be also manually stored and manipulated

Vertex IDs and Vertex names
list.vertex.attributes (nflo)
get.vertex.attribute (nflo, "vertex.names")

 [1] " Acciaiuoli " " Albizzi " " Barbadori " " Bischeri " " Castellani «
 [6] " Ginori " " Guadagni " " Lamberteschi " " Medici " " Pazzi "
 [11] " Peruzzi " " Pucci " " Ridolfi " " Salviati " " Strozzi «
 [16] " Tornabuoni "

nflo %v% " vertex.names " <- letters [1:16]
nflo %v% " vertex.names

 [1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a"

Vertex attributes

Generalising from vertex.names

list.vertex.attributes (NET _ NAME)

get.vertex.attribute (NET_NAME , " ATTR _ NAME ")

set.vertex.attribute (NET_NAME , " ATTR _ NAME ", ATTR _VALUE ,
VERTEX _ID)

or use the operator %v%

Edge attributes

list.edge.attributes (NET _ NAME)

get.edge.attribute (NET_NAME , " ATTR _ NAME ")

set.edge.attribute (NET_NAME , " ATTR _ NAME ", ATTR _VALUE ,
EDGE_MATRIX _ID)

Using set.edge.value allows edges to be specied in matrix[,] notation
Also the operator %e% is available

Importing network data into R
Various data formats are allowed:
Adjacency
• a square matrix or two-dimensional array, whose i, jth cell contains the value of the edge from i to j

• only for dyadic networks

use ignore.eval=FALSE, names.eval="EDGE_WEIGHT_NAME" for valued matrices

Edge list
• a rectangular matrix or two-dimensional array whose row elements represent edges

• additional columns are taken to contain edge attribute values

Its matrix.type is "edgelist"

Importing matrices from text files

klas.mat <-as.matrix (read.table("dataset/klas12b-net-1.dat"))

klas.net <- network (klas.mat, ignore.eval =FALSE,

 names.eval ="weights")

summary(klas.net)

klas.net %e% "weights"

Klas.net %v% "vertex.names“ # or network.vertex.names(klas.net)

plot(klas.net)

Adding attributes from text files

klas.dem.mat <- as.matrix (read.table ("dataset/dem.dat",col.names =

 c("gender","age","ethnicity","religion")))

klas.net %v% colnames(klas.dem.mat)[2] <- klas.dem.mat[,2]

klas.net %v% colnames(klas.dem.mat)[3] <- klas.dem.mat[,3]

list.vertex.attributes(klas.net)

Adding attributes from text files

klas.dem.mat <- as.matrix (read.table("dataset/dem.dat",col.names =

 c(" gender ","age"," ethnicity "," religion ")))

klas.net %v% colnames(klas.dem.mat)[2] <- klas.dem.mat[,2]

klas.net %v% colnames(klas.dem.mat)[3] <- klas.dem.mat[,3]

list.vertex.attributes(klas.net)

Computing simple descriptive statistics
Network plotting
gplot (klas,g=1)

Network-level indices
1. density
gden(klas,g=1) #density of network 1 only

2. reciprocity
grecip(klas)

3. transitivity
gtrans(klas)

3. centralization
lapply(klas, centralitazion, evcent)

Computing simple descriptive statistics
Actor-level indices
1. degree centrality
degree(klas,1) #degree centrality of undirected network 1 only

2. in/outdegree centrality
degree(klas,1, cmode=«outdegree») #outgoing ties

Hist(degree(klas,1, cmode=«outdegree»)) #plotting outgoing
 distribution

3. Betweenness centrality
betweenness(klas,g=c(1:4)) #betweenness centrality of 4 networks
included in klas

Computing simple descriptive statistics

Subgraph indices

1. Geodesic distance
geodist(klas,g=1) #geodesic distance in network 1 only

2. Network components
components(klas)

	Introducing R
	What is R?
	Getting Started
	Getting Started
	Stata or Spss logic
	R logic
	Getting Started
	Getting Started
	How to input commands
	How to input commands
	How to input commands
	A few conventions and good practices
	Session folders and Saving data
	Calling for help
	R objects: Vectors
	R objects: Vectors
	R objects: Matrices
	Creating Matrices
	Manipulating Matrices
	Matrix Operations
	How to import matrices from files
	Introducing SNA with R
	Available tools
	Introducing SNA with R
	Statnet versus igraph
	Statnet versus igraph
	Install and load the Statnet suite
	Statnet suite
	Matrices and network objects
	The network class
	Vertex IDs and Vertex names
	Vertex IDs and Vertex names
	Vertex IDs and Vertex names
	Vertex attributes
	Edge attributes
	Importing network data into R
	Importing matrices from text files
	Adding attributes from text files
	Adding attributes from text files
	Computing simple descriptive statistics
	Computing simple descriptive statistics
	Computing simple descriptive statistics

