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Abstract—In this paper, we demonstrate how the development
of parallel hardware architectures for turbo decoding can be
continued to achieve a throughput of more than 100 Gb/s. A
new, fully pipelined architecture shows better error correcting
performance for high code rates than the fully parallel ap-
proaches known from the literature. This is demonstrated by
comparing both architectures for a frame size K = 128 LTE
turbo code and a frame size K = 128 turbo code with parity
puncture constrained interleaving. To the best of our knowledge,
an investigation of the error correcting performance at high code
rates of fully parallel decoders is missing from the literature.
Moreover, place & route results for a case study implementation
of the new architecture on 28 nm technology show a throughput
of 102.4 Gb/s and an area efficiency of 4.34 Gb/s making it
superior to reported implementations of other parallel decoder
hardware architectures.

Keywords—Forward Error Correction, Turbo decoder, LTE,
High-throughput.

I. INTRODUCTION

Turbo codes were not invented by an information theorist
but by an electronic engineer who was wondering about the
interest of implementing feedback – a fundamental concept
in electronic design – in concatenated decoders. At that time
(beginning of ’90s), the most powerful channel coding scheme
was actually given by the concatenation of a Reed-Solomon
encoder and a convolutional encoder. Some researchers were
already trying to improve the associated decoder performance
by enabling bilateral exchanges between the component de-
coders (see [1] for instance with a claimed gain of about 0.5 dB
on the signal to noise ratio). But due to the strong dissimilarity
between the two coding principles, especially on the question
of hard and soft decisions, it was not easy to take a large
benefit from these back-and-forth exchanges.

Meanwhile, interesting results were obtained on the soft-
output Viterbi algorithm [2]–[4] which opened the way to
efficient message passing between convolutional Viterbi-based
decoders. It was then possible to associate two or more convo-
lutional codes in original ways and eventually to introduce so-
called parallel concatenation. The initial sought-for advantage
of this parallel coding architecture was to simplify the clock
management in the design of a possible demonstrator because
the clocks of the outer and inner component decoders are not
the same in serial concatenation, which is added complexity. It
turned out that the performance was also greatly improved by
this original construction, thanks to the additional introduction

of extrinsic information, another new concept in the field
of information theory. Actually, parallel concatenation offers
better convergence than serial one in iterative decoding, but at
the price of a reduced minimum Hamming distance (MHD),
which was not detected at that time (bit error rates lower
than 10−5 were not easy to simulate). Many works were then
launched to obtain sufficient MHD for turbo codes.

Since the seminal work of Claude Shannon at the end of
the ’40s and the quasi-simultaneous invention of the transis-
tor, information theory and electrical engineering have never
ceased to work together to continuously improve information
processing, including processes that have enabled the tremen-
dous expansion of telecommunications. Today, microelectronic
expertise is still a driver for the development of new architec-
tures capable of supporting considerable throughputs. That’s
what this paper is about. The invention of turbo codes may also
be seen as the illustration of a general principle in technology:
the practical solution that is found to solve a complex problem
(Shannon capacity in our case) is rarely given by the theory
that was used to formalize it.

Turbo codes have, together with LDPC codes, played a most
influential role in re-shaping our information centric society
since their inception 25 years ago [5], [6]. They have been
employed as channel codes for the 3G and 4G standards,
which have brought forth the mobile internet, and will continue
to be part of 5G through the evolution of LTE [7].

Along with the evolution of downlink data rates, the
throughput requirements, i.e. the required amount of decoded
bits per second, have evolved from less than 1 Mb/s for
UMTS in 1999, 100 Mb/s for LTE in 2008 to Gb/s for current
and planned releases of LTE-A Pro [7], which lead to new
parallel architectures [8]–[10]. However, since the throughput
requirements increased faster than the improvements provided
by advances in microelectronics, a cross-layer approach which
jointly considered code structure and implementation require-
ments was necessary.

For example, it became obvious, that, in order to allow
higher throughputs, conflict-free interleavers were needed [11].
Thus, for LTE, Quadrature Permutation Polynomial (QPP)
interleavers [12] were adopted, which allowed conflict free
interleaving up to a parallelism of 64 for all LTE frame
sizes [13]. Today, the highest throughputs in the order of tens
of Gb/s are achieved by turbo decoder implementations with
a Fully Parallel MAP (FPMAP) architecture which represents
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Figure 1: Parallel Turbo Decoder Architectures

an extreme case of parallel processing of sub-blocks of size
1 [14], [15].

Increasing the parallelism at component decoder level, how-
ever, comes at the cost of a degradation in error correct-
ing performance, especially when decoding at higher code
rates. Moreover, employing multiple decoders to increase the
throughput does not solve the additional challenge of tighter
latency requirements [16].

Thus, even with the advances provided by microelectronics,
achieving a throughput of more than 100 Gb/s with state-of-
the-art turbo decoder hardware architectures while achieving
good error correcting performance across a range of code rates
is still an open question.

Early results of fully pipelined, iteration unrolled turbo
decoding – a concept known from LDPC decoders [17], [18] –
suggest that throughputs beyond 100 Gb/s are possible [19]. To
this end, a investigation of the error correcting performance of
FPMAP decoders at high code rates and a detailed discussion
of a iteration unrolled, fully pipelined turbo decoder is missing
from literature.

This work presents the first turbo decoder achieving a
throughput of more than 100 Gb/s in 28 nm technology using
an Unrolled XMAP (UXMAP) architecture (Section IV). The
remainder of this paper is structured as follows: After giving
an overview on state-of-the-art parallel turbo decoder hardware
architectures in Section II, we compare the error correcting
performance for the FPMAP and UXMAP architecture for
different code rates in Section III and show how the error
correcting performance for high code rates can be improved
by employing carefully designed interleavers. In Section V,
we give post place & route results for UXMAP and FPMAP
decoders with frame size K = 128 and compare them
with other high throughput implementations of different turbo
decoder architectures. Section VI concludes the paper.

II. TURBO DECODER HARDWARE ARCHITECTURES

The general turbo decoder structure consists of two
component decoders connected through an interleaver/de-
iterleaver [5]. They work cooperatively by exchanging extrin-

sic information Λe in an iterative loop. Each processing of one
component decoder is counted as one Half Iteration (HI) and
a complete run of the loop is counted as one (full) ITeration
(IT). State-of-the-art parallel hardware architectures for turbo
code decoding split the code blocks in smaller sub-blocks and
employ either spatial or functional parallelization.

A. Parallel MAP Architecture

Turbo decoders with a Parallel MAP (PMAP) architecture
use spatial parallelization and process sub-blocks on multiple
sub-decoder cores as illustrated in Fig. 1 (a). Additionally,
each sub-decoder core splits the sub-blocks further into smaller
blocks called windows, to enable a parallel processing of the
forward and backward recursions. Due to the splitting into
sub-blocks, however, the state metrics at the sub-block and
window borders need to be estimated to mitigate a decoding
performance loss. With smaller sub-blocks and at higher code
rates, the length of the necessary acquisition calculations is
therefore increased, which in turn limits the maximum degree
of parallelization [20]. Implementations with todays silicon
technologies achieve a throughput in the order of single digit
Gb/s [21]–[23].

B. Fully Parallel MAP Architecture

The FPMAP architecture [14] can be seen as an extreme
case of the PMAP architecture, where the size of the sub-
blocks is reduced to 1 and a shuffled decoding scheme [24]
is used for an immediate exchange of the extrinsic informa-
tion between the component decoders. This architecture is
illustrated in Fig. 1 (b). For every trellis step and for both
component decoders, there is a processing element which
exchanges its state metrics and extrinsic information with the
neighboring processing elements. Consequently, a complete
turbo code iteration is processed in parallel in each clock cycle.
In order to reduce the implementation complexity, it has been
shown for LTE turbo codes that the processing can be divided
into two groups of processing elements (grey and white in
Fig. II (b)). By activating alternately the processing elements
associated with odd and even bit positions, the area complexity



Figure 2: Comparison for LTE turbo code with K = 128.

can be halved at the cost of an additional clock cycle per
iteration. The FPMAP architecture has been demonstrated to
allow a very high throughput of more than 15 Gb/s, however
at the cost of a decreased area efficiency and an increased
number of iterations for the same decoding performance [15],
[25].

C. Pipelined MAP Architecture

A functional parallelization of the MAP algorithm by
pipelining the recursive calculations of the state metric re-
cursions leads to the XMAP architecture [9], [26]–[28]. It is
named after the X-shaped decoder pipeline which is illustrated
in Fig. 1 (c). The pipeline structure has been proven optimal
with respect to the amount of state metric storage [29] and
with current technologies, a throughput of over 1 Gb/s has
been demonstrated [28]. However, the same limitations with
respect to maximum degree of parallelization apply as for the
PMAP architecture.

D. Fully Pipelined Iteration Unrolled MAP Architecture

Further pipelining of the decoding by unrolling the indi-
vidual HI of the turbo decoding leads to the fully pipelined
Iteration Unrolled XMAP (UXMAP) decoder architecture (Fig.
1 (d)), which processes complete code blocks in a pipeline.
Note, that, in contrast to an early VLSI implementation of a
turbo decoder, which also mentioned the concept of iteration
unrolling [30], the UXMAP architecture is fully pipelined.
Assuming a completely filled pipeline, this allows for the
output of a complete decoded frame per clock cycle resulting
in a very high throughput, which is only limited by the
achievable clock frequency and frame size. The idea for
this architecture was first presented in [19] but no detailed
description, performance numbers or place & route results
were given.

Figure 3: Comparison for a turbo code with PPC interleaver
and frame size K = 128.

To achieve throughput in the order of 100 Gb/s, decoder
architectures with extreme parallelism like the FPMAP and
UXMAP are needed. Therefore, for the remainder of this
paper, we will focus on those two architectures.

III. DECODING AT DIFFERENT CODE RATES

Applying different decoding architectures, the two con-
sidered decoders UXMAP and FPMAP do not achieve the
same performance with the same set of simulation parameters.
Any fair comparison should be performed at comparable
performance levels. Fig. 2 shows the Frame Error Rate (FER)
of UXMAP and FPMAP decoders for a LTE turbo code with
frame size K = 128 and a quantization of 6 bits for the
channel LLRs. When decoding for 4 iterations (UXMAP)
and 40 iterations (FPMAP) respectively, both turbo decoders
show similar performance for lower code rates. For the high
code rates 8/9 and 18/19, however, the FER performance of
the FPMAP decreases and the number of required iterations
increases drastically (up to 80) which can be attributed to
the scheduling of the decoding operations within the FPMAP
algorithm. Indeed, for FPMAP, forward and backward state
metrics exchange only a limited amount of information within
one component decoder, largely penalizing the reliability of
exchanged extrinsic information based on parity channel met-
rics. Consequently, for high code rates, the surviving (after
puncturing) parity information from one trellis section needs
several iteration steps to propagate to far away sections in the
trellis. For the UXMAP decoder, this information influences a
larger section of the trellis in each HI, because the processing
is in essence that of a serial MAP processing.

This effect is still observed for larger frame sizes as seen
also in Fig. 2, where the FER performance of a FPMAP with
K = 6144 is added for comparison. Because of the larger
frame size, only 17 FPMAP iterations achieve comparable
FER performance to 4 UXMAP iterations at rate 1/3. At high



code rates, however, up to 58 FPMAP iterations are needed in
order to match the UXMAP performance.

If high code rates are to be supported by the decoder, special
care needs to be taken with respect to designing the puncturing
patterns and interleaver.

A. Parity Puncture Constrained (PPC) Interleavers

The most widely-used interleaver families include the QPP
interleaver [12], the Dithered Relative Prime (DRP) interleaver
[31] and the Almost Regular Permutation (ARP) interleaver
[32]. We will focus on ARP interleavers since it was shown in
[33] that the ARP interleaver can provide the same interleaving
properties as the other two interleaver types, guaranteeing
minimum Hamming distance values at least as high as QPP
and DRP interleavers.

Puncturing is generally used for code rate flexibility. Pe-
riodic puncturing patterns are favoured thanks to the offered
advantages ranging from a simplified design process to the
low complexity hardware implementation. In [34], it was
observed that the puncturing of well-chosen systematic bits
can improve the performance of turbo codes at high and low
error rates especially for high coding rates. Lately in [35], it
was shown that the reliability of extrinsic information related
to an information bit depends on the position of the considered
bit in the puncturing period and the puncturing or not of
the corresponding parity. Moreover, it was observed that the
extrinsic information computed from unpunctured parity posi-
tions is more reliable than the one generated from punctured
parity positions. These observations led to the proposal of
protograph-based interleavers [35], where a periodic strategy
is applied through the interleaver, by connecting the positions
with highly reliable extrinsic information to the positions
with unreliable extrinsic information, more prone to errors.
In addition to the associated error correction improvements,
the introduced additional regularity through periodicity of
both connection and puncturing patterns largely facilitates the
support of code rate flexibility for hardware implementation.
The FER performance of UXMAP and FPMAP for a turbo
code with PPC interleaver and frame size K = 128 is
shown in Fig. 3. In comparison to Fig. 2, both decoders show
improvements for all investigated code rates. The largest gain
in performance is observable for rate 8/9, where there is an
improvement of more than 1.5 dB at a FER of 10−3 for
both decoders. However, the FPMAP decoder still requires 80
iterations to match the performance of the UXMAP decoder
for rate 8/9.

IV. FULLY PIPELINED UNROLLED DECODER
ARCHITECTURE

In this section, we present a fully pipelined, iteration un-
rolled turbo decoder hardware architecture (UXMAP). Note
that, in contrast to previously reported unrolled LDPC de-
coders [17], [18], our architecture is, without any extra effort,
rate-compatible. Fig. 4 illustrates the pipelined architecture on
the example of three X-shaped HI stages (X-Stages).

Figure 4: Iteration unrolled pipelined decoder architecture.

A. X-Stages

The X-Stages realize a functionally parallelized processing
of the serial MAP decoding of complete frames. For a block
size K and radix 2, each X-Stage consists of 2 · K branch
metric units, K LLR units for the computation of the extrinsic
information, forward and backward state metric units and state
metric pipelines. To save area for the state metric pipeline, all
state metrics are normalized to the state metric for state S0 via
subtractive normalization and only the remaining state metrics
are sent to the state metric pipelines. Note, that K of the 2 ·K
branch metric units are used for a re-computation of the branch
metrics at the right side of each X-Stage which avoids area
costly branch metric pipelines.

B. Pipelines

The different X-Stages are connected through the channel
value and extrinsic pipelines which also realize the hardwired
interleaved/de-interleaved information exchange between the
X-Stages. Lastly, the hard decisions calculated in the last X-
Stage are delayed by the hard decisions pipeline and given
to the output so that one complete decoding result is gener-
ated per clock cycle once the pipeline is completely filled.
Significant area saving in the pipelines - at the cost of an
area increase in the X-Stages - is achieved by using a higher
radix [36]. Increasing the number of trellis steps processed
in parallel by the branch, state metric and LLR units from
k = 1 to k = 2 (i.e. going from radix 2 to radix 4) leads to
a reduction of the number of pipeline stages for all pipelines
and thus translates to an area saving of about 50% and also
halves the overall pipeline latency. However, investigations for
radix 8 and radix 16 show, that there the area overhead in
the computational units of the X-Stages supersedes the area
savings in the pipelines.

V. PLACE & ROUTE RESULTS

We implemented the iteration unrolled architecture de-
scribed in the previous section in VHDL and performed
synthesis for a LTE turbo code with frame size K = 128
with a 28 nm Global Foundries FDSOI process. Since for this



This Work [23] [37] [38] [21] [15] [22] [28]
Architecture UXMAP FPMAP PMAP FPMAP XMAP

K 128 6144 6144 6144 6144 6144 6144 6144
Parallelism 128 64 32 64 6144 6144 64 32

nIT 4 40 5.5 5.5 6 6 39 5.5 7

Technology 28 nm 90 nm\ ] 65 nm† ‡ 65 nm† ‡ 65 nm† ‡ 65 nm† ‡ 45 nm ♣ ♠ 28 nm
Freq. [MHz] 800 500 625 (1000) 410 (1000) 400 (1000) 450 (1000) 100 (252) 600 (1000) 625

Throughput [Gb/s] 102.4 1.6 3.3 (5.29) 1.01 (2.47) 1.28 (4.78) 2.15 (2.78) 15.8 (39.86 ) 1.67 (3.2) 1.13
Area [mm2] 23.61 1.04 19.75 (2.44) 2.49 (0.55) 8.3 (1.83) 7.7 (1.70) 109 (24.09) 2.43 (1.04) 0.49

Area Eff. [Gb/s/mm2] 4.34 1.53 0.17 (2.17) 0.41 (4.49) 0.15 (1.74) 0.28 (2.81) 0.14 (1.65) 0.69 (2.68) 2.32

Table I: Comparison of implementation results for different turbo decoder architectures
Frequency scaling to 28 nm (Capped at 1000 MHz): \: 2.52; †: 1.95; ♣: 1.46; Area scaling to 28 nm: ]: 0.40; ‡:0.51; ♠: 0.69

work the interleaving/de-interleaving is realized by hardwired
connections in the pipeline, the area complexity can be ex-
pected to be virtually identical if a PPC interleaver is used. To
allow a fair comparison, we furthermore re-implemented the
FPMAP architecture reported in [15] for K = 128 and placed
& routed both designs for the same process with worst case
PVT (Process/Voltage/Temperature) constraints. The results
for our re-implementation of the FPMAP architecture for
K = 128 show an area consumption of ≈ 1 mm2. While [15]
used 4- and 6-bit quantization, respectively, we chose 6- and
8-bit for fair comparison. When compared to the UXMAP
implementation, the FPMAP with K = 128 is outperformed
by a factor of 64 in terms of throughput and a factor of 2.8
for the area efficiency in terms of Gb/s/mm2.

Table I compares our place & route results for UXMAP
and FPMAP implementations with implementation results for
the PMAP, FPMAP and XMAP decoder architectures with a
throughput of more than 1 Gb/s reported in the literature. Also
included in Table I is a scaling to 28 nm technology. To this
end, we cap the frequency scaling to a reasonable 1000 MHz,
which allows to preserve single cycle accesses to SRAM.

All reference implementations feature a LTE turbo code
with larger frame size K = 6144. The larger frame size leads
to a much steeper slope in the waterfall region compared to
the LTE turbo code with frame size K = 128. Consequently,
all compared PMAP decoders and the XMAP decoder can be
expected to achieve the same FER performance with less than
the maximum number of iterations specified. However, even
with a reduced number of iterations and considering a scaling
to 28 nm technology, neither the PMAP decoders, not the
XMAP decoder come close to even a throughput of 15 Gb/s.
Only the FPMAP implementation from [15] is estimated to
achieve a throughput of roughly 40 Gb/s when scaled to 28 nm
technology. Nevertheless, a reduction of iterations leads to a
considerable FER performance penalty for the FPMAP at high
code rates (see Fig. 2).

With respect to area efficiency, our UXMAP implementation
achieves a very good 4.34 Gb/s/mm2, a value that is only
matched by the full custom design from [37] when scaling it
to 28 nm. Note, that the area efficiency in terms of Gb/s/mm2

will be slightly higher for all reference implementations if the
difference in FER performance due to the larger frame size is
accounted for by performing less decoding iterations. On the
other hand, and in contrast to the UXMAP architecture which

supports a streaming approach due to its pipelined structure,
additional area for buffering will be required for PMAP,
XMAP and FPMAP. This buffering, necessary because of the
latency of the iterative processing, will lower the architecture
efficiency for very high throughputs. Fig. 5 shows the layout
picture of the UXMAP decoder with 8 X-stages and frame
size K = 128.

VI. CONCLUSION

In this work, we presented an implementation of a fully
pipelined iteration unrolled turbo decoder. For a fair com-
parison, we re-implemented the VLSI implementation of a
FPMAP architecture for the same frame size. With a through-
put of 102.4 Gb/s and an area consumption of 23.61 mm2, our
rate flexible UXMAP clearly outperforms the re-implemented
FPMAP as well as previously reported architectures in terms
of throughput and area efficiency. We show, that the UXMAP
architecture is superior to the FPMAP architecture for high
code rates and demonstrate that FER performance can be
further improved by employing PPC turbo codes. Future work
will focus on re-introducing flexibility with respect to frame
sizes to the architecture.
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