
Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2 Deliverable D.3.1

 Page 1 of 57

5G CITY
Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2

Dissemination Level

 PU: Public

 PP: Restricted to other programme participants (including the Commission Services)

 RE: Restricted to a group specified by the consortium (including the Commission
Services)

 CO:
Confidential, only for members of the consortium (including the Commission
Services)

D3.1: 5GCity Edge Virtualization

Infrastructure Design

Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2 Deliverable D.3.1

 Page 2 of 57

Grant Agreement

no:
761508

Project

Acronym:
5G CITY

Project title:

5G CITY

Lead Beneficiary: VOSYS

Document version: V3.0

Work package: 3

Deliverable title: 5GCity Edge Virtualization Infrastructure Design

Start date of the project:

01/06/2017

(duration 30 months)

Contractual delivery date:

M12

Actual delivery date:

31/05/2018

Editor name: Michele Paolino (VOSYS)

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 3 of 57

List of Contributors

Participant Short Name Contributor

Virtual Open Systems VOSYS Michele Paolino, Teodora Sechkova, Daniel Raho

Nextworks s.r.l. NXW Nicola Ciulli, Paolo Cruschelli, Elian Kraja, Elio Francesconi

NEC Europe ltd. NEC Felipe Huici, Sharan Santhanam, Nicolas Weber

Fundació i2CAT I2CAT August Betzler, Joan Josep Aleixendri, Alfonso Egio

ADLINK TECHNOLOGY SARL ADLINK Gabriele Baldoni

Italtel ITL Antonino Albanese, Viscardo Costa

Accelleran Accelleran Trevor Moore, Simon Pryor

List of Reviewers

Participant Short Name Contributor

Fundació i2CAT I2CAT Shuaib Siddiqui

ITALTEL ITL Antonino Albanese, Viscardo Costa

Change History

Version Date Partners Description/Comments

0.1 30/03/2018 VOSYS First Table of content

1.0 27/04/2018 VOSYS, NXW, NEC, I2CAT First contributions

1.8 11/05/2018 VOSYS, ITL, NXW, XLRN, ADLINK First revision from contributors, added missing sections

2.0 14/05/2018 VOSYS VOSYS review with comments for the partners

2.1 14/05/2018 ADLINK, ITL, NXW, I2CAT, XLRN Comments addressed from partners

2.4 17/05/2018 VOSYS Consolidated version for review

2.5 18/05/2018 VOSYS, NXW Comments from NXW integrated in the consolidated version

2.7 24/05/2018 VOSYS, ITL, I2CAT, NXW, ADLINK ITL and I2CAT reviews integrated with comments addressed

3.0 30/05/2018 VOSYS, I2CAT, NEC, ADLINK, NXW Addressed comments from the project coordinator and technical
manager

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 4 of 57

DISCLAIMER OF WARRANTIES
This document has been prepared by project partners as an account of work carried out within the framework
of the contract no 761508.

Neither Project Coordinator, nor any signatory party of Project Consortium Agreement, nor any person acting
on behalf of any of them:

 makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any

party's intellectual property, or

 that this document is suitable to any particular user's circumstance; or

 assumes responsibility for any damages or other liability whatsoever (including any consequential

damages, even if Project Coordinator or any representative of a signatory party of the Project

Consortium Agreement, has been advised of the possibility of such damages) resulting from your

selection or use of this document or any information, apparatus, method, process, or similar item

disclosed in this document.

 5GCity has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 761508. The content of this deliverable does not reflect the official opinion of the
European Union. Responsibility for the information and views expressed in the deliverable lies entirely with
the author(s).

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 5 of 57

Table of Content

Figures ... 6

Tables .. 7

Executive Summary ... 8

1. Introduction .. 9

2. Applicability of ETSI MEC architecture to 5GCITY .. 11

2.1 ETSI MEC - NFV architectures mapping ... 11

2.2 Existing MEC Solutions ... 16
2.2.1 A Low Latency Multi-access Edge Computing Platform for Software-Defined Mobile
Networks... 17

2.3. 5GCity Approach... 19
2.3.1 fog05 .. 19
2.3.2 Applicability of ETSI MEC architecture in 5GCity .. 20

3 Computing Virtualization .. 24

3.1 State of the Art ... 25
3.1.1 KVM .. 25
3.1.2 VOSYSmonitor... 25
3.1.3 Unikraft .. 26
3.1.4 Virtualization security and trust .. 26

3.2 5GCity Enhancements in computing virtualization .. 30
3.2.1 Unikraft Context and Enhancements ... 30
3.2.2 NFVI and VIM Trusted computing extensions .. 32

4 Network Virtualization ... 35

4.1 State of the Art ... 35
4.1.1 OVS-DPDK ... 35
4.1.2 VOSYSwitch virtual switch ... 35
4.1.3 Wireless Virtualization .. 36
4.1.4 Service Function Chaining in an NFV enabled environment ... 38

4.2 5GCity Enhancements in Networking virtualization ... 41
4.2.1 VOSYSwitch .. 41
4.2.2 Wireless Virtualization .. 42
4.2.4 Local traffic steering in MEC node ... 47

5 Conclusions ... 50

References ... 51

Abbreviations and Definitions ... 55

Abbreviations... 55

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 6 of 57

Figures

Figure 1. The 5GCity architecture, with the Infrastructure Layer at the bottom ... 9
Figure 2. Mapping between ETSI MEC and ETSI NFV architectures [1] ... 13
Figure 3. LL-MEC Platform [9].. 17
Figure 4. LLMEC High Level Schematic [9] ... 18
Figure 5 fog05 high level architecture ... 20
Figure 6. 5GCity MEC Mapping .. 20
Figure 7. Virtualization solutions architectures [11]... 24
Figure 8. VOSYSmonitor architecture .. 25
Figure 9. OpenStack attestation with Trusted Compute Pools [37] .. 28
Figure 10. TMP Quote collection [39] .. 29
Figure 11. OpenAttestation SDK architecture overview [39] .. 30
Figure 12. Unikraft components .. 31
Figure 13. 5GCity vTPM extensions ... 32
Figure 14. 5GCity EdgeVIM architecture .. 33
Figure 15. VOSYSwitch virtual switch architecture ... 36
Figure 16. Physical wireless interface (NIC) virtualization in Linux ... 37
Figure 17. LTE stack partitioning options ... 38
Figure 18. OpenStack SFC architecture [50] ... 40
Figure 19. SDN-based wireless virtualization software components .. 42
Figure 20. Vif scheduler as part of the agent software running on the Wi-Fi nodes...................................... 43
Figure 21. Local schedulers competing for the medium can lead to SLA violations. 44
Figure 22. Example of the scheduler architecture with the global and local schedulers and three tenants... 45
Figure 23. 5GCity RAN Network Architecture Overview ... 45
Figure 24. RAN SDN Control Interface Model .. 46
Figure 25. Local traffic handling in ETSI MEC architecture ... 48

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 7 of 57

Tables

Table 1. List of Issue raised from the proposed ETSI MEC to ETSI NFV mapping [1] 14
Table 2. Attributes of the AppD descriptor [6] ... 15
Table 3. High-level comparison of VNFD and AppD descriptors [1] ... 16
Table 4. 5GCity approach – issues and solutions ... 23
Table 5. Requirement list for MEC node data plane and control plane. ... 48
Table 6 5GCity WP3 objectives and solutions .. 50

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 8 of 57

Executive Summary

This deliverable presents the characteristics of the 5GCity virtualization platform and MEC node, which aims
at building the city of the future 5G ICT service infrastructure by combining NFV and MEC concepts, extending
state of the art virtualization techniques for the execution of virtual machines and for their networking
features.

In the first part of the document, the project’s approach towards the coexistence of ETSI MEC and NFV
standardization activities is explained. The key differences between them are presented, together with the
planned activities to make them coexist in the 5GCity infrastructure. Then in Section 3 and Section 4, the
computing and the networking virtualization features of the 5GCity infrastructure are detailed. Both Sections
start with a description of what is the state of the art of each technology today, in order to introduce and
clarify the advancements that will be developed in 5GCity, which are detailed respectively in Sections 3.2 and
4.2.

In greater detail, 5GCity computing extensions include unikernels and VMs developments to improve
performance, efficiency (Unikraft, KVM) and security (EdgeNFVI, EdgeVIM). On the other hand, wireless
slicing (RAN and Wi-Fi virtualization), vSwitch acceleration (VOSYSwitch) and MEC service function chaining
are part of the project’s networking enhancements presented in this document.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 9 of 57

1. Introduction

Smart cities have the objective of providing multiple added value services to citizens, companies or other
entities while minimizing the infrastructure costs in a way to address performance requirements (computing
power, bandwidth, power consumption, security, etc.) with the highest efficiency. These services can be very
different from each other, and must be properly isolated to guarantee privacy, programmability and
infrastructure openness.

In this context, virtualization is a technology of pivotal importance because it abstracts computing and
networking infrastructure resources to provide application with useable logic instances (e.g., virtual
machines, unikernels1, network slices, etc.) that are fundamental for NFV and MEC platforms.

However, the high number of heterogeneous devices interconnected to build the city infrastructure together
with the geographically scattered nature of cabinets, smart gateways, lampposts and the mobility of smart
devices represent a challenge for virtualization. Moreover, these new technologies will enhance current
smart cities services by delivering almost real time services, which will allow the emergence of a new
generation of applications.

Figure 1. The 5GCity architecture, with the Infrastructure Layer at the bottom

This deliverable documents the activities developed within WP3, which has the objective of developing the
project virtualization platform by:

i) Optimizing virtualization technologies for heterogeneous and resource constrained devices,

ii) Implementing network virtualization targeting efficient software switches and wireless
virtualization,

iii) Creating specific VNFs data models and systems for MEC nodes.

1 Please see: http://unikernel.org/

http://unikernel.org/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 10 of 57

WP3 activities focus on the lowest layer of the project architecture depicted in Figure 1, (Infrastructure Layer)
and together with the VIMs set the ground for the execution of the 5GCity Platform.

In this document, the project positioning with respect to the ETSI MEC and NFV standard is detailed in Section
2. Differences between the two specification groups activities are shown, followed by a description of both
the implementation of existing components and those that the 5GCity project aims to develop.

Afterwards, the virtualization of computing resources to run multiple applications, isolated in a multi-tenant
environment, are detailed in Section 3. The state of the art of existing virtualization solutions (KVM 2 ,
unikernels and VOSYSmonitor) is also described together with the current virtualization approach towards
trusted computing and security. These details introduce the 5GCity enhancements that are explained later
on in Section 3.2, where Unikraft3, the Edge NFVI and the EdgeVIM design and implementations are also
described.

Section 4 uses a similar structure to describe the project activities in the direction of networking virtualization.
OVS-DPDK, VOSYSwitch, RAN slicing, service function chaining, Wireless and eNB virtualization state of the
art are described in Section 4.1 while the project enhancements are highlighted in Section 4.2.

2 Please see: https://www.linux-kvm.org/
3 More info at: https://www.xenproject.org/developers/teams/unikraft.html

https://www.linux-kvm.org/
https://www.xenproject.org/developers/teams/unikraft.html

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 11 of 57

2. Applicability of ETSI MEC architecture to

5GCITY

While ETSI NFV (Network Function Virtualisation) has been around for a while now, ETSI MEC (Multi access
Edge Computing) is much newer. It has changed its scope during its lifecycle by shifting its focus towards an
architecture which can encompass multi-access technology. NFV has grown in popularity because it enables
service providers to replace network appliances with software running on servers, enabling cost reduction,
service innovation and deployment acceleration. While ETSI MEC is tailored to edge computing coupled with
mobile access technology, it takes the same principles that drive NFV and optimizes them for the mobile
environment.

In this section, ETSI NFV and ETSI MEC similarities and differences are described to detail the 5GCity approach
towards the coexistence of both within the project’s infrastructure (Section 2.3).

2.1 ETSI MEC - NFV architectures mapping

In this section, we will provide a rationale which describes a potential mapping between NFV and
MEC reference architectures. Their similarities are described below

- Standard platform. similar to NFV, MEC is built on top of a stack of standard components, including
a well-defined compute platform and virtualization layer.

- Open environment. MEC is designed to promote innovation through openness and interoperability,
just like NFV.

- Software-focused. While both NFV and MEC need hardware, the emphasis is on moving functionality
to software. Doing so brings benefits in terms of scalability, commercial models, and speed of
innovation and deployment.

NFV and MEC have similarities and a common heritage, but clearly show some differences. The main
differences are those related to the type, location and scope of the applications they target.

- Application Type: NFV can address a wide variety of existing network functions and applications,
including routing, VPNs, firewalls, security, voice applications including IMS and SBC and so on. Each
of these is independent and uses NFVI for basic hosting and networking functions. In contrast, MEC
provides a more focused MEC application platform specifically designed for supporting services
associated with radio access. The MEC application platform provides an abstracted way to interface
with the complexity of the radio network, enabling new applications. MEC applications depend on a
set of middleware services which are hosted on a MEC server:

o Service registry;
o Radio Network Information Services (RNIS);
o Traffic Offload Function (TOF).

- Application Scope: MEC is designed to support high-level mobility applications. With MEC, wireless
operators, over-the-top providers and enterprises can quickly build advanced mobility applications
that are small and portable. NFV addresses a much broader set of arbitrary network applications.

- Application Location: Consumers are insatiable in their desire for quick access to bandwidth-
intensive applications. In addition, emerging requirements for 5G deployments will stipulate
bandwidth and latency requirements. MEC is designed to be implemented in the access part of the

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 12 of 57

network (at the micro or macro-cell or the first aggregation point) to help answer this demand by
maximizing bandwidth and minimizing latency. In contrast, NFV is targeted at deployments
throughout the network.

A specific ETSI MEC working group has been created to design a solution which maps ETSI MEC to an ETSI
NFV architecture. The ETSI report [1] which it produced contains:

- A set of initial assumptions;

- A potential solution which provides a mapping of MEC to NFV architecture;

- An ordered list of open issues, which are raised by the proposed mapping.

The following assumptions have been done:

- The mobile edge platform is deployed as a VNF. For that purpose, the procedures defined by ETSI
NFV is used. It is not expected that these procedures need to be modified for use with ETSI MEC.

- The mobile edge applications appear like VNFs towards the ETSI NFV MANO components. This allows
re-use of ETSI NFV MANO functionality. It is however expected that ETSI MEC might not use the full
set of MANO functionality, and require certain additional functionality. Such a specific mobile edge
application is denoted by the name "ME app VNF" in the remainder of the present document.

- The virtualisation infrastructure is deployed as a NFVI and its virtualised resources are managed by
the VIM. For that purpose, the procedures defined by ETSI NFV Infrastructure specifications, i.e. ETSI
GS NFV INF-003 [2], ETSI GS NFV INF-004 [3], ETSI GS NFV INF-005 [4], can be used. It is not expected
that these procedures need to be modified when used with the ETSI MEC.

The solution envisioned in [1], and described in Figure 2 encompasses all the reference points described in
ETSI NFV (green lines) and ETSI MEC (blue line), while further suggesting a new category of cross-area
reference point (red lines). The new reference points (Mv1, Mv2 and Mv3) are introduced between elements
of the ETSI MEC architecture and the ETSI NFV architecture to support the management of ME app VNFs.
These are related to existing NFV reference points, but it is expected that only a subset of the needed
functionalities will be used for ETSI MEC, while some extensions may be necessary:

- Mv1: This reference point connects the mobile edge application orchestrator (MEAO) and the

NFVO. It is related to the Os-Ma-nfvo reference point as defined in ETSI NFV.

- Mv2: This reference point connects the VNF Manager of that performs the LCM of the ME app

VNFs with the MEPM-V to allow Lifecycle Management related notifications to be exchanged

between these entities. It is related to the Ve-Vnfm-em reference point as defined in ETSI NFV, but

will possibly include additions, and might not use all functionality offered by Ve-Vnfm-em.

- Mv3: This reference point connects the VNF Manager with the ME app VNF instance, to allow the

exchange of messages (e.g., related to mobile edge application lifecycle management or initial

deployment-specific configuration). It is related to the Ve-Vnfm-vnf reference point as defined in ETSI

NFV, but will possibly include additions, and might not use all functionality offered by Ve Vnfm-vnf.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 13 of 57

Figure 2. Mapping between ETSI MEC and ETSI NFV architectures [1]

The mapping described in [1], as depicted in Figure 2, leaves a number of open issues, identified in Table 1.
For each one of the identified issues a tentative solution and an evaluation of the impact in the actual NFV
landscape have been provided by [1].

ISSUE#ID ISSUE NAME Proposal Impacted area Impact

ISSUE#1 Mapping of ME app
VNFs to Network
Services

It is suggested that the MEAO arranges with the NFVO via Mv1 to manage
the ME app VNF instances as part of one or more NSs

Interfaces Mv1
(MEAO-NFVO)

HIGH

ISSUE#2 Usage of NFV
Network Service

Use the concept of NSs to represent the set of ME app VNFs and ME
platform VNFs and their interconnection/dependency.

information
model

HIGH

ISSUE#3 Communication
between MEAO and
NFVO via Mv1

Under analysis by ETSI MEC WG. Interfaces Mv1
(MEAO-NFVO)

HIGH

ISSUE#4 Communication
between VNFM and
MEPM-V via Mv2

Certain functionalities as provided by the Ve-Vnfm-em reference point will
be used between the MEPM-V and the VNFM that manages the lifecycle of
the ME app VNFs, as discussed in clause 6.4.3

Interfaces Mv2
(VNFM,
MEPM-V)

MEDIUM

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 14 of 57

ISSUE#5 Communication
between VNFM and
ME app instance via
Mv3

Under analysis by ETSI MEC WG. Interfaces Mv3
(VNFM-
MeApp)

MEDIUM

ISSUE#6 AppD vs. VNFD for
ME app VNFs

Under analysis by ETSI MEC WG. information
model

MEDIUM

ISSUE#7 VNF Package vs.
MEC application
package

Identify with ETSI NFV whether an extension mechanism for VNF Packages
exists that can be re-used, and what are the rules for re-use. If it does not
exist, suggest to ETSI NFV to specify such a mechanism

information
model

MEDIUM

ISSUE#8 VNF package
onboarding

Solution 1: If the MEAO is the master, the ME app package would first be
provided by the OSS to the MEAO via Mm1, and onboarded to the NFVO by
the MEAO via Mv1, using procedures defined in ETSI GS NFV-IFA 013 [5]. In
that case, the MEC specific extensions of the VNF package are directly
available to the MEAO, as the package passes through the MEAO.

Solution 2: If the NFVO is the master, the ME app package would be
onboarded directly into the NFVO by the OSS via Os-Ma-nfvo. Via Mv1, the
MEAO would be notified about package onboarding, and would be able to
subsequently fetch whole packages or the needed package parts (so called
package artifacts), using procedures defined in ETSI GS NFV-IFA 013 [5]. This
would allow the MEAO to access the MEC specific extensions of the VNF
package

VNF Lyfe Cicle
management

HIGH

ISSUE#9 Managing traffic
redirection

The Data Plane in a MEC in NFV deployment may be realised by means
outside the scope of the ETSI MEC specifications (solution 1). It may also be
realised based on the NFP mechanism defined in ETSI NFV (solution 2).

MEC dataplane
configuration

LOW

ISSUE#10 Comparison of AppD
and VNFD data
structures

Under analysis by ETSI MEC WG. Information
model

MEDIUM

ISSUE#11 NFV construct that
corresponds to
Mobile Edge Host

ETSI ISG NFV has defined several constructs to structure an NFVI, such as
NFVI-PoP (basically, a data center) and Zone (a set of co-located and well-
connected physical resources which is a subset of an NFVI-PoP).

Mobile edge
host definition

NFVI definition

LOW

ISSUE#12 ME App VNF
Instance Relocation

Under analysis by ETSI MEC WG. VNF Lyfe Cicle
management

LOW

ISSUE#13 Application
instantiation

Under analysis by ETSI MEC WG. VNF Lyfe Cicle
management

LOW

ISSUE#14 Application instance
termination

Under analysis by ETSI MEC WG. VNF Lyfe Cicle
management

LOW

Table 1. List of Issue raised from the proposed ETSI MEC to ETSI NFV mapping [1]

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 15 of 57

Note that these 14 issues originate from one of the main differences between ETSI MEC and ETSI NFV,
which is linked with the information model needed to describe MEC Applications.

Attribute name Qualifier Cardinality Data type Description

appDId Mandatory 1 String Identifier of this MEC application descriptor. This

attribute shall be globally unique. See note 1.

appName Mandatory 1 String Name to identify the MEC application.

appProvider Mandatory 1 String Provider of the application and of the AppD.

appSoftVersion Mandatory 1 String Identifies the version of software of the MEC

application.

appDVersion Mandatory 1 String Identifies the version of the application descriptor.

mecVersion Mandatory 1..N String Identifies version(s) of MEC system compatible with the
MEC application described in this version of the AppD.

appInfoName Mandatory 0..1 String Human readable name for the MEC application product.
May change during the MEC application product

lifetime.

appDescription Mandatory 1 String Human readable description of the MEC application.

virtualComputeDescriptor Mandatory 1 VirtualComputeDescription Describes CPU, Memory and acceleration requirements
of the Virtualisation machine.

swImageDescriptor Mandatory 1 SwImageDescriptor Describes the software image which is directly loaded
on the virtualisation machine instantiating this
Application.

virtualStorageDescriptor Mandatory 0..N VirtualStorageDescriptor Defines descriptors of virtual storage resources to be
used by the MEC application.

appExtCpd Mandatory 0..N AppExternalCpd Describes external interface(s) exposed by this MEC
application.

appServiceRequired Mandatory 0..N ServiceDependency Describes services a MEC application requires to run.

appServiceOptional Mandatory 0..N ServiceDependency Describes services a MEC application may use if
available.

appServiceProduced Mandatory 0..N ServiceDescriptor Describes services a MEC application is able to
produce to the platform or other MEC applications. Only

relevant for service-producing apps.

appFeatureRequired Mandatory 0..N FeatureDependency Describes features a MEC application requires to run.

appFeatureOptional Mandatory 0..N FeatureDependency Describes features a MEC application may use if
available.

transportDependencies Mandatory 0..N TransportDependency Transports, if any, that this application requires to be
provided by the platform. These transports will be used
by the application to deliver services provided by this

application. Only relevant for service-producing apps.
See note 2.

appTrafficRule Mandatory 0..N TrafficRuleDescriptor Describes traffic rules the MEC application requires.

appDNSRule Mandatory 0..N DNSRuleDescriptor Describes DNS rules the MEC application requires.

appLatency Mandatory 0..1 LatencyDescriptor Describes the maximum latency tolerated by the MEC

application.

terminateAppInstanceOp

Config

Mandatory 0..1 TerminateAppInstanceOpC

onfig

Configuration parameters for the Terminate application

instance operation.

changeAppInstanceState

OpConfig

Mandatory 0..1 ChangeAppInstanceStateO

pConfig

Configuration parameters for the change application

instance state operation.

NOTE 1: The appDId shall be used as the unique identifier of the application package that contains this AppD.
NOTE 2: This attribute indicates groups of transport bindings which a service-producing MEC application requires to be supported by the

platform in order to be able to produce its services. At least one of the indicated groups needs to be supported to fulfil the

requirements.

NOTE3: The "Qualifier" column indicates whether the support of the attribute is mandatory, optional or conditional.
NOTE4: The "Cardinality" column contains the minimum and maximum cardinality of this information element (e.g. 1, 2,

0..N, 1..N).

Table 2. Attributes of the AppD descriptor [6]

 As stated in [6], an application Descriptor (AppD) is a part of the application package and describes
application requirements, and rules, required by the application provider to be able to deploy a MEC

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 16 of 57

Application. Table 2 provides the full attributes which composes the AppD descriptor, while Table 3. provides
a preliminary analysis of the gap between AppD and VNFD deployment templates [1].

VNFD attribute AppD attribute

vnfdId appDId

vnfProvider appProvider

vnfProductName appName

vnfSoftwareVersion appSoftVersion

vnfdVersion appDVersion

 mecVersion

vnfProductInfoName appInfoName

vnfProductInfoDescription appDescription

vnfmInfo

localizationLanguage

defaultLocalizationLanguage

vdu

>swImageDescriptor swImageDescriptor

virtualComputeDesc virtualComputeDescriptor

virtualStorageDesc virtualStorageDescriptor

intVirtualLinkDesc

vnfExtCpd appExtCpd

 appServiceRequired

 appServiceOptional

 appServiceProduced

 appFeatureRequired

 appFeatureOptional

 transportDependencies

 appTrafficRule

 appDNSRule

 appLatency

deploymentFlavour

>vnfLcmOperationsConfiguration

 terminateAppInstanceOpConfig

 changeAppInstanceStateOpConfig

configurableProperties

modifiableAttributes

lifeCycleManagementScript

elementGroup

vnfIndicator

autoScale

Table 3. High-level comparison of VNFD and AppD descriptors [1]

It is clear that the main difference is composed by a set of additional attributes of the AppD descriptor which
are needed to describe the dependencies between the MEC application and a set of services provided by the
MEC Platform.

2.2 Existing MEC Solutions

Open source software is expected to play an important role in future 5G systems and MEC solutions as well.
The ever-increasing number of new use cases and the need for devices with different form factors are a
challenge for the entire industrial landscape. While a small number of leading smartphone manufacturers
already provide state-of-the-art mobile devices, 5G is likely to shift production to a large number of small
operators specializing in specific niche markets. These industries are expected to rely on open source
development and access kits in order to adapt their respective products to selected markets. Naturally, the
main players will provide commercial mass markets.

To date, we have knowledge of only one open source software implementation of ETSI MEC, which is LL-MEC
(within Mosaic5G ecosystem [7], [8]), briefly explained in the following paragraph.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 17 of 57

2.2.1 A Low Latency Multi-access Edge Computing Platform for Software-Defined Mobile

Networks

The open source LL-MEC implements two main parts: the LL-MEC platform (Figure 3) and the data control
APIs. LL-MEC is responsible for providing two main services: native IP service endpoints and real-time radio
network information to MEC applications per user and service. It can be connected to a number of underlying
RAN and CN gateways. The data plane APIs act as a layer of abstraction between the RAN and CN data plane
and the LL-MEC platform. The OpenFlow4 and FlexRAN5 protocols facilitate communication between the LL-
MEC platform and the underlying RAN and CN. With LL-MEC, it is possible to develop RAN and CN coordinate
network applications using LL-MEC and FlexRAN SDK that allow monitoring and controlling not only traffic
but also the status of the network infrastructure. These applications can range from elastic applications to
obtain statistics on user traffic for applications to low-latency applications that redirect user traffic (local
breakout) by applying criteria for setting the data path. All RAN and CN product data and APIs are open for
use by other apps and third parties.

Figure 3. LL-MEC Platform [9]

To make the topic easier, Figure 4 shows the high-level diagram of the LL-MEC, mainly composed of a three-
layer design:

 Abstraction Layer

 MEC Platform

 MEC Application

This platform runs on software-defined mobile network consisting of multiple LTE eNodeBs and SDN-enabled

switches, whether it is physical or software, and fully separates the data plane from control functions.
Furthermore, the agent acts as a local controller on behalf of RAN or SDN-enabled switches. The entities and
interfaces implemented in this platform follow the ETSI MEC Specifications supporting the functionalities
defined by Mp1 and Mp2 interface, keeping at the same time the 3GPP compatibility. Mp1 is the interface

4 More details at: https://www.opennetworking.org/
5 Please see: http://networks.inf.ed.ac.uk/flexran/

https://www.opennetworking.org/
http://networks.inf.ed.ac.uk/flexran/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 18 of 57

between mobile edge platform and applications while the Mp2 is the interface between mobile edge
platform and the abstracted data plane as specified by ETSI.

Figure 4. LLMEC High Level Schematic [9]

2.2.1.1. Abstraction Layer

The abstraction layer includes both the Radio-API entity and the Data-Plane-API entity and has the role of
abstraction for the control-plane and for the data plane respectively providing only the information necessary
for the development of the MEC Applications:

 The Radio-API has been designed to give an abstract view of the radio network status measuring the
parameters of interest from the RAN. Moreover, provides the possibility to modify the state of the
underlying network;

 The Data-Plane-API essentially provides the Mp2 interfaces for Edge Packet Services (EPS) within the
MEC platform to control the data plane of the core network. EPS will pass the required rules to
OpenFlow enabled switches through the Data-Plane-API.

2.2.1.2. MEC Platform

The MEC platform is in a Mobile Edge Host as a middleware (or core entity) between the MEC applications
and the real network elements. It gives application developers the possibility to focus on the specific
application rather than on the functionalities of the underlying RAN. The MEC platform is the brain of the LL-
MEC: it controls the main services as events trigger and register, providing library integration and low latency
support. Moreover, the MEC platform provides the necessary building blocks to realize MEC applications. It
has to be noted that the current implementation of the LL-MEC does not support the Mp3 reference point
used for the communication with the other MEC platforms.

The MEC platform is composed of the following components:

1) Radio Network Information Service
2) Service Registry
3) Edge Packet Service
4) Event Manager

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 19 of 57

2.2.1.3 MEC Application

One of the main benefits resulting from the separation of the control plane and data plane is that the
applications on the top of the platform can be developed without deep knowledge of the underlying network.

Applications communicate with the MEC Platform through the Mp1 interface (northbound interfaces - MEC
APP API); by means of the Mp1 reference point the MEC applications have access to the network information
or delegate the control decision towards network. The Mp1 includes REST-API, messages bus, and local API.
Another key feature of LL-MEC is that the application can be implemented in different scheduling ways such
as round robin, first-in-first-out or deadline scheduler to have different time scales and priorities when
running the tasks. In particular, the RAN-related applications can benefit from this feature to avoid further
delays during interaction with the radio network.
Applications can not only interact with the MEC platform through the APIs to use and provide mobile edge
services, but they can also provide services that provide information and messages useful for other
applications.

2.3. 5GCity Approach

ETSI NFV and MEC share the same principles and can be combined in a single infrastructure. However, ETSI
MEC is a young standardisation activity, partially still under definition. For this reason, some components of
the 5GCity architecture need to be adapted and/or extended to support both ETSI NFV specific components
(e.g., the NFVO) and MEC descriptors and deltas. Similarly, the following new MEC specific components need
to be implemented:

 The Multi-access Edge Application Orchestrator (MEAO)

 The Multi-access Edge Platform Manager – NFV (MEPM-V),

 The Multi-access Edge Platform (ME platform).

This section presents the 5GCity approach towards the integration between ETSI MEC and NFV together with
fog05, the open source project which will be extended to implement such integration.

2.3.1 fog05

fog05 is an IaaS software that can harvest compute power from low end devices as well as mobile devices
and expose this computing power to the city infrastructure. fog05 leverages on a communication protocol
that can work with poor network connectivity (intermittent or low bandwidth) and has a fully distributed
control plane that allow runtime discovery of new compute nodes.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 20 of 57

Figure 5 fog05 high level architecture

fog05 has a full plugin architecture (Figure 5), that ease the support of new hypervisors, SDN controllers,
deployable units or MANO algorithms. This functionality will be used to enable to the ETSI MEC support in
5GCity.

A more detailed description of fog05 can be found in D2.2 Section 3.7.3.

2.3.2 Applicability of ETSI MEC architecture in 5GCity

Figure 6. 5GCity MEC Mapping

Figure 6depicts the updated architecture for MEC in NFV that will be used as a base for the integration
between MEC and NFV in 5GCity. Some reference points have been removed (the one highlighted using

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 21 of 57

dashed lines and as well as federation reference points) while the MEAO and MEMP-V will use fog05
extended with specifically implemented plugins for both MEMP-V and MEAO as described in (D4.1 – Section
2.1 [10]).

Moreover, in the 5GCity architecture the NFVO will act as a master with respect to onboarding packages,
while the final decision regarding placement will be always taken by the 5G service placement algorithms.
This means that the MEAO and the NFVO should collaborate when it is time to instantiate or migrate an ME
application/service, while this collaboration should go through another interface which is not the one used
to send management information.

Another key component of the MEC architecture is the MEPM-V, which is responsible for Life Cycle
Management (LCM) and Performance Monitoring (PM) for the Mobile Edge Platform. This component will
act as an Element Manager from an NFV point of view, and will interact with the MEAO through the Mm3*
reference point to retrieve configuration for the ME platform coming from MEAO or to notify something to
it. This reference point is different from ETSI MEC Mm3 because in our case LCM will go directly through the
VNFM. Interface Mm5 (not yet specified in ETSI MEC) will be used for sending configurations (DNS rules,
configuration of persistence storage and so on) to the ME platform as well as receiving notifications or
request from this one, regarding cardinality one MEAO can manage different MEPM-V, but one MEPM-V can
be managed only by one MEAO.
Then we have the Mobile Edge platform that allows ME app to register and access the different platform
services, as well as managing DNS rules and other useful information, such as RNIS. In 5GCity, an ME platform
will be developed as PoC to demonstrate in some use cases how MEC applications can communicate.
Regarding the management of traffic redirection, it will be triggered by the MEAO under request of the
MEMP-V, and will be put in place by the NFVO mainly for three reasons:

1) The MEAO does not have any direct connection with NFVI and Data plane.
2) It makes more sense that all the actual configuration is done by only one orchestrator, the NFVO.
3) It gives us the possibility to remove the Mp2 interface between ME platform and the Data Plane.

For the mapping of a ME Host in an NFV concept, we will use NFVI-PoP and zones. As a consequence, we
consider a single ME platform and a MEMP-V for each zone, solving the problem of allocation. The problem
of reallocation (e.g. migrating a ME app between different zones) is a gap in ETSI NFV that still needs to be
solved.

For each issue identified by ETSI MEC (Table 1), we identified the 5GCity solution in Table 4:

Issue Description 5GCity Solution Comment

ISSUE#1 Mapping between
ME app VNFs and
NS

The MEAO will have a map between ME
app VNFs inside NSs

The map comes when the
MEAO takes the descriptors
form NFVO

ISSUE#2 NSD should
express eventual
dependency to
other NSs.

5GCity information model will address
this issue.

Extending NSD with MEC
relevant fields.

ISSUE#3 Communication
between MEAO
and NFVO.

Communication goes through Mv1 ~
Os-Ma-nfvo, OSM REST API

ISSUE#4 Communication
between MEMP-V
and VNFM.

Communication goes through Mv2 ~
Ve-Vnfm-em. MEPM-V act as Element
Manager for the Mobile Edge Platform
need to keep track of LCM operation

Ve-Vnfm-em is not exposed in
OSM, we have to implement
this interface for the MEMP-V.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 22 of 57

initiated by the NFVO, it also needs to
access to PM counters for the
virtualized resources in which ME apps
VNFs related to the ME platform that is
managed by the MEPM-V. PM
information uses OSM MON tool.

ISSUE#5 Communication
between VNFM
and ME App VNFs.

As Mv3 ~ Ve-vnfm-vnf no changes are
needed.

MEC doesn’t cover this part,
we can use the NFV approach.

ISSUE#6 MEC AppD vs NFV
VFND.

5GCity information model will take in
account both descriptors. MEAO stores
only MEC information. NFVO stores
only NFV information.

Need to extend out
Information Model to cover
relevant MEC fields.

ISSUE#7 Packages of ME
Apps vs VNFs.

5GCity packages will contains files
related to NFV and MEC.

MEAO will store only MEC part,
and NFVO only NFV part.

ISSUE#8 NS/ME app
onboarding.

NFVO is the master, and MEAO is the
slave, this means that the onboarding
comes first to NFVO that validate
eventual MEC information, store the
mapping between ME app and NS, and
send MEC information to MEAO and
NFV information will be used by the
NFVO.

ISSUE#9 Management of
traffic redirection.

The ME platform ask traffic redirection
through Mm5(which is an unspecified
reference point) then this information
goes to MEAO through Mm3* and the
MEAO create a NFP based on the new
traffic rules and uses Mv1 to ask the
NFVO to instantiate.

The MEAO is the trigger for
traffic redirection, then the
actual configuration is done by
NFVO for the NFV part and by
the ME platform for the MEC
related part.

ISSUE#10 Comparison
between AppD
and VNFD data
structures

See issue 6.

ISSUE#11 Multi-access Edge
Host in NFV.

ME Host can be the NFVI in a cabinet.
MEAO need to be able to ask NFVO to
deploy in specific cabinets. Each NFVI-
PoP can be a ME Host.

MEC should be able to reuse
such as NFVI-PoP (basically, a
data centre) and Zone (a set of
co-located and well-connected
physical resources which is a
subset of an NFVI-PoP). This
can be mapped to well known
definition of availability-zone
in an OpenStack deployment.

ISSUE#12
ME App VNF
Instance
Relocation

The MEAO and NFVO should
collaborate when is time to relocate a
ME App instance, this communication
goes through a reference point
separate from Mv1

Relocation is triggered by
MEAO based on information
coming from MEPM-V

ISSUE#13 Application
instantiation

Same as issue#12 Instantiation is triggered by
MEAO

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 23 of 57

ISSUE#14 Application
instance
termination

Same as issue#12 Termination in triggered by
MEAO based on information
coming from MEPM-V

Table 4. 5GCity approach – issues and solutions

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 24 of 57

3 Computing Virtualization

Computing virtualization consists in abstracting the system hardware resources to run multiple independent
instances of an application. Different techniques exist today to implement such abstraction: Hypervisors,
Containers and Unikernels are the most important ones (Figure 7).

In this section, the 5GCity enhancements to computing virtualization techniques are detailed after a
presentation of these techniques as state of the art.

Figure 7. Virtualization solutions architectures [11]

A hypervisor (e.g., Kernel-based Virtual Machine – KVM [12] and XEN [13]) is a software layer able to create
virtual instances of hardware resources such as CPUs, memory, devices, etc. It enables the execution of
multiple operating systems (virtual machines) on the same hardware. The virtualisation provided by type-1
(e.g., Xen) hypervisors is implemented at the operating system level, meaning that two virtual machines
(VMs) running on the same host share the hypervisor but do no not share the OS implementation, nor the
libraries, the runtime and any other higher-level component.

Containers (e.g., Docker 6), on the other hand, use operating systems features to package applications
together with all their dependencies (libraries, binaries, etc.). In the case of Linux, control groups (cgroups)
and namespaces are leveraged to provide, respectively, resource management and isolation between the
container instances. Therefore, virtualisation is implemented in this case at the libraries and runtime level.
These shared components are read only, while each container has its own specific access point for writing
them. Containers can be instantiated faster than virtual machines, but do not have the same level of isolation
provided by the hypervisor. For this reason, to enable multi-tenancy, containers are usually isolated inside
virtual machines, as shown in Figure 7.

Finally, unikernels (e.g., Unikraft, RumpRun, etc.) are specialised, single-address-space virtual machine
images virtualized at the library operating system level, in the sense that the operating system in this case
is seen as a library from which the application can select only the needed components in a modular way.
They shrink the attack surface and resource footprint of cloud services. Unikernels share the isolation
properties of the hypervisors and the very low instantiation time of containers because of their smaller
image/footprint.

6 Please see: https://www.docker.com/

https://www.docker.com/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 25 of 57

3.1 State of the Art

3.1.1 KVM

KVM is an open source hypervisor included in the Linux kernel, available for different CPU architectures (e.g.,
x86, ARM, s390, etc.) and implemented as a kernel module which is accessed by a standard IOCTL (input-
output control) interface. It exploits CPU Virtualization Extensions to execute guest’s instructions directly on
the host processor(s) and to provide VMs with an execution environment almost identical to the real
hardware.

KVM borrows directly from the Linux kernel functions such as memory management and CPU scheduling. As
a consequence, the hypervisor codebase is light and simple compared with other solutions. Additionally, it
relies on external user space components to execute virtual machines. In fact, KVM doesn’t offer itself
machine or device models abstractions (bios, devices, etc.), but uses Quick Emulator (QEMU7) for emulating
guest hardware devices and instantiating guests. For example, QEMU is able to emulate a specific network
interface card (E1000 Intel NIC, etc.), as well as a specific machine model (ARMv7 A15, x86 with q35 chip,
etc.). Other external components, such as the C library for Virtualization libvirt8, are used to remotely manage
the hypervisor and to connect it to Virtualized Infrastructure Managers like OpenStack.

In the KVM paradigm guests are seen by the host as normal POSIX (Portable Operating System Interface for
Unix) processes, with QEMU residing in the host userspace and utilizing KVM to take advantage of the
hardware virtualization extensions. QEMU and KVM are able to run unmodified guests using emulation.
However, since emulation is reputed to add significant overhead, KVM also supports Input Output (IO) para-
virtualization through Virtio, a standard abstraction solution for different hypervisors IO drivers. Virtio
driver/device for KVM are today available for different IO types: e.g., network, disk (block), random number
generator and balloon (for memory over commitment).

3.1.2 VOSYSmonitor

An important challenge for virtualization today is to address consolidation while keeping separated different
levels of criticality on a common hardware platform. For example, an operating system providing security,
critical or real-time services can be executed together with other virtualized OSes which provide streaming,
gaming and social network services. This is very important in use cases like those of smart cities, Internet of
Things (IoT) and automotive, where the virtualized applications interaction with Cyber Physical Systems (CPS)
needs to address specific certification, real-time or security requirements.

Figure 8. VOSYSmonitor architecture

VOSYSmonitor, presented in Figure 8, is the Virtual Open Systems proprietary solution that addresses this
challenge on ARMv8 processors, the low power architecture widely used in mobile, embedded and edge
systems, and today also in the server side by System on Chip (SoC) makers such as Qualcomm [14] and Cavium.
VOSYSmonitor enables the native concurrent execution of a safety/security critical OS (e.g., a Trusted

7 Please see; https://www.qemu.org/
8 Details at: https://libvirt.org/

ARM hardware

Non-safety critical Safety critical

VOSYS
VirtualNet

Security

Services

and TEE
RTOS

VOSYSmonitor

VMs

Containers

Unikernels

VMs

Containers

Unikernels

EL3 Monitor Layer

Platform API

Interrupt
controller

UARTWatchdog
RTOS

Service Layer

D r ivers

VOSYSmonitor

https://www.qemu.org/
https://libvirt.org/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 26 of 57

Execution environment or a Real Time Operating System - RTOS) along with another operating system which
supports the execution on hypervisors, containers and unikernels. Communication between the two OSes is
implemented through a virtual Ethernet connection, VOSYS VirtualNet.

VOSYSmonitor runs in the monitor layer, the most secure operating mode available on ARM processors with
the TrustZone [15] hardware security extension, which manages the interaction between two execution
worlds and guarantees peripherals and memory isolation between critical and non-critical OSes. It is built
with low level programming languages to provide highest performance and programmability. The most
important component of the architecture is the Exception Level 3 (EL3) Monitor layer, which handles
exceptions and context switching operations between the safety critical and non-safety critical environments.
Moreover, drivers to access low level peripherals are implemented on top of the Platform API, which abstract
driver function calls for the Monitor Layer. Finally, a specific programmable interface (Service Layer), is
needed to dispatch secure services and handle interrupts in the real time safety critical environment.

3.1.3 Unikraft

In recent years, several papers and projects dedicated to specialized OSes, network stacks, protocols and
unikernels have shown the immense potential for performance gains that these have. For instance, in [16]
the authors specialize the network stack and use domain-knowledge to pre-prepare packets in order to
significantly speed up video delivery. Likewise, by leveraging specialization and the use of minimalistic OSes,
unikernels are able to yield impressive numbers. MirageOS [17] uses Mini-OS [18], a minimalistic operating
system that is part of the Xen ecosystem, to build OCaml-based, tiny unikernels able to boot in tens of
milliseconds and thus provide just-in-time virtualized services, instantiated as the first packet in a flow arrives
at a host. Erlang on Xen [19] provides a small memory footprint Erlang unikernel that can execute mixed
workloads. Further, ClickOS [20] also uses Mini-OS as its basis by building a unikernel that includes the Click
Modular Router software [21], along with multiple optimizations to the network sub-system, to build a NFV
unikernel able to perform at high rates of 10+Gb/s. Along those lines, Minicache [22] provides a CDN cache
node that can service high-definition video content at rates of up to 40Gb/s while assigning a single CPU core
to the unikernel. Multiple other unikernel or virtualized operating systems exist that can be used as basis for
building specialized OSes: OSv, Solo5 and IncludeOS [23], [24], [25] are but a few examples. In terms of
memory footprints, it is not uncommon for such unikernels to require as little as hundreds of KBs or a few
MBs to run web servers or other functionality [17], [26].

The fundamental drawback behind specialization, and unikernels in particular, is that they require that
applications be manually ported to the underlying minimalistic OS (e.g., having to port nginx, Python, mysql
or memcached to MiniOS or OSv); worse, once this process is done, optimization and tweaking the resulting
image is time-consuming, manual work, where an expert developer has to perform multiple cycles consisting
of measurement, programming improvements, rebuilding and measuring again.

By providing an automated tool for unikernel creation, Unikraft, an open source project under the auspices
of the Xen Project and the Linux Foundation, seeks to drastically reduce the amount of expert time needed
to implement specialized images. In addition, the fact that such build process will be automated will allow
Unikraft to fully automate the optimization/tweaking cycle mentioned above, once again removing the time-
consuming and expensive effort from an expert from the equation. Finally, Unikraft will take specialization
to the extreme, by allowing users to easily choose which features from all layers of the software stack,
including the operating system, they would like to have in support of their application.

3.1.4 Virtualization security and trust

Security and trust are particularly important in smart cities environments because of their distributed
architecture and for the importance of the data they use. In fact, citizen’s data (coming from cameras,
mobility services, health, etc.) need to be well protected to avoid data leakages that can be sold or used for
retaliations by attackers. Moreover, in an architecture where Edge devices are scattered throughout the city
and possibly connected through wireless technologies like 5G, the risk of man in the middle, device identity

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 27 of 57

stolen and fake requests is important. To make things worse, edge devices are often in a position difficult to
secure from being stolen/tampered, and it might be easy for an attacker to replace/add/tamper devices
making them not trustworthy. 5GCity will provide a virtualization-based security and trust infrastructure that
can be used by developers to enhance security, authenticate devices and secure citizens data.

These points are of course well known to ETSI, which within the GS NFV-SEC 003 document (also known as
NFV Security and Trust Guidance), defines Trust as “confidence in the integrity of an entity for reliance on
that entity to fulfil specific responsibilities”. To achieve Trust, NFV-SEC 003 identifies attribution, attestation,
non-repudiation and identity as elements that have to be combined together [27].

The concept of Trust in NFV needs to be implemented at all layers, starting from the hardware up to the
higher levels of the software architecture. In the next sections, Trust challenges for NFVI, VNFs and VIM are
detailed while the plans for development in 5GCity are detailed in section 3.2.2.

3.1.4.1 NFVI Trust

At the bottom layer of the NFV architecture, the NFVI component runs directly on the hardware and creates
the abstraction that enables portability for the VNFs. The key technology to know the state of the platform
and to implement Trust in hardware is the Trusted Platform Module (TPM), a device standardized by the
Trusted Computing Group [28]. TPMs implement cryptographic functions needed to enforce specific
behaviours and protect the system against unauthorized changes and attacks. TPMs are used for secure
storage, disk encryption as well as platform integrity verification. Another technology in the same direction
is the Trusted Execution Environment (TEE) by standardized by GlobalPlatrofm [29]. The TEE is a secure area
of the main processor which provides an isolated and trusted environment. Main implementations existing
today include:

 Intel TXT is a hardware technology from Intel which aims to provide root of trust and verify the
integrity of platform by relying on TPM [30]. During the boot time measurement, the cryptographic
hash of platform components (such as BIOS, OS, hypervisor) are calculated and are verified against
known good measurement values.

 Intel SGX or Intel Software Guard Extensions is an extension to Intel processors’ architecture which
enables the use of protected areas of execution in memory, called enclaves. It makes an application
code executing within the enclave protected even when the BIOS or operating system are
compromised [31].

 Arm TrustZone technology implements TEE as a system-wide approach to security. TrustZone is
hardware-based security built into SoCs by semiconductor chip designers who want to provide secure
end points and a device root of trust [32].

These hardware technologies need to be made available to hypervisors and exposed to the VIM to extend
the concept of Trust also to the higher levels of the NFV architecture. Extensions to the NFVI system
(operating systems, boot procedures, hypervisor, driver libraries, agents) needs to be developed today to
address this challenge.

3.1.4.2 VNF Trust

Trust-enabled NFVI systems can use trust to verify the integrity and reliance of the VNFs that are running on
top of it [33]. In fact, without a proper integrity verification procedure, a corrupted VNF image can be selected
by the hypervisor and threatening the entire system (included the other VNFs). OpenStack has had an image
signing feature since its release Mitaka, but it does not consider scenarios where the image server is
compromised.

To establish trust in VNF one should address the challenges of encrypting or signing a VNF, verifying the
integrity of a VNF, preventing insider attacks. This can be done only by relying on a Trust-enabled NFVI and
extending the components that take part to the VNF launch procedure.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 28 of 57

Additionally, Trust capabilities exposed by the NFVI can be also used inside the guests, to enhance the safety
and the security of the VNFs. These challenges can be met by the virtualization of the Trusted Platform
Module. Including a virtual TPM as a part of the NFVI will allow the VNFs to benefit from the hardware TPM's
secure storage and cryptographic functions. Each VNF should be provided with a dedicated TMP functionality,
each emulating the functions of a hardware TMP [34].

Virtualizing the TPM is a complicated task which is addressed by the Trusted Computing Group with the
foundation of the Virtualized Platform Work Group and the release of the Virtualized Trusted Platform
Architecture Specification [35].

3.1.4.3 VIM Trust

One of the challenges in resource management is the task of identifying a host to launch the VNFs. The host
selection process is performed based on resource criteria (RAM, vCPU, NICs, etc) while launching an instance.
In a trusted environment the criteria is extended with the additional requirement that the host is functional
and it is trusted. Resource selection can also be performed by specifying the location details or the geographic
boundaries where the VNFs must be launched. The geo-location trust can be verified with the help of a
component in the TPM, which stores the geo-tagging index.

The hardware-based security, combined with an external stand-alone, web-based remote attestation server,
ensures that the compute node runs only software with verified measurements and a secure cloud stack.

3.1.4.4 OpenStack Trusted Compute Pools feature

With the goal of meeting some of the VIM Trust challenges, OpenStack provides a Trusted Compute Pools
feature [36] which today relies only on the Intel TXT technology. There is not work done yet incorporating
different TPM implementations, like ARM TrustZone.

The trusted pools consist of compute nodes with Intel TXT technology enabled, verified by a remote
attestation server. The nova-scheduler component of OpenStack Compute queries the attestation server to
collect the list of trusted hosts and places workloads and VMs into the trusted servers (Figure 9).

The verification steps performed by the attestation server are described as [36]:

 Compute nodes boot with Intel TXT technology enabled.

 The compute node BIOS, hypervisor, and operating system are measured.

 When the attestation server challenges the compute node, the measured data is sent to the
attestation server.

 The attestation server verifies the measurements against a known good database to determine node
trustworthiness.

Figure 9. OpenStack attestation with Trusted Compute Pools [37]

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 29 of 57

With Intel TXT enabled in the compute nodes, the measured data is sent to the attestation server in the form
of a TCG-standard TPM Quote, a signed report of the current Platform Configuration Registers (PCRs) values
[38]. A detailed representation of this process is shown in Figure 10.

Figure 10. TMP Quote collection [39]

Once received by the attestation sever the TPM Quote is verified against stored whitelist values. OpenStack
does not provide a description of setting-up the attestation service but provide a reference to the
OpenAttestation project [40] . It is an Intel-maintained open-source project that is a software development
kit (SDK) based on a server-client architecture for managing host integrity verification [39]. The client is highly
dependent on the HW and has the following requirements: “Client system must have TPM 1.2 compliant
device with driver installed, and TPM/TXT enabled in BIOS”. The SDK architecture is shown in Figure 11 and
some of its main features include:

 Support of major Linux-hosted operating systems and the associated hypervisors (Xen, KVM)

 Java-based privacy certificate authority

 Java-based host agent that accesses the platform TPM through the open source TSS (TrouSerS)
trusted computing software stack

 RESTful-based simple Query API

 Basic whitelist service and API, with whitelist management capabilities

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 30 of 57

Figure 11. OpenAttestation SDK architecture overview [39]

3.2 5GCity Enhancements in computing virtualization

3.2.1 Unikraft Context and Enhancements

Quickly developing, upgrading and deploying applications is the core function of the IT industry: online
content providers, network operators, CDNs, business-to-business providers, and even Internet of Things
providers need to be able to quickly rollout software releases to enhance their product offerings while
reducing developer time and increasing customer satisfaction. Such software is typically deployed and runs
on shared hardware hosted either in public (e.g. EC2), private or mobile-edge clouds or other federated
infrastructures (such as CDNs or customer premises equipment). The huge success of public clouds and the
ongoing mobile-edge cloud deployments is testament to the huge benefits of sharing hardware among
different entities which lowers costs and provides the ability to scale resources on demand.

Running software on shared hardware massively boosts efficiency but also reduces isolation. When public
clouds appeared, the standard unit of deployment was the virtual machine; indeed, running VMs on the same
machine reduces isolation a bit (e.g. various forms of covert channels are possible), but the risk was deemed
acceptable and this lead to a huge uptake of cloud computing. Traditional virtual machines, however, are
heavyweight as they require a full operating system image to run; this implies that running many of them on
the same hardware requires a lot of RAM and CPU cycles and can reduce performance: memory and disk
space is wasted and starting / stopping VMs takes tens of seconds in the best case, and often much longer.

For these reasons, the software industry has embraced containers as a replacement to VMs for a wide variety
of applications, with the goal of further improving performance of shared hardware, reducing dev-ops costs
and speeding-up software deployment. Containers are as cheap as traditional operating system (OS)
processes which means that starting, stopping or migrating them can be done in well under one second; they
share the OS kernel thus reducing the memory wasted by duplicating OS functionality across VMs. Finally,
tool stacks such as Docker allow to easily create containers starting from existing ones or predefined
templates.

Despite their efficiency, containers offer poor isolation as shown by their many vulnerabilities. Additionally,
the Meltdown9 attack permitted any container to read the memory of any other container on the same
machine, thus evading isolation altogether. Meltdown has been solved in the meantime, at the cost of a
severe loss in performance.

At this point, the software world appears stuck with inherently insecure and not-so-efficient containers,
because virtual machines are deemed too expensive to use in many scenarios. This is especially troublesome
in scenarios where critical infrastructure, as is the case in municipalities in general and for 5GCity in particular,
is in play: such infrastructure needs to be shared but needs to be shared with strong isolation and security
but also efficiency.

Within this context, Unikraft seeks to solve this problem by enabling smart city software developers to easily
build and quickly deploy lightweight virtual machines starting from existing applications. Unikraft is targeting
the development of tools that will enable lightweight VM development to be as easy as compiling an app for
an existing OS, enabling EU players, and smart cities in particular, to lead the next generation of cloud
computing services and technology.

Lightweight virtual machines are VMs that include only the minimum functionality to achieve the task of the
VM, and so are ideal for smart city deployments where resource-constrained devices are often the norm. As
most VMs run a single (or a small number of) app such as a web or database server, by creating a VM that
includes only the minimal amount of software needed to make the target application run, we can reduce the

9 Plaese see: https://meltdownattack.com/

https://meltdownattack.com/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 31 of 57

memory footprint of the VM and its boot time by orders of magnitude; e.g. the image of a lightweight VM
containing a python interpreter can be as small as 4MB, which is to be contrasted with, for instance, a
standard Ubuntu VM that is typically around 1GB in size (which again, would be too large to run in many, if
not most, smart city deployment sites such as lamp posts or street cabinets).

Unikernels are the smallest lightweight VMs one can create: they are VMs where there is no traditional
operating system running underneath the application; instead, the application is compiled against bits of OS
functionality that it needs, resulting in a very small app+OS bundle. Many unikernels have been developed
already such as ClickOS, MiniCache, Mirage, Minipython, Solo5, OSv, Erlang on Xen, HalVM; they all offer
great performance and low memory footprint for their chosen task. For instance, LightVM [26] has shown
that one can run 8000 unikernels on the same hardware (more than containers), while still achieving very
good performance.

Despite their advantages, developing applications with unikernels is a manual process today requiring
significant expert resources, which prevents them from being widely used by the software industry.

Within the 5GCity project, Unikraft aims to enable standard developers and dev-ops engineers to create,
maintain and deploy smart city-focused unikernels with ease. It will achieve this goal by developing an open-
source toolchain that will enable secure and portable unikernel development. Developing unikernel based
applications will be reduced to slight changes in the app Makefile, choosing from a menu of available
implementations for the required system functionality, and compiling the app.

Unikraft decomposes operating systems into elementary pieces called libraries (e.g., schedulers, memory
allocators, drivers, filesystems, network stacks, etc.) that users can then pick and choose from, using a menu,
to quickly build images tailored to the needs of specific applications. In greater detail, Unikraft consists of
two basic components (see Figure 12 below):

Figure 12. Unikraft components

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 32 of 57

Library pools contain libraries that the user of Unikraft can select from to create the unikernel. From the
bottom up, library pools are organized into (1) the architecture library tool, containing libraries specific to a
computer architecture (e.g., x86_64, ARM32 or MIPS); (2) the platform tool, where target platforms can be
Xen, KVM, bare metal (i.e. no virtualization), user-space Linux and potentially even containers; and (3) the
main library pool, containing a rich set of functionalities to build the unikernel from. This last library includes
drivers (both virtual such as netback/netfront and physical such as ixgbe), filesystems, memory allocators,
schedulers, network stacks, standard libs (e.g. libc, openssl, etc.), runtimes (e.g. a Python interpreter and
debugging and profiling tools. These pools of libraries constitute a code base for creating unikernels. As
shown, a library can be relatively large (e.g libc) or quite small (a scheduler), which should allow for a fair
amount of customization for the unikernel.

The Unikraft build tool is in charge of compiling the application and the selected libraries together to create
a binary for a specific platform and architecture (e.g., Xen on x86_64). The tool is currently inspired by Linux’s
kconfig system and consists of a set of Makefiles. It allows users to select libraries, to configure them, and to
warn them when library dependencies are not met. In addition, the tool can also simultaneously generate
binaries for multiple platforms.

Beyond these important and basic capabilities, we will use Unikraft to implement the neutral host use case,
in particular running various applications in lean, efficient unikernels at the edge of the smart city networks.
In addition, we will be investigating the possibility of supporting the other 5GCity use cases [41] with Unikraft,
for instance by creating a ML prediction unikernel to support the illegal waste dump detection use case.

3.2.2 NFVI and VIM Trusted computing extensions

In 5GCity trusted computing extensions for the NFVI and VIM components will be developed, enhancing
several open source implementations of NFV components such as KVM, libvirt and OpenStack to build an
infrastructure capable of addressing the challenges detailed in Section 3.1.4.

3.2.2.1 TPM Virtualization through VOSYSmonitor

The first basic technology that will be implemented in 5GCity is TPM virtualization for ARM devices, aiming
to enable each VNF to have a virtual TPM (vTPM) instance to be used in the guest to secure applications
processing, as shown in Figure 13. To do this, VOSYSmonitor, libvirt and KVM will be extended in a way that
guests can access securely to their own TPM implementation.

Figure 13. 5GCity vTPM extensions

At the lowest layer of the system architecture, VOSYSmonitor will be enhanced with a vTPM support module,
which will support the concurrent execution of multiple TPM binaries in the ARM TrustZone Secure World.
Each of them will serve a different virtual machine or VNF, with an additional TPM allocated exclusively to
the NFVI. The OPTEE [42] open source TEE project will be used as a reference implementation.

NFVI

TPM

ARMv8-A hardware

VOSYSmonitor

TPMTPM
VNF

TPM

KVM and libvirt
Trust extensions

vTPM support module

VOSYS
VirtualNet

KVM NFVI

VNF

Guest
driver

VNF

Guest
driver

VNF

Tools &
driver

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 33 of 57

As a consequence, both the NFVI and the guests will be extended to access TPM functions. In the case of the
NFVI, VOSYS will focus on extending KVM and its OpenStack driver libvirt to expose TPM capabilities to the
higher components of the NFV architecture and to enable both NFVI authentication (useful for geo-tagging)
and VNF verification. In the guests, tools and drivers from the OPTEE project will be extended to support the
5GCity vTPM solution.

3.2.2.2 5GCity EdgeVIM: OpenStack Trusted Compute Pools for ARM

In 5GCity an EdgeVIM based on OpenStack with a Trusted Computing Pools feature and Arm support will be
developed leveraging on VOSYSmonitor, libvirt, KVM extensions (explained in the previous section) and on
the OpenStack Filter scheduler's TrustedFilter. One of the key objectives of this work is to solve the geo-
fencing issues that the 5GCity municipalities might have.

To achieve the goal of porting Trusted Compute Pools on ARM there is a need to a) extend the existing
attestation service and b) enhance the existing Nova scheduler to support Trusted ARM compute nodes.

For the attestation service, the current implementation is highly dependent on Intel TXT enabled compute
nodes. In order add support for ARM compute nodes there is a need of an attestation server capable of
verifying the integrity of ARM TrustZone enabled computes. To do this, both the creation of an ARM TEE
attestation client and the possibility to develop a simplified attestation service (maybe integrated in the Nova
Scheduler) will be explored.

Figure 14. 5GCity EdgeVIM architecture

Regarding the OpenStack scheduling, currently the nova-scheduler service is configured by default as a filter
scheduler. It supports a variety of compute filters as well as the addition of custom filters’ implementations.
VOSYS will leverage and extend the functionality provided by the TrustedFilter to filter hosts that do not meet

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 34 of 57

the trust requirements. The request to run a VM on a trusted host will be specified as an additional property
of the OpenStack flavor.

Figure 14 represents the overall EdgeVIM architecture and the interaction between the VIM and the 5GCity
NFVI during the verification of a compute node as trusted or not.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 35 of 57

4 Network Virtualization

Networking virtualization is the process of combining hardware and software network resources/functions
into a single software-based administrative entity: the software defined virtual network.

In this section, the 5GCity networking virtualization enhancements are detailed after a presentation of the
related state of the art. The state of the art description is limited only to technologies and components of
interest for 5GCity (e.g., only OVS-DPDK and VOSYSwitch are presented as virtual switch solutions because
they will be extended during the project).

4.1 State of the Art

4.1.1 OVS-DPDK

Open vSwitch (OvS) is an open source implementation of a virtual switch, used to connect virtual machines
between them and with the external network. When taking decisions on how to forward data packets, native
OvS uses kernel correlations of matches and actions to determine how to process a packet. The decisions are
taken based on a flow table that is located in the kernel space. When a packet is received, it enters this kernel
space and if there exists a rule that matches the packets, the corresponding actions are performed, e.g.
sending the packet over a specific interface. This is the so called fast path, where a packet can quickly be
processed by the kernel space process. If no rule matches the packet, the packet is handed over to the user
space daemon, that contains all the programmed rules, and it is processed there. The check performed in the
user space is slower, which is why this sort of packet switching is called slowpath. When a slowpath packet
hits one of the switching rules, the daemon inserts this rule in kernel space table, so that further incoming
packets with the same match can be processed via fastpath.

The performance of native OvS depends on the performance of the Linux network stack, which may reach is
limits when dealing with heavy traffic, as it can be the case in 5GCity use cases, where heavy traffic loads
from media use cases or telco traffic needs to be handled. A set of user space libraries allow to eliminate the
bottleneck caused by the necessity of switching packets through the kernel space: the Data Plane
Development Kit (DPDK10).

The DPDK libraries allow to bypass the kernel, connecting the user space daemon directly with the network
interfaces. This shifts the fastpath from the kernel space directly to the user space. This incurs in a noticeable
switching speed increase of up to around 15 times the speed achieved with native OvS. A major drawback of
using DPDK is the additional software overhead: DPDK needs modified code in the applications to work,
therefor requiring an additional effort when programming the software.

4.1.2 VOSYSwitch virtual switch

VOSYSwitch is a user-space, modular and NFV-ready virtual switch based on the open source Snabb [43] NFV
framework (Figure 15). It is developed in Lua and provides better performance than OVS-DPDK [44] thanks
to the acceleration provided by the LuaJIT11 (Lua Just in Time compiler). In fact, by leveraging on LuaJIT,
VOSYSwitch can benefit of a well-engineered trace based just in time (JIT) compiler [45], which relies on
profiling execution information collected at runtime to detect and compile performance critical application
fragments. Unlike most just in time compilers that operate at the method level, trace-based compilers delve
in deeper into the control-flow of a method by profiling the execution of program paths. The ultimate goal is
to capture the smallest set of execution traces that are representative of the dynamic behavior of the

10 Please see: https://dpdk.org/
11 Please see: http://luajit.org/

https://dpdk.org/
http://luajit.org/

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 36 of 57

application. Doing so, a trace-based compiler can focus its entire optimization budget on a tiny, yet very
important part of an application [46]. This concept, well known in compilers literature, is applied to
networking Virtualisation by VOSYSwitch. As a result, the optimized machine code of this virtual switch is
reflecting the actual network traffic which is passing through it.

Figure 15. VOSYSwitch virtual switch architecture

VOSYSwitch can be executed on Intel and ARMv8 server architectures. It can be enriched with modules that
implement specific functions (e.g., rate limiter, firewall, Open Data Plane, etc.) and it is configured through a
JSON (JavaScript Object Notation) file which defines the switch components and their links in the form of
network forwarding graph. The configuration file can be edited by the network administrator or by the
OpenStack Neutron agent. Furthermore, the switch architecture implements a master-worker
multiprocessing scenario where workers are configured and controlled via shared memory communication.

4.1.3 Wireless Virtualization

5G will integrate different types of radio technologies, such as evolution of LTE, the 5G New Radio (NR) and
Wi-Fi based technologies. In 5GCity, the targeted dense edge deployments are composed of a potentially
large number of wireless LTE and Wi-Fi links. Network slicing is one of the core mechanism of the design of
such 5G networks, requiring the instantiation of multiple virtual networks over a single, shared physical
infrastructure. In wireless network mediums, virtualization, which is required to enable network slicing, can
be performed in different ways.

When speaking in general terms of wireless virtualization, techniques like time-hopping or TDMA enable
slicing in the wireless medium. Such mechanisms require tight synchronization among wireless devices. In
Wi-Fi this requires infrastructure mode, where a single access point is responsible for synchronizing the rest
of the network. In 5GCity we are looking at other ways to implement network virtualization with the same
goals: to provide network slicing and isolation to support the neutral host case.

A different and simpler way to virtualize wireless interfaces is to share a wireless interface among a set of
tenants or series. For example, in LTE, for each tenant, a public land mobile network (PLMN) ID can be
instantiated on the same carrier to differentiate between the tenants. In the following sections the
approaches followed by the Wi-Fi and LTE-based solutions deployed in 5GCITY are discussed.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 37 of 57

4.1.3.1 Wi-Fi Virtualization

In Wi-Fi, virtualization is implemented in user space by instantiating virtual wireless interfaces on top of
physical interfaces that run on top of the mac80211 kernel module. Finally, the hardware drivers bridge the
mac80211 kernel module with the physical NIC, as shown in Figure 16. Wi-Fi supports a series of different
types of virtual interfaces (vifs): virtual access points, virtual mesh interfaces, etc. For the RAN, the most
relevant of these options is the one that allows to instantiate virtual access points. In practice, each virtual
access point has its own SSID that is announced with dedicated beacons, as a physical access point would do.
This type of virtualization allows, for example, to instantiate dedicated SSIDs for particular tenants or services,
along with specific settings for critical concepts as security (WPE / WPA /WPA2, etc.).

Figure 16. Physical wireless interface (NIC) virtualization in Linux

Once a physical interface has been virtualized with one or multiple virtual interfaces running on top of it, it
is possible to use SDN software elements to generate network slices. The basic mechanism consists in adding
the vifs to virtual software switches like OvS or VOSYSwitch, adding them effectively to the data plane of the
SDN-based solution. An SDN controller then can handle and configure the configuration of these virtual
switches in such a way that virtual access points belonging to a tenant or service can be added to a network
slice, e.g. integrating the vif into a layer 2 subnet, connecting it to other elements of the network slices, e.g.
wired backhaul, VNFs, etc.

4.1.3.2 LTE-based virtualization

RAN virtualisation and RAN slicing are subjects of intense interest in the scope of 5G research, however in
terms of real-world deployment the subject is still in very early stages. Part of the reason for this is that 4G
networks do not provide explicit support for slicing and most 4G technical solutions were not conceived to
support virtual networking.

Much debate has occurred in vRAN about the possible functional partitioning of the LTE stack between
datacentre, edge and radio units, with at least 8 possible partitions being defined by 3GPP (Figure 17).

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 38 of 57

Figure 17. LTE stack partitioning options

The consensus emerging today is that a combination of Option 2 and Option 7 will be adopted generally –
option 2 allowing for a high degree of centralisation of functions which are less time-sensitive, while option
7 allows for a less global degree of centralisation at the network edge where network timing and latencies
can be more tightly controlled. 3GPP are in the process of standardizing an Option 2 split for 5G – known as
the F1 interface – and the Xran organization recently published a proposed specification for an Option 7
fronthaul interface [47].

5GCity will deploy, in realistic city-based scenarios, implementations of virtualized RAN, Multi-access Edge
Computing networking support and RAN slicing for Neutral Host based on existing 4G technology, with a clear
upgrade path to 5G NR.

4.1.4 Service Function Chaining in an NFV enabled environment

The delivery of end-to-end services often requires various service functions. These include traditional
network service functions such as firewalls and traditional IP Network Address Translators (NATs), as well as
application-specific functions. The definition and instantiation of an ordered set of service functions and
subsequent ’steering’ of traffic through them is termed Service Function Chaining (SFC).

This section describes an architecture used for the creation and ongoing maintenance of Service Function
Chains (SFC) in a network. It includes architectural concepts, principles, and components, with a focus on
those to be standardized in the IETF [48]. It also contains the description of SFC framework in an NFV enabled
infrastructure [49] and the high-level description of the SFC implementation state of the art within the
OpenStack [50], considered as the de-facto standard framework which implements VIM functionality Service
function chains, enabling composite services that are constructed from one or more service functions.

An overview of the issues associated with the deployment of end-to-end service function chains, abstract
sets of service functions and their ordering constraints that create a composite service and the subsequent
"steering" of traffic flows through said service functions, is described in in IETF [48]. The current service
function deployment models are relatively static, coupled to network topology and physical resources,
greatly reducing or eliminating the ability of an operator to introduce new services or dynamically create
service function chains. This architecture presents a model addressing the problematic aspects of existing
service deployments, including SFC architecture composed by the following elements:

 Network Service: An offering provided by an operator that is delivered using one or more service
functions. This may also be referred to as a composite service. The term "service" is used to denote
a "network service" in the context of this document. For example, to some a service is an offering
composed of several elements within the operator’s network, whereas for others a service, or more
specifically a network service, is a discrete element such as a "firewall". Traditionally, such services
(in the latter sense) host a set of service functions and have a network locator where the service is
hosted.

 Classification: Locally instantiated matching of traffic flows against policy for subsequent application
of the required set of network service functions. The policy may be customer/network/ service
specific. This network Service definition clearly is totally coherent with the ETSI-NFV definition of
Network Service. The relevance of SFC framework to ETSI NFV architecture will be discussed later in
this section.

 Classifier: An element that performs Classification. Service Function Chain (SFC): A service function
chain defines an ordered set of abstract service functions (SFs) and ordering constraints that must
be applied to packets and/or frames and/or flows selected as a result of classification. An example
of an abstract service function is "a firewall". The implied order may not be a linear progression as
the architecture allows for SFCs that copy to more than one branch, and also allows for cases where

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 39 of 57

there is flexibility in the order in which service functions need to be applied. The term service chain
is often used as shorthand for service function chain.

 Service Function (SF): A function that is responsible for specific treatment of received packets. A
Service Function can act at various layers of a protocol stack (e.g., at the network layer or other OSI
layers). As a logical component, a Service Function can be realized as a virtual element or be
embedded in a physical network element. One or more Service Functions can be embedded in the
same network element. Multiple occurrences of the Service Function can exist in the same
administrative domain. One or more Service Functions can be involved in the delivery of added-value
services. An SF may be SFC encapsulation aware, that is it receives and acts on information in the SFC
encapsulation, or unaware, in which case data forwarded to the SF does not contain the SFC
encapsulation.

 Service Function Forwarder (SFF): A service function forwarder is responsible for forwarding traffic
to one or more connected service functions according to information carried in the SFC encapsulation,
as well as handling traffic coming back from the SF. Additionally, a service function forwarder is
responsible for delivering traffic to a classifier when needed and supported, transporting traffic to
another SFF (in the same or different type of overlay), and terminating the SFP.

 Metadata: provides the ability to exchange context information between classifiers and SFs and
among SFs.

 Service Function Path (SFP): The SFP provides a level of indirection between the fully abstract notion
of service chain as a sequence of abstract service functions to be delivered, and the fully specified
notion of exactly which SFF/SFs the packet will visit when it actually traverses the network. By
allowing the control components to specify this level of indirection, the operator may control the
degree of SFF/SF selection authority that is delegated to the network.

 SFC Encapsulation: The SFC Encapsulation provides at a minimum SFP identification, and is used by
the SFC-aware functions, such as the SFF and SFC-aware SFs. The SFC Encapsulation is not used for
network packet forwarding. In addition to SFP identification, the SFC encapsulation carries metadata
including data plane context information.

 Rendered Service Path (RSP): The Service Function Path is a constrained specification of where
packets assigned to a certain service function path must go. While it may be so constrained as to
identify the exact locations, it can also be less specific. Packets themselves are of course transmitted
from and to specific places in the network, visiting a specific sequence of SFFs and SFs. This sequence
of actual visits by a packet to specific SFFs and SFs in the network is known as the Rendered Service
Path (RSP). This definition is included here for use by later documents, such as when solutions may
need to discuss the actual sequence of locations the packets visit.

 SFC-enabled Domain: A network or region of a network that implements SFC. An SFC-enabled
Domain is limited to a single network administrative domain.

 SFC Proxy: Removes and inserts SFC encapsulation on behalf of an SFC-unaware service function. SFC
proxies are logical elements.

ETSI-NFV and IETF-SFC architectures are complementary in the sense that the first provides a set of tools to
ensure virtual function lifecycle management, while the second provide a framework to ensure traffic
steering across network functions. The two architectures show a clear contact point in the definition of the
path that data follows across the end-to-end service.

 Service Function Chain (SFC): A service function chain defines an ordered set of abstract service
functions (SFs) and ordering constraints that must be applied to packets and/or frames and/or flows
selected as a result of classification. An example of an abstract service function is "a firewall". The

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 40 of 57

implied order may not be a linear progression as the architecture allows for SFCs that copy to more
than one branch, and also allows for cases where there is flexibility in the order in which service
functions need to be applied. The term service chain is often used as shorthand for service function
chain.

 A VNF Forwarding Graph Descriptor (VNFFGD) describes a topology of the NS or a portion of the NS,
by referencing a pool of connection points and service access points, the descriptors of its constituent
VNFs, PNFs and of the VLs that connect them. It may also contain one or more Network Forwarding
Path (NFP) descriptors.

In the last part of this section we will provide a high-level description of state-of-art of a SFC framework
implementation in OpenStack, which is the de-facto standard implementation of VIM functionality of the
ETSI-NFV architecture.

OpenStack has its own architecture to realize Service Functioning Chain topics. Such architecture is based on
an extension of the standard Neutron project (Figure 18) with the following elements:

 Neutron API Service Chain which is a restful API used which grants external and programmatic
configuration of the SFC primitives within OpenStack

 A neutron Service Chain Plugin which provides the level of abstraction towards resources

 Service Chain drivers that provide technology specific primitives for the underlying layer
configuration.

Figure 18. OpenStack SFC architecture [50]

The typical OpenStack deployment foresees that all OpenStack Networking services and OpenStack Compute
instances connect to a virtual network via ports making it possible to create a traffic steering model for
service chaining using only ports. Including these ports in a port chain enables steering of traffic through one
or more instances providing service functions.

A port chain, or service function path, consists of the following:

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 41 of 57

 A set of ports that define the sequence of service functions.

 A set of flow classifiers that specify the classified traffic flows entering the chain.

If a service function involves a pair of ports, the first port acts as the ingress port of the service function and
the second port acts as the egress port. If both ports use the same value, they function as a single virtual
bidirectional port.

A port chain is a unidirectional service chain. The first port acts as the head of the service function chain and
the second port acts as the tail of the service function chain. A bidirectional service function chain consists
of two unidirectional port chains.

A flow classifier can only belong to one port chain to prevent ambiguity as to which chain should handle
packets in the flow. A check prevents such ambiguity. However, you can associate multiple flow classifiers
with a port chain because multiple flows can request the same service function path.

OpenStack provides an architecture which is flexible enough to provide support to SFC in different
deployment scenario. Beside the typical case, where SFC-enabled framework is casted over an SDN enabled
architecture (where the data-plane configuration is done by means of wide range SDN controllers), there is
a case where SFC-enabled framework is casted over a non-SDN enabled architecture, where the
configuration of data-plane is done directly by neutron server component residing over OpenStack controller
node.

The current OpenStack implementation of IETF-SFC architecture, suffers of the following limitations:

 OpenStack does not provide support to encapsulation component of the IETF-SFC architecture

 OpenStack offers a limited range of capabilities in terms of traffic classification (L2, L3 parameters)

 The model used, allows to steer traffic only between ports which are associated to a VM, with no
proxy functionality enabled. This model is not flexible enough to provide support for nodes (like MEC
nodes) which are inline nodes between RAN devices and data-centre devices.

4.2 5GCity Enhancements in Networking virtualization

4.2.1 VOSYSwitch

VOSYSwitch is today a virtual switch technology available for ARM and Intel processors. During 5GCity,
specific VOSYSwitch extensions will be developed to improve switching performance at the edge.

First, a lightweight version of VOSYSwitch will be created aiming at improving system security with a smaller
attack surface and achieving a smaller overhead.

In addition, hardware accelerators will be used to enhance processing capabilities of the virtual switch,
targeting to achieve higher performance. Different types of hardware accelerators can be used to offload the
system general purpose processor, e.g., Application-Specific Integrated Circuits (ASICs), network processors,
Field-programmable gate array (FPGAs), Graphics Processing Unit (GPU), etc. These are today considered an
important part of the NFVI and are defined in the Interfaces and Architecture ETSI GS NFV-IFA 001 document
[51] where accelerators life-cycle and operations are specified (life-cycle management, feature discovery and
fault tolerance, etc.). Among these solutions, VOSYS will particularly focus on FPGAs, which provide the best
performance per watt trade-off and are for this reason particularly fitting the edge of the network for their
reconfigurability and power consumption. More in detail, VOSYSwitch will be enhanced with specific Lua
modules to enable packet processing directly in the FPGA.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 42 of 57

4.2.2 Wireless Virtualization

One main feature required to implement network slicing for the intrinsic neutral host use case of 5GCity is
the virtualization of the wireless RAN. The achievements discussed in this section emerge from the work
performed to extend the network slicing features presented in Section 4.1.3, so VNFs and wired backhaul can
be integrated with RAN elements. The extensions need to provide means to:

 Use a standard control and management plane to set up and configure wireless interfaces;

 Provide network isolation and data rate control for the wireless interfaces;

 Integrate virtual wireless resources with traditional, SDN-based network slices and the rest of the
5GCity architecture.

In the following we present the enhancements developed for the Wi-Fi and LTE-based solutions.

4.2.2.1 Wi-Fi Enhancements

In order to achieve these features, the wireless RAN virtualization in 5GCity is implemented as a set of
software modules that range from Linux kernel and user space software modules running on the wireless
nodes, over a NETCONF-based control and management plane, to the main SDN controller. The latter is
responsible for configuring and managing the RAN and that acts as interface to the rest of the 5GCity
architecture.

Figure 19. SDN-based wireless virtualization software components

Figure 19 depicts an overview of the software components running in the wireless nodes hosting the wireless
network interfaces (bottom) and the SDN controller in charge of the management and configuration of the
wireless interfaces (top). We refer to the software running in the Wi-Fi nodes as Agent software, a
composition of services that enables the network slicing in the Wi-Fi RAN. The agent software is tightly
coupled to the functions provided by core software modules hosted in the SDN controller. In the following,
each of these components are explained in detail.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 43 of 57

Agent software for wireless virtualization

For the Wi-Fi virtualization two crucial software elements are being developed in order to allow the slicing of
the RAN: the vif scheduler and the netopeer agent. The vif scheduler is responsible for applying isolation in
form of airtime slicing of the available radio resources, whereas the netopeer agent hosts a NETCONF server
that is used to set up and configure the vifs on top of the physical network interfaces installed in a wireless
node.

Isolation and data rate adaption: vif scheduler

A basic slicing feature for networks is the assignment of shares of the available data rate of network
connections to a specific tenant or service in order to provide QoS. In wired connections, where fix data rates
are provided (e.g. 1 Gbps), slicing can be easily implemented by using queuing, packet scheduling or other,
similar mechanism to control the amount of traffic that is sent over interfaces belonging to a specific tenant.

In wireless communications, while some upper data rate limits can be determined from the hardware
specification, the actual available data rate of a wireless link can very heavily. In particular, each user
equipment connected to a Wi-Fi access point can have a different nominal data rate than other users
attached at the same time due to the position of the equipment, obstacles or even mobility. Further, different
user equipment may not support all data rates offered by an access point. Another consideration for
availability of wireless resources is that as more users get connected to an access point, the actual data rate
decreases more and more due to the CSMA/CA accessing scheme implemented in Wi-Fi. Thus, it is not
possible to guarantee specific data rates to a tenant as part of their network slice.

In 5GCity therefore a Wi-Fi RAN slice is defined as the assignment of a ratio of the actually available radio
resources, in terms of airtime. We define the airtime to be the real time the transmission of a packet occupies
the radio medium. In order to implement this type of slicing, we design our so called vif scheduler. This
scheduler is composed of two parts:

1 The local scheduler, an agent software running in the wireless nodes. This software is implemented as
a dynamically loadable kernel module that sits on top of the mac80211 module. The scheduler can be
configured to apply specific airtime ratios for any underlying virtual access points in the downstream
traffic.

2 The global scheduler, a software module that forms part of the SDN controller. The global scheduler is
responsible for configuring the airtime ratios of the local schedulers and for monitoring them in order
to detect whether the ratios are correctly applied.

Figure 20. Vif scheduler as part of the agent software running on the Wi-Fi nodes

The local scheduler, a kernel module integrated into the network stack as shown in Figure 20, processes
packets to be transmitted from the user space. The local scheduler component needs to fulfill the following
two basic requirements: First, it needs to be work conserving, i.e., the amount of unused airtime shall be
minimized by reassigning unused resources to vifs in need of airtime for packet transmissions. Second, it
needs to be independent from any underlying Wi-Fi drivers and hardware in order to achieve a high degree
of interoperability and portability.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 44 of 57

Slicing is performed in the time domain: each user, e.g. a tenant or wireless operator represented as a vif on
top of a physical radio, is assigned a specific ratio of the available airtime. This share represents a guaranteed
minimum of the available airtime during a certain time interval, but not a maximum. The ratio assignment is
done by the SDN controller that takes this input via its Northbound API and configures it on the local
schedulers running in the nodes via NETCONF. The percentage of time the radio channel can be used by the
tenant reflects the SLA signed by the tenant.

The local scheduler keeps track of the usage of each vif and only allows a packet to be handed over to the
underlying layers if the airtime limit of the tenant has not yet been reached during a periodic interval. Since
the actual transmission duration of a packet and therefore its airtime is not known a priori to the local
scheduler, it estimates the transmission duration based on calculations that take into account the current
degree of congestion of the radio medium, the size of the packet and the currently active modulation coding
scheme.

Once the packet has been transmitted, the actually used airtime (which may variate from the expected one)
is measured. This airtime is discounted from the available airtime of the tenant and the deviation from the
expected one is used to determine the degree of congestion. If after discounting the credit no more airtime
is available during the current time slot, no further packets may be transmitted by the tenant and the next
transmission is delayed until the next cycle.

The local vif scheduler performs local optimization of the available airtime for a tenant in a work conserving
manner: any unused airtime during a specific time slot is assigned to the active tenants in order to improve
the performance.

SDN Controller: Global Scheduler

Since the local scheduler optimizes locally and takes into account only transmitted packets into its
calculations but not received ones, at some points the SLAs might not be fulfilled correctly: in the presence
of other Wi-Fi nodes operating on the same channel and using the local scheduler, the assigned ratios might
not be applied correctly. Figure 21 shows a case where two physical interfaces operating in the same
frequency and in range of each other run the local vif scheduler. Two tenants, A and B, are present and are
configured to apply an airtime ratio of 30% and 70%, respectively. In the case that tenant A only transmits
on the first node and tenant B only transmits on the second node, each local scheduler will try to assign the
full airtime (i.e. 100%) to the vifs. However, since the nodes compete for the channel, the actual resulting
transmission ratio is 50% both for tenant A and B, as they try to access both the medium in the same way.
This, however, violates the ratios of 30%/70% accorded in the SLA.

Figure 21. Local schedulers competing for the medium can lead to SLA violations.

In order to avoid such situations, the global scheduler, running in the SDN controller plays a crucial role: the
global scheduler module periodically collects information on the actual transmission ratios from the local

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 45 of 57

schedulers. Based on the actual airtime usage it can detect SLA violations. In case of an SLA violation, the SDN
controller reconfigures the local schedulers in such a way that the desired SLA ratios are applied. For this
type of reconfiguration of the local schedulers, but also for the instantiation and configurations of vif in
general, the SDN controller uses a NETCONF client that talks with the NETCONF servers running on each of
the nodes. The overall architecture including the software elements of the SDN controller and the Wi-Fi
nodes in an example with three tenants is shown in Figure 22. Take into account that the same NETCONF
interface is intended to be used to control and configure the Small Cells.

Figure 22. Example of the scheduler architecture with the global and local schedulers and three tenants

4.2.2.2 LTE based virtualization enhancements

The LTE-based RAN architecture for 5GCity (Figure 23) includes several innovations in the area of RAN
functional disaggregation, RAN and Network Slicing with SDN control and RAN function virtualization.

Figure 23. 5GCity RAN Network Architecture Overview

Network functions in the architecture are:

 LTE Layer 1: The physical layer functions of the LTE air interface require specialised processing
acceleration for DSP functions such as FFT, Turbo coding, etc and execute in each radio head on
specialised DSP silicon. This is not a virtualised function in 5GCity and is common to all network slices.

 LTE Layer 2: The RLC and MAC functions of the LTE air interface are required to meet real-time
schedules and are closely coupled to the LTE physical layer 1 implementation. These functions also
execute in each radio head. RLC/MAC are not virtualised functions in 5GCity and are common to all
network slices.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 46 of 57

 LTE Layer 3: The layer 3 (control plane) function of the LTE air interface is implemented as a virtual
network function which runs in the Edge NFVI. 5GCity L3 supports network slicing and connection to
multiple EPC (MME) instances (one per slice).

 vEPC: EPC (packet core network) is deployed at the network edge to support MEC access and low
latency applications. Each instance of vEPC supports a network slice offering MEC application access.

 Datacenter EPC: The RAN functions support connectivity to EPC functions implemented at the data
center. The neutral host use case assumes multiple EPCs and network slices to support access
provision to multiple tenant service providers.

Management and Orchestration of RAN VNFs

The RAN VNFs provide API’s towards the Edge NFVI SDN controller for dynamic slice management and also
provide interfaces for classic FCAPS management [52] of the static configuration (e.g. operating frequency,
global cell parameters, etc) which are configured on installation and are independent from the slice LCM.

 eNB FCAPS: RAN layer 3 is deployed as a Docker container. General RAN FCAPS management is
supported via multiple interfaces including BBWF TR069 [53], webGUI and CLI. One of these
mechanisms is required to initially configure each cell for service in the network.

 eNB SDN control: RAN L3 provides an SDN control interface supporting the following functions:

o Initialisation

o Slice Profile Creation

o Slice Profile Modification

o Slice Profile Deletion

SDN control is implemented using the NETCONF protocol via a datamodel which is formally
defined in YANG. Figure 24 illustrates the RAN orchestration model as implemented in NETCONF
/ YANG.

Figure 24. RAN SDN Control Interface Model

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 47 of 57

The data model has been aligned with the approach taken for Wi-Fi orchestration. Each slice
corresponds to a 3GPP PLMNId (network identifier) and there can be up to six slices created.
Additionally, per slice, an access control list can be instantiated to control which specific users (IMSI
identifiers) are permitted access to the slice. Each RAN slice is associated with an MME and EPC via
a standard S1 connection. This EPC can be either at Edge or Datacentre level.

 vEPC: The vEPC for edge deployment is also deployed as a Docker container and provides WebGUI
and/or CLI based configuration interfaces. Traffic is presented to the MEC applications via a standard
SGi interface. Therefore, termination of GTPu tunnelling protocols is handled within the EPC and is
of no concern to the Mobile Edge.

4.2.4 Local traffic steering in MEC node

In this section we will concentrate on a specific aspect of MEC node design, which is related to how the traffic
steering among MEC node entities is accomplished. At the current state of the art, there is still no consolidate
ETSI standard design which describe a solution for this problem. ETSI MEC WG is working on early draft
document [54] which is more focused on lawful interception and cover only some aspects of traffic offloading
topics. Also, there is no specific software solution, which is compliant with ETSI MEC in an ETSI NFV compliant
architecture

The problem of local traffic handling in an ETSI MEC enabled architecture is central to 5GCity architecture
which consists in a three-tier architecture with pool of resources available at data-center level, edge level
and far-edge level (collocated with radio access devices). The acronym MEC stands for Multi-access Edge
Computing, implying a pool of constrained resources, located at the edge of the cloud administrative domain,
which acts as bump in the wire, handling traffic coming from multiple radio access technology (LTE, WiFi,
VOLTE, UMTS, GPRS). Traffic handling at edge node can be divided in 3 different scenarios:

 Scenario1: traffic received from RAN devices and transparently forwarded to Core resources.

 Scenario2: traffic received from RAN devices has to be served locally by MEC application which acts

as end-point. No traffic for these flows is sent to the core resources.

 Scenario3: traffic received from RAN devices has to be first served locally by MEC application and

then re-inserted of its normal path to core resources.

 For all the afore-mentioned scenarios, traffic steering at edge node imply that MEC nodes data and control
plane must be enabled with full awareness of the protocols flowing across MEC nodes data plane. 5GCity
radio access frameworks encompass two different access technologies: Wi-Fi and LTE.

 A part of WP3 activities, the project will investigate a software solution which fully provides traffic handling
at MEC node level. This design solution need to be realized by specifying:

- Data-plane which is able to dynamically select traffic according user-plane protocol characteristics

- Control plane design which is able to dynamically program the data-plane to steer traffic among MEC
local entities.

An initial solution is depicted in Figure 25. where the different entities of MEC architecture which comes into
play to realize traffic offloading are depicted. MEC platform will implement the control plane functionality
and will program via mp2 interface MEC host data-plane on the basis of the basis of the joined commands
received by the MEC orchestration layers (MEPM-V and MEAO) and NFV orchestration layer (NFVO, WAN
Resource manager).

The final result is that MEC host data-plane is able to steer traffic across MEC local entities (MEC applications,
and MEC specific services exposed by MEC platform). The functional block called LGW, is part of the LTE
stack and enables local termination of GTP-u tunnels sessions. Final solution should also be investigated
against Issue#9 as described in Section 2.1.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 48 of 57

Figure 25. Local traffic handling in ETSI MEC architecture

Given the different scenarios of traffic handling and the different combination of radio access technologies
and related protocols, a set of requirements for MEC nodes data plane can be derived. The MEC node
requirements, presented in Table 5, are divided in a first set of requirements, which are pertaining to data-
plane and in a second set which are related to control-plane.

REQ_ID Type Description

REQ_DP_1 MUST MEC node data-plane must be able to classify traffic entering the MEC node from the normal path

by operate a filtering according to the following parameters

- Wi-Fi traffic (MAC addresses, IP Address, VLAN tags)

- LTE traffic (GTP-U parameters (TEID, Type), IP addresses

REQ_DP_2 MUST MEC node data-plane must be able to forward traffic to selected output destination port according

to the following parameters

- MAC addresses

- IP addresses

- VLAN tags GTP-U parameters (TEID, dest_ip_addr)

REQ_DP_3 MUST MEC node data-plane must be able to steer traffic according to a logic which is SFC oriented. The

SFC traffic steering involves only MEC applications

REQ_CP_1 MUST MEC node data-plane must be able to be configured by means of a dedicated control plane,

embodied by MEC platform

REQ_CP_2 MUST MEC node must be equipped with VNF (L-GW) which is able to terminate the GTP-u traffic and

extract plain IP traffic to be served by MEC applications

Table 5. Requirement list for MEC node data plane and control plane.

In the remaining part of this section, we will provide a quick state of the art regarding the awareness of 5GCity
radio access protocols of most common software data-plane implementation as required in REQ_DP_1. Our
investigation covers only the part related to GTP-u protocol, since full awareness of plain IPv4 protocol is
already in place in most common data-plane software solutions.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 49 of 57

The current implementation of Openvswitch (v2.9.0) provides support for functionality related to REQ_DP_1
and REQ_DP_2 related only when in a scenario where Wi-Fi is the only radio access technology. When the
Radio Access technology is LTE enabled, Openvswitch does not offer support to GTP-u protocol in terms of
being able to configure dataflows entry for GTP-u parameters selection and GTP-u header manipulation (GTP
header push and pop operations). There are some non-main stream projects which offers patches which
seems to be a promising approach for the enabling of GTP-u protocol awareness and are actually under
evaluation.

The current implementation of VOSYS virtual switch does not provide GTP-u protocol awareness, and there
are no plans or roadmap to enable the related feature in the next period.

In addition, it is worth observing that the current Openflow version (v1.5.0) lacks support for custom header
fields and nesting headers. Potential evolution of Openflow protocol is under analysis by OFN [55].

In this section we have provided a rationale which describe a specific problem (local traffic steering in a MEC
node), we have provided requirements which describe a potential solution and an initial solution which
integrates MEC host data-plane and control-plane in the wider landscape of 5GCity orchestration platform.
Next steps to be taken are organized according two main key items:

 Analysis of the patches to Openvswitch to enable MEC data-plane with full GTP-u protocol awareness

 Design of an SDN enabled control plane solution integrated with 5GCity orchestration platform which
is able to interact with MEC Platform entity which operates the configuration of MEC data-plane.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 50 of 57

5 Conclusions

Virtualization is a key technology for the 5GCity infrastructure because it provides support for multitenancy,
flexibility and isolation which are must have features for any smart city.

This deliverable shows that existing virtualization technologies (both for the virtualization of the computing
resources in Section 3.1 and network resources in Section 4.1) need to be extended to address smart cities
challenges and provides documentation on how these challenges will be tacked in 5GCity (Sections 3.2 and
4.2). Moreover, it documents how 5GCity plans to fully cover the convergence of ETSI NFV and MEC (Section
2).

The following table recaps the WP3 objectives presented in Section 1 and shows how these will be achieved
during the WP3 activities.

 5GCity Virtualization objective How we address it

1 Optimizing virtualization
technologies for heterogeneous
and resource constrained
devices

Performance (efficiency, scalability, computing power) is
addressed with specific developments on unikernels (unikraft) and
virtual machines (KVM). Thanks to these extensions a higher
number of more performant guests will be executed on the 5Gcity
infrastructure.

Security and trusted computing is added at the infrastructure level
through the EdgeNFVI and EdgeVIM solutions based on Arm
TrustZone. These extensions will enable VNFs geo-fencing and
Trusted Computing features in guests.

2 Implementing network
virtualization targeting efficient
software switches and wireless
virtualization

Wireless (Wi-Fi and RAN) virtualization is addressed standardazing
the control/management plane to configure wireless interfaces
and adding support to data rate control and isolation. This will
enable efficient and performant wireless medium slicing.

Performance will be addressed by optimizing VOSYSwitch for
resource contrained devices. Moreover, existing Service Functions
Chaining limitations (e.g., flexibility, support for encapsulation,
traffic classification) will be addressed focusing on MEC nodes. This
will enable higher performance/efficiency and traffic steering
among MEC nodes.

3 Creating specific VNFs solutions
for MEC nodes

MEC is considered as part of 5Gcity. Its integration in the project
architecture has been designed in this document and will be
developed by extending the open source project fog05. Thanks to
this work, MEC applications will be able to run on the 5Gcity
infrastructure. Further developments in this direction will come
from Task 3.3 (which will start at M13) and will be documented in
D3.2.

Table 6 5GCity WP3 objectives and solutions

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 51 of 57

References

[1] ETSI, “ETSI GR MEC 017 V1.1.1,” February 2018. [Online]. Available:
http://www.etsi.org/deliver/etsi_gr/MEC/001_099/017/01.01.01_60/gr_MEC017v010101p.pdf.

[2] ETSI, “ETSI GS NFV-INF 003 V1.1.1,” 12 2014. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/003/01.01.01_60/gs_NFV-
INF003v010101p.pdf.

[3] ETSI, “ETSI GS NFV-INF 004 V1.1.1,” January 2015. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_nfv-
inf004v010101p.pdf.

[4] ETSI, “ETSI GS NFV-INF 005 V1.1.1,” 12 2014. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/005/01.01.01_60/gs_NFV-
INF005v010101p.pdf.

[5] ETSI, “ETSI GS NFV-IFA 013 V2.1.1,” October 2016. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/013/02.01.01_60/gs_NFV-
IFA013v020101p.pdf.

[6] ETSI, “ETSI GS MEC 010-2 V1.2.2,” 2018.

[7] “LL-MEC,” [Online]. Available: http://mosaic-5g.io/ll-mec/. [Accessed May 2018].

[8] N. N. Anta Huang, “Low Latency MEC Framework for SDN-based LTE/LTE-A Networks,” in IEEE
International Conference on Communications (ICC), Paris, France, 2017.

[9] N. Nikaein, “Agile Network service delivery,” 7-8th November 2017. [Online]. Available:
https://www.openairinterface.org/docs/workshop/4_OAI_Workshop_20171107/Talks/NIKAEIN_mos
aic5g_OAI_WS.pdf. [Accessed May 2018].

[10] 5GCity Project, D4.1 - Orchestrator Design, Service Programming, and Machine-learning Models,
2018.

[11] “Unikernels meet NFV,” June 2016. [Online]. Available: https://www.ericsson.com/research-
blog/unikernels-meet-nfv/.

[12] Y. K. ,. D. L. ,. U. L. ,. A. L. Avi Kivity, “KVM: the linux virtual machine monitor,” in Linux symposium,
Ottawa, 2007.

[13] B. D. K. F. S. H. T. H. A. H. R. N. I. P. a. A. W. Paul Barham, “Xen and the art of virtualization,” in The
nineteenth ACM symposium on Operating systems principles, New York, USA, 2003.

[14] “Introducing the Qualcomm Falkor CPU core purpose-built for cloud workloads,” [Online]. Available:
https://www.qualcomm.com/news/onq/2017/08/20/introducing-qualcomm-falkor-cpu-core-
purpose-built-cloud-workloads.. [Accessed August 2017].

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 52 of 57

[15] D. F. Tiago Alves, “TrustZone: Integrated Hardware and Software Security-Enabling Trusted
Computing in Embedded Systems,” 2004.

[16] R. N. W. a. M. H. Ilias Marinos, “Network stack specialization for performance,” in ACM conference on
SIGCOMM, 2014.

[17] T. L. M. S. T. G. D. S. D. S. R. M. A. C. B. S. J. L. J. C. a. I. L. Anil Madhavapeddy, “Jitsu: Just-In-Time
Summoning of Unikernels,” in 12th USENIX Symposium on Networked Systems Design and
Implementation, 2015.

[18] “Mini-OS,” [Online]. Available: https://wiki.xenproject.org/wiki/Mini-OS.. [Accessed May 2018].

[19] “Erlang on Xen,” 2012. [Online]. Available: http://erlangonxen.org/. [Accessed May 2018].

[20] M. A. C. R. V. O. M. H. R. B. a. F. H. Joao Martins, “ClickOS and the Art of Network Function
Virtualization,” in 11th USENIX Symposium on Networked Systems Design and Implementation, 2014.

[21] “The Click modular router: fast modular packet processing and analysis,” [Online]. Available:
https://github.com/kohler/click.

[22] A. I. F. M. J. M. Y. V. F. S. K. Y. M. H. a. F. H. Simon Kuenzer, “Unikernels Everywhere: The Case for
Elastic CDNs,” in 13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, (VEE '17), 2017.

[23] D. L. G. C. P. E. N. H. D. M. a. V. Z. Avi Kivity, “OSv—Optimizing the Operating System for Virtual
Machines,” in 2014 USENIX Annual Technical Conference (USENIX ATC ’14), 2014.

[24] “The Solo5 unikernel,” [Online]. Available: https://github.com/Solo5/solo5. [Accessed May 2018].

[25] “A minimal, resource efficient unikernel for cloud services,” [Online]. Available:
https://github.com/hioa-cs/IncludeOS. [Accessed May 2018].

[26] C. L. F. S. J. M. S. K. S. S. K. Y. C. R. a. F. H. Filipe Manco, “My VM is Lighter (and Safer) than your
Container,” in 26th Symposium on Operating Systems Principles (SOSP '17), 2017.

[27] ETSI, “ETSI GS NFV-SEC 003 V1.1.1,” 12 2014. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-
SEC003v010101p.pdf. [Accessed May 2018].

[28] “Trusted Computing Group,” [Online]. Available: https://trustedcomputinggroup.org/trusted-
computing/. [Accessed May 2018].

[29] “GlobalPlatform TEE,” [Online]. Available: https://www.globalplatform.org/mediaguidetee.asp.
[Accessed May 2018].

[30] “Intel Trusted Execution Technology,” [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-
technology/trusted-execution-technology-security-paper.html. [Accessed May 2018].

[31] Intel, “Intel SGX,” [Online]. Available: https://software.intel.com/en-us/sgx. [Accessed May 2018].

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 53 of 57

[32] “ARM TrustZone,” [Online]. Available: https://www.arm.com/products/security-on-arm/trustzone.
[Accessed May 2018].

[33] S. Ravidas, “Incorporating Trust in Network Function Virtualization,” 2016.

[34] R. R. S. a. L. v. D. Perez, “vTPM: virtualizing the trusted platform module,” in 15th Conf. on USENIX
Security Symposium, 2006.

[35] TCG, “Virtualized Trusted Platform Architecture Specification,” September 2011. [Online]. Available:
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-
26_FINAL.pdf. [Accessed May 2018].

[36] “OpenStackOpenStack wiki,” [Online]. Available:
https://docs.openstackOpenStack.org/nova/pike/admin/security.html. [Accessed May 2018].

[37] S. Weis, “Trusted Computing & OpenStack,” PrivateCore, July 2014. [Online]. Available:
https://pdfs.semanticscholar.org/presentation/762c/447a11ee258d313fb87c24dab0b5939cd14c.pdf
. [Accessed May 2018].

[38] Trusted Computing Group, Incorporated. , “TPM Main Part 2 TPM Structures,” July 2007. [Online].
Available: https://trustedcomputinggroup.org/wp-content/uploads/mainP2Structrev103.pdf.
[Accessed May 2018].

[39] J. G. William Futral, Intel Trusted Execution Technology for Server Platforms: A Guide to More Secure
Datacenters, Apress, 2013.

[40] “OpenAttestation Project,” [Online]. Available:
https://github.com/OpenAttestation/OpenAttestation. [Accessed May 2018].

[41] 5GCity Project, D2.1 - 5GCity System Requirements and Use Cases.

[42] “ Open Portable Trusted Execution Environment,” [Online]. Available: https://www.op-
tee.org/index.html.

[43] “Snabb framework,” [Online]. Available: http://snabb.co/. [Accessed May 2018].

[44] J. F. Michele Paolino, “Turning an open source project into a carrier grade vswitch for NFV:
Vosyswitch challenges & results,” in Network Infrastructure and Digital Content (IC-NIDC), 2016 IEEE
International Conference on, Beijing, China, 2016.

[45] “Optimizations performed by LuaJIT,” [Online]. Available: http://wiki.luajit.org/Optimizations.
[Accessed May 2018].

[46] M. M. C. G. W. A. G. C. W. a. M. F. Bebenita, “Trace-based compilation in execution environments
without interpreters,” in the 8th International Conference on the Principles and Practice of
Programming in Java, Vienna, Austria, 2010.

[47] “xRAN,” [Online]. Available: http://www.xran.org/resources/. [Accessed May 2018].

[48] Internet Engineering Task Force (IETF), “RFC 7665: Service Function Chaining (SFC) Architecture,”
[Online]. Available: https://datatracker.ietf.org/doc/rfc7665/.

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 54 of 57

[49] European Telecommunications Standards Institute , “ETSI GS NFV-EVE 005 V1.1.1,” December 2015.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf. [Accessed May 2018].

[50] “Service Function Chaining Extension for OpenStack Networking,” [Online]. Available:
https://docs.openstack.org/networking-sfc/latest/. [Accessed May 2018].

[51] European Telecommunications Standards Institute, “ETSI GS NFV-IFA 001 V1.1.1,” December 2015.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/001/01.01.01_60/gs_nfv-
ifa001v010101p.pdf. [Accessed May 2018].

[52] “ISO/IEC 7498-4: Information processing systems -- Open Systems Interconnection -- Basic Reference
Model -- Part 4: Management framework,” 1989. [Online]. Available:
http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-4_1989(E).zip.

[53] The Broadband Forum, “TR-069: CPE WAN Management Protocol,” March 2018. [Online]. Available:
https://www.broadband-forum.org/technical/download/TR-069.pdf.

[54] ETSI MEC WG, “Multi-access Edge Computing (MEC); Support for regulatory requirements, ETSI MEC
026 V1.2.2,” 2018.

[55] “Open Networking Foundation,” [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2013/05/TR-535_ONF_SDN_Evolution.pdf. [Accessed May 2018].

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 55 of 57

Abbreviations and Definitions

Abbreviations

3GPP 3rd Generation Partnership Project
API Application Programming Interface
AppD Application Descriptor
ASIC Application Specific Integrated Circuits
BBWF Broadband World Forum
CDN Content Delivery Network
CN Core Network
CPS Cyber Physical Systems
CPU Central Processing Unit
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
DPDK Data Plane Development Kit
DSP Digital Signal Processing
EL3 Exception Level 3
eNodeB, eNB Evolved Node B
EPC Evolved Packet Core
EPS Edge Packet Services
ETSI European Telecommunication Standard Institute
EU European Union
FCAPS fault, configuration, accounting, performance, security
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
GPRS General Packet Radio Service
GPU Graphical Processing Unit
GTP-U GPRS tunneling protocol user plane
ICT Information Communication Technology
IETF Internet Engineering Task Force
IMSI international mobile subscriber identity
IOCTL Input-Output Control
IoT Internet of Things
IoT Internet of Things
IP Internet Protocol
JIT Just in time
JSON JavaScript Object Notation
KVM Kernel-based Virtual Machine
LCM Life Cycle Management
LGW Local Gateway
LTE Long Term Evolution
LTE-A Long Term Evolution Advanced
MAC Media Access Control address
MANO Management and Orchestration
MEAO Multi-access Edge Application Orchestrator
MEC Multi access Edge Computing
MEPM Multi-access Edge Platform Manager
MEPM-V Multi-access Edge Platform Manager - NFV
MME Mobility Management Entity

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 56 of 57

NAT Network Address Translator
NETCONF Network Configuration Protocol
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestration
NIC network interface controller
NR New Radio
ODP Open Data Plane
OPTEE Open Platform Trusted Execution Environment
OS Operating System
OSM Open Source MANO
OSS Operations support System
OVS Open Virtual Switch
PCR Platform Configuration Registers
PLMN Public Land Mobile Network
POSIX Portable Operating Systems Interface for Unix
QEMU Quick Emulator
QoS Quality of Service
RAM Random Access Memory
RAN Radio Access Network
REST Representational State Transfer
RLCC/MAC? Radio Link Control
RNIS Radio Network Information Services
SDK Software Development Kit
SDN Software Defined Network
SF Service Function
SFC Service Function Chaining
SFF Service Function Forwarder
SFP Service Function Path
SLA Service Level Agreement
SoC System on Chip
SSID Service Set Identifier
TCG Trusted Computing Group
TDMA Time-Division Multiple Access
TEE Trusted Execution Environment
TOF Traffic offload function
TPM Trusted Platform Module
TSS TrouSerS open source project
UMTS Universal Mobile Telecommunications System
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFFGD VNF Forwarding Graph Descriptor
VNFM Virtual Network Function Manager
VOLTE Voice Over LTE
vRAN Virtual Radio Access Network
vTPM Virtual Trusted Platform Module
YANG Yet Another Next Generation
3GPP 3rd Generation Partnership Project
API Application Programming Interface
AppD Application Descriptor

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 57 of 57

ASIC Application Specific Integrated Circuits

<END OF DOCUMENT>

