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Executive Summary  

This deliverable presents the characteristics of the 5GCity virtualization platform and MEC node, which aims 
at building the city of the future 5G ICT service infrastructure by combining NFV and MEC concepts, extending 
state of the art virtualization techniques for the execution of virtual machines and for their networking 
features. 

In the first part of the document, the project’s approach towards the coexistence of ETSI MEC and NFV 
standardization activities is explained. The key differences between them are presented, together with the 
planned activities to make them coexist in the 5GCity infrastructure.  Then in Section 3 and Section 4, the 
computing and the networking virtualization features of the 5GCity infrastructure are detailed. Both Sections 
start with a description of what is the state of the art of each technology today, in order to introduce and 
clarify the advancements that will be developed in 5GCity, which are detailed respectively in Sections 3.2 and 
4.2.  

In greater detail, 5GCity computing extensions include unikernels and VMs developments to improve 
performance, efficiency (Unikraft, KVM) and security (EdgeNFVI, EdgeVIM). On the other hand, wireless 
slicing (RAN and Wi-Fi virtualization), vSwitch acceleration (VOSYSwitch) and MEC service function chaining 
are part of the project’s networking enhancements presented in this document. 
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1. Introduction 

Smart cities have the objective of providing multiple added value services to citizens, companies or other 
entities while minimizing the infrastructure costs in a way to address performance requirements (computing 
power, bandwidth, power consumption, security, etc.) with the highest efficiency. These services can be very 
different from each other, and must be properly isolated to guarantee privacy, programmability and 
infrastructure openness. 

In this context, virtualization is a technology of pivotal importance because it abstracts computing and 
networking infrastructure resources to provide application with useable logic instances (e.g., virtual 
machines, unikernels1, network slices, etc.) that are fundamental for NFV and MEC platforms. 

However, the high number of heterogeneous devices interconnected to build the city infrastructure together 
with the geographically scattered nature of cabinets, smart gateways, lampposts and the mobility of smart 
devices represent a challenge for virtualization. Moreover, these new technologies will enhance current 
smart cities services by delivering almost real time services, which will allow the emergence of a new 
generation of applications. 

 

Figure 1. The 5GCity architecture, with the Infrastructure Layer at the bottom 

This deliverable documents the activities developed within WP3, which has the objective of developing the 
project virtualization platform by: 

i) Optimizing virtualization technologies for heterogeneous and resource constrained devices, 

ii) Implementing network virtualization targeting efficient software switches and wireless 
virtualization, 

iii) Creating specific VNFs data models and systems for MEC nodes. 

                                                             
1 Please see: http://unikernel.org/  

http://unikernel.org/
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WP3 activities focus on the lowest layer of the project architecture depicted in Figure 1, (Infrastructure Layer) 
and together with the VIMs set the ground for the execution of the 5GCity Platform. 

In this document, the project positioning with respect to the ETSI MEC and NFV standard is detailed in Section 
2. Differences between the two specification groups activities are shown, followed by a description of both 
the implementation of existing components and those that the 5GCity project aims to develop.  

Afterwards, the virtualization of computing resources to run multiple applications, isolated in a multi-tenant 
environment, are detailed in Section 3. The state of the art of existing virtualization solutions (KVM 2 , 
unikernels and VOSYSmonitor) is also described together with the current virtualization approach towards 
trusted computing and security. These details introduce the 5GCity enhancements that are explained later 
on in Section 3.2, where Unikraft3, the Edge NFVI and the EdgeVIM design and implementations are also 
described.  

Section 4 uses a similar structure to describe the project activities in the direction of networking virtualization. 
OVS-DPDK, VOSYSwitch, RAN slicing, service function chaining, Wireless and eNB virtualization state of the 
art are described in Section 4.1 while the project enhancements are highlighted in Section 4.2.  

                                                             
2 Please see: https://www.linux-kvm.org/  
3 More info at: https://www.xenproject.org/developers/teams/unikraft.html  

https://www.linux-kvm.org/
https://www.xenproject.org/developers/teams/unikraft.html
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2.  Applicability of ETSI MEC architecture to 

5GCITY  

While ETSI NFV (Network Function Virtualisation) has been around for a while now, ETSI MEC (Multi access 
Edge Computing) is much newer. It has changed its scope during its lifecycle by shifting its focus towards an 
architecture which can encompass multi-access technology. NFV has grown in popularity because it enables 
service providers to replace network appliances with software running on servers, enabling cost reduction, 
service innovation and deployment acceleration. While ETSI MEC is tailored to edge computing coupled with 
mobile access technology, it takes the same principles that drive NFV and optimizes them for the mobile 
environment. 

In this section, ETSI NFV and ETSI MEC similarities and differences are described to detail the 5GCity approach 
towards the coexistence of both within the project’s infrastructure (Section 2.3). 

2.1 ETSI MEC - NFV architectures mapping 

In this section, we will provide a rationale which describes a potential mapping between NFV and 
MEC reference architectures. Their similarities are described below 

- Standard platform. similar to NFV, MEC is built on top of a stack of standard components, including 
a well-defined compute platform and virtualization layer. 

- Open environment. MEC is designed to promote innovation through openness and interoperability, 
just like NFV. 

- Software-focused. While both NFV and MEC need hardware, the emphasis is on moving functionality 
to software. Doing so brings benefits in terms of scalability, commercial models, and speed of 
innovation and deployment. 

NFV and MEC have similarities and a common heritage, but clearly show some differences. The main 
differences are those related to the type, location and scope of the applications they target. 

- Application Type: NFV can address a wide variety of existing network functions and applications, 
including routing, VPNs, firewalls, security, voice applications including IMS and SBC and so on. Each 
of these is independent and uses NFVI for basic hosting and networking functions. In contrast, MEC 
provides a more focused MEC application platform specifically designed for supporting services 
associated with radio access. The MEC application platform provides an abstracted way to interface 
with the complexity of the radio network, enabling new applications. MEC applications depend on a 
set of middleware services which are hosted on a MEC server: 

o Service registry; 
o Radio Network Information Services (RNIS); 
o Traffic Offload Function (TOF). 

- Application Scope: MEC is designed to support high-level mobility applications. With MEC, wireless 
operators, over-the-top providers and enterprises can quickly build advanced mobility applications 
that are small and portable. NFV addresses a much broader set of arbitrary network applications. 

- Application Location: Consumers are insatiable in their desire for quick access to bandwidth-
intensive applications. In addition, emerging requirements for 5G deployments will stipulate 
bandwidth and latency requirements. MEC is designed to be implemented in the access part of the 
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network (at the micro or macro-cell or the first aggregation point) to help answer this demand by 
maximizing bandwidth and minimizing latency. In contrast, NFV is targeted at deployments 
throughout the network. 

A specific ETSI MEC working group has been created to design a solution which maps ETSI MEC to an ETSI 
NFV architecture. The ETSI report [1] which it produced contains: 

- A set of initial assumptions; 

- A potential solution which provides a mapping of MEC to NFV architecture; 

- An ordered list of open issues, which are raised by the proposed mapping. 

The following assumptions have been done: 

- The mobile edge platform is deployed as a VNF. For that purpose, the procedures defined by ETSI 
NFV is used. It is not expected that these procedures need to be modified for use with ETSI MEC.  

- The mobile edge applications appear like VNFs towards the ETSI NFV MANO components. This allows 
re-use of ETSI NFV MANO functionality. It is however expected that ETSI MEC might not use the full 
set of MANO functionality, and require certain additional functionality. Such a specific mobile edge 
application is denoted by the name "ME app VNF" in the remainder of the present document.  

- The virtualisation infrastructure is deployed as a NFVI and its virtualised resources are managed by 
the VIM. For that purpose, the procedures defined by ETSI NFV Infrastructure specifications, i.e. ETSI 
GS NFV INF-003 [2], ETSI GS NFV INF-004 [3], ETSI GS NFV INF-005 [4], can be used. It is not expected 
that these procedures need to be modified when used with the ETSI MEC. 

The solution envisioned in [1], and described in Figure 2 encompasses all the reference points described in 
ETSI NFV (green lines) and ETSI MEC (blue line), while further suggesting a new category of cross-area 
reference point (red lines). The new reference points (Mv1, Mv2 and Mv3) are introduced between elements 
of the ETSI MEC architecture and the ETSI NFV architecture to support the management of ME app VNFs. 
These are related to existing NFV reference points, but it is expected that only a subset of the needed 
functionalities will be used for ETSI MEC, while some extensions may be necessary: 

- Mv1: This reference point connects the mobile edge application orchestrator (MEAO) and the 

NFVO. It is related to the Os-Ma-nfvo reference point as defined in ETSI NFV. 

- Mv2: This reference point connects the VNF Manager of that performs the LCM of the ME app 

VNFs with the MEPM-V to allow Lifecycle Management related notifications to be exchanged 

between these entities. It is related to the Ve-Vnfm-em reference point as defined in ETSI NFV, but 

will possibly include additions, and might not use all functionality offered by Ve-Vnfm-em. 

- Mv3: This reference point connects the VNF Manager with the ME app VNF instance, to allow the 

exchange of messages (e.g., related to mobile edge application lifecycle management or initial 

deployment-specific configuration). It is related to the Ve-Vnfm-vnf reference point as defined in ETSI 

NFV, but will possibly include additions, and might not use all functionality offered by Ve Vnfm-vnf. 
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Figure 2. Mapping between ETSI MEC and ETSI NFV architectures [1] 

The mapping described in [1], as depicted in Figure 2, leaves a number of open issues, identified in Table 1.  
For each one of the identified issues a tentative solution and an evaluation of the impact in the actual NFV 
landscape have been provided by [1].  

 

ISSUE#ID ISSUE NAME Proposal  Impacted area Impact 

ISSUE#1 Mapping of ME app 
VNFs to Network 
Services 

It is suggested that the MEAO arranges with the NFVO via Mv1 to manage 
the ME app VNF instances as part of one or more NSs 

Interfaces Mv1 
(MEAO-NFVO)  

HIGH 

ISSUE#2 Usage of NFV 
Network Service 

Use the concept of NSs to represent the set of ME app VNFs and ME 
platform VNFs and their interconnection/dependency. 

information 
model 

HIGH 

ISSUE#3 Communication 
between MEAO and 
NFVO via Mv1 

Under analysis by ETSI MEC WG. Interfaces Mv1 
(MEAO-NFVO)  

HIGH 

ISSUE#4 Communication 
between VNFM and 
MEPM-V via Mv2 

Certain functionalities as provided by the Ve-Vnfm-em reference point will 
be used between the MEPM-V and the VNFM that manages the lifecycle of 
the ME app VNFs, as discussed in clause 6.4.3 

Interfaces Mv2 
(VNFM, 
MEPM-V) 

MEDIUM 
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ISSUE#5 Communication 
between VNFM and 
ME app instance via 
Mv3 

Under analysis by ETSI MEC WG. Interfaces Mv3 
(VNFM-
MeApp) 

MEDIUM 

ISSUE#6 AppD vs. VNFD for 
ME app VNFs 

Under analysis by ETSI MEC WG. information 
model 

MEDIUM 

ISSUE#7 VNF Package vs. 
MEC application 
package 

Identify with ETSI NFV whether an extension mechanism for VNF Packages 
exists that can be re-used, and what are the rules for re-use. If it does not 
exist, suggest to ETSI NFV to specify such a mechanism 

information 
model 

MEDIUM 

ISSUE#8 VNF package 
onboarding 

Solution 1: If the MEAO is the master, the ME app package would first be 
provided by the OSS to the MEAO via Mm1, and onboarded to the NFVO by 
the MEAO via Mv1, using procedures defined in ETSI GS NFV-IFA 013 [5]. In 
that case, the MEC specific extensions of the VNF package are directly 
available to the MEAO, as the package passes through the MEAO. 

Solution 2: If the NFVO is the master, the ME app package would be 
onboarded directly into the NFVO by the OSS via Os-Ma-nfvo. Via Mv1, the 
MEAO would be notified about package onboarding, and would be able to 
subsequently fetch whole packages or the needed package parts (so called 
package artifacts), using procedures defined in ETSI GS NFV-IFA 013 [5]. This 
would allow the MEAO to access the MEC specific extensions of the VNF 
package 

VNF Lyfe Cicle 
management 

HIGH 

ISSUE#9 Managing traffic 
redirection 

The Data Plane in a MEC in NFV deployment may be realised by means 
outside the scope of the ETSI MEC specifications (solution 1). It may also be 
realised based on the NFP mechanism defined in ETSI NFV (solution 2). 

MEC dataplane 
configuration 

LOW 

ISSUE#10 Comparison of AppD 
and VNFD data 
structures 

Under analysis by ETSI MEC WG. Information 
model 

MEDIUM 

ISSUE#11 NFV construct that 
corresponds to 
Mobile Edge Host 

ETSI ISG NFV has defined several constructs to structure an NFVI, such as 
NFVI-PoP (basically, a data center) and Zone (a set of co-located and well-
connected physical resources which is a subset of an NFVI-PoP). 

Mobile edge 
host definition 

NFVI definition 

LOW 

ISSUE#12 ME App VNF 
Instance Relocation 

Under analysis by ETSI MEC WG. VNF Lyfe Cicle 
management 

LOW 

ISSUE#13 Application 
instantiation 

Under analysis by ETSI MEC WG. VNF Lyfe Cicle 
management 

LOW 

ISSUE#14 Application instance 
termination 

Under analysis by ETSI MEC WG. VNF Lyfe Cicle 
management 

LOW 

Table 1. List of Issue raised from the proposed ETSI MEC to ETSI NFV mapping [1] 
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Note that these 14 issues originate from one of the main differences between ETSI MEC and ETSI NFV, 
which is linked with the information model needed to describe MEC Applications. 

Attribute name Qualifier Cardinality Data type Description 

appDId Mandatory 1 String  Identifier of this MEC application descriptor. This 

attribute shall be globally unique. See note 1. 

appName Mandatory 1 String Name to identify the MEC application. 

appProvider Mandatory 1 String Provider of the application and of the AppD. 

appSoftVersion Mandatory 1 String  Identifies the version of software of the MEC 

application. 

appDVersion Mandatory 1 String  Identifies the version of the application descriptor. 

mecVersion Mandatory 1..N String  Identifies version(s) of MEC system compatible with the 
MEC application described in this version of the AppD. 

appInfoName Mandatory 0..1 String Human readable name for the MEC application product. 
May change during the MEC application product 

lifetime. 

appDescription Mandatory 1 String Human readable description of the MEC application. 

virtualComputeDescriptor Mandatory 1 VirtualComputeDescription  Describes CPU, Memory and acceleration requirements 
of the Virtualisation machine. 

swImageDescriptor Mandatory 1 SwImageDescriptor Describes the software image which is directly loaded 
on the virtualisation machine instantiating this 
Application. 

virtualStorageDescriptor Mandatory 0..N VirtualStorageDescriptor Defines descriptors of virtual storage resources to be 
used by the MEC application. 

appExtCpd Mandatory 0..N AppExternalCpd Describes external interface(s) exposed by this MEC 
application. 

appServiceRequired Mandatory 0..N ServiceDependency Describes services a MEC application requires to run. 

appServiceOptional Mandatory 0..N ServiceDependency Describes services a MEC application may use if 
available. 

appServiceProduced Mandatory 0..N ServiceDescriptor Describes services a MEC application is able to 
produce to the platform or other MEC applications. Only 

relevant for service-producing apps. 

appFeatureRequired Mandatory 0..N FeatureDependency Describes features a MEC application requires to run. 

appFeatureOptional Mandatory 0..N FeatureDependency Describes features a MEC application may use if 
available. 

transportDependencies Mandatory 0..N TransportDependency Transports, if any, that this application requires to be 
provided by the platform. These transports will be used 
by the application to deliver services provided by this 

application. Only relevant for service-producing apps. 
See note 2. 

appTrafficRule Mandatory 0..N TrafficRuleDescriptor Describes traffic rules the MEC application requires. 

appDNSRule Mandatory 0..N DNSRuleDescriptor Describes DNS rules the MEC application requires. 

appLatency Mandatory 0..1 LatencyDescriptor Describes the maximum latency tolerated by the MEC 

application. 

terminateAppInstanceOp

Config 

Mandatory 0..1 TerminateAppInstanceOpC

onfig 

Configuration parameters for the Terminate application 

instance operation. 

changeAppInstanceState

OpConfig 

Mandatory 0..1 ChangeAppInstanceStateO

pConfig 

Configuration parameters for the change application 

instance state operation. 

NOTE 1: The appDId shall be used as the unique identifier of the application package that contains this AppD. 
NOTE 2: This attribute indicates groups of transport bindings which a service-producing MEC application requires to be supported by the 

platform in order to be able to produce its services. At least one of the indicated groups needs to be supported to fulfil the 

requirements.  

NOTE3:      The "Qualifier" column indicates whether the support of the attribute is mandatory, optional or conditional. 
NOTE4:      The "Cardinality" column contains the minimum and maximum cardinality of this information element (e.g. 1, 2,  

0..N, 1..N). 

Table 2. Attributes of the AppD descriptor [6] 

 As stated in [6], an application Descriptor (AppD) is a part of the application package and describes 
application requirements, and rules, required by the application provider to be able to deploy a MEC 
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Application. Table 2 provides the full attributes which composes the AppD descriptor, while Table 3. provides 
a preliminary analysis of the gap between AppD and VNFD deployment templates [1]. 

 
VNFD attribute AppD attribute 

vnfdId appDId 

vnfProvider appProvider 

vnfProductName appName 

vnfSoftwareVersion appSoftVersion 

vnfdVersion appDVersion 

 mecVersion 

vnfProductInfoName appInfoName 

vnfProductInfoDescription appDescription 

vnfmInfo  

localizationLanguage  

defaultLocalizationLanguage  

vdu  

>swImageDescriptor swImageDescriptor 

virtualComputeDesc virtualComputeDescriptor 

virtualStorageDesc virtualStorageDescriptor 

intVirtualLinkDesc  

vnfExtCpd appExtCpd 

 appServiceRequired 

 appServiceOptional 

 appServiceProduced 

 appFeatureRequired 

 appFeatureOptional 

 transportDependencies 

 appTrafficRule 

 appDNSRule 

 appLatency 

deploymentFlavour  

>vnfLcmOperationsConfiguration  

 terminateAppInstanceOpConfig 

 changeAppInstanceStateOpConfig 

configurableProperties  

modifiableAttributes  

lifeCycleManagementScript  

elementGroup  

vnfIndicator  

autoScale  

Table 3.  High-level comparison of VNFD and AppD descriptors [1] 

It is clear that the main difference is composed by a set of additional attributes of the AppD descriptor which 
are needed to describe the dependencies between the MEC application and a set of services provided by the 
MEC Platform. 

2.2 Existing MEC Solutions  

Open source software is expected to play an important role in future 5G systems and MEC solutions as well. 
The ever-increasing number of new use cases and the need for devices with different form factors are a 
challenge for the entire industrial landscape. While a small number of leading smartphone manufacturers 
already provide state-of-the-art mobile devices, 5G is likely to shift production to a large number of small 
operators specializing in specific niche markets. These industries are expected to rely on open source 
development and access kits in order to adapt their respective products to selected markets. Naturally, the 
main players will provide commercial mass markets. 

To date, we have knowledge of only one open source software implementation of ETSI MEC, which is LL-MEC 
(within Mosaic5G ecosystem [7], [8]), briefly explained in the following paragraph. 



  
 

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 17 of 57 

2.2.1 A Low Latency Multi-access Edge Computing Platform for Software-Defined Mobile 

Networks 

The open source LL-MEC implements two main parts: the LL-MEC platform (Figure 3) and the data control 
APIs. LL-MEC is responsible for providing two main services: native IP service endpoints and real-time radio 
network information to MEC applications per user and service. It can be connected to a number of underlying 
RAN and CN gateways. The data plane APIs act as a layer of abstraction between the RAN and CN data plane 
and the LL-MEC platform. The OpenFlow4 and FlexRAN5 protocols facilitate communication between the LL-
MEC platform and the underlying RAN and CN. With LL-MEC, it is possible to develop RAN and CN coordinate 
network applications using LL-MEC and FlexRAN SDK that allow monitoring and controlling not only traffic 
but also the status of the network infrastructure. These applications can range from elastic applications to 
obtain statistics on user traffic for applications to low-latency applications that redirect user traffic (local 
breakout) by applying criteria for setting the data path. All RAN and CN product data and APIs are open for 
use by other apps and third parties. 

 

Figure 3. LL-MEC Platform [9] 

To make the topic easier, Figure 4  shows the high-level diagram of the LL-MEC, mainly composed of a three-
layer design:  
 

 Abstraction Layer 

 MEC Platform 

 MEC Application 
 

This platform runs on software-defined mobile network consisting of multiple LTE eNodeBs and SDN-enabled 

switches, whether it is physical or software, and fully separates the data plane from control functions. 
Furthermore, the agent acts as a local controller on behalf of RAN or SDN-enabled switches. The entities and 
interfaces implemented in this platform follow the ETSI MEC Specifications supporting the functionalities 
defined by Mp1 and Mp2 interface, keeping at the same time the 3GPP compatibility.  Mp1 is the interface 

                                                             
4 More details at: https://www.opennetworking.org/  
5 Please see:  http://networks.inf.ed.ac.uk/flexran/  

https://www.opennetworking.org/
http://networks.inf.ed.ac.uk/flexran/
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between mobile edge platform and applications while the Mp2 is the interface between mobile edge 
platform and the abstracted data plane as specified by ETSI. 
 

 
Figure 4. LLMEC High Level Schematic [9] 

 

2.2.1.1. Abstraction Layer 

The abstraction layer includes both the Radio-API entity and the Data-Plane-API entity and has the role of 
abstraction for the control-plane and for the data plane respectively providing only the information necessary 
for the development of the MEC Applications: 

 The Radio-API has been designed to give an abstract view of the radio network status measuring the 
parameters of interest from the RAN. Moreover, provides the possibility to modify the state of the 
underlying network; 

 The Data-Plane-API essentially provides the Mp2 interfaces for Edge Packet Services (EPS) within the 
MEC platform to control the data plane of the core network. EPS will pass the required rules to 
OpenFlow enabled switches through the Data-Plane-API. 

2.2.1.2. MEC Platform 

The MEC platform is in a Mobile Edge Host as a middleware (or core entity) between the MEC applications 
and the real network elements. It gives application developers the possibility to focus on the specific 
application rather than on the functionalities of the underlying RAN. The MEC platform is the brain of the LL-
MEC: it controls the main services as events trigger and register, providing library integration and low latency 
support.  Moreover, the MEC platform provides the necessary building blocks to realize MEC applications.  It 
has to be noted that the current implementation of the LL-MEC does not support the Mp3 reference point 
used for the communication with the other MEC platforms. 
 
The MEC platform is composed of the following components: 

1) Radio Network Information Service 
2) Service Registry 
3) Edge Packet Service 
4) Event Manager 
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2.2.1.3 MEC Application 

One of the main benefits resulting from the separation of the control plane and data plane is that the 
applications on the top of the platform can be developed without deep knowledge of the underlying network. 

Applications communicate with the MEC Platform through the Mp1 interface (northbound interfaces - MEC 
APP API); by means of the Mp1 reference point the MEC applications have access to the network information 
or delegate the control decision towards network. The Mp1 includes REST-API, messages bus, and local API. 
Another key feature of LL-MEC is that the application can be implemented in different scheduling ways such 
as round robin, first-in-first-out or deadline scheduler to have different time scales and priorities when 
running the tasks. In particular, the RAN-related applications can benefit from this feature to avoid further 
delays during interaction with the radio network. 
Applications can not only interact with the MEC platform through the APIs to use and provide mobile edge 
services, but they can also provide services that provide information and messages useful for other 
applications.  

2.3. 5GCity Approach 

ETSI NFV and MEC share the same principles and can be combined in a single infrastructure. However, ETSI 
MEC is a young standardisation activity, partially still under definition. For this reason, some components of 
the 5GCity architecture need to be adapted and/or extended to support both ETSI NFV specific components 
(e.g., the NFVO) and MEC descriptors and deltas. Similarly, the following new MEC specific components need 
to be implemented: 

 The Multi-access Edge Application Orchestrator (MEAO) 

 The Multi-access Edge Platform Manager – NFV (MEPM-V), 

 The Multi-access Edge Platform (ME platform). 

This section presents the 5GCity approach towards the integration between ETSI MEC and NFV together with 
fog05, the open source project which will be extended to implement such integration. 

2.3.1 fog05 

fog05 is an IaaS software that can harvest compute power from low end devices as well as mobile devices 
and expose this computing power to the city infrastructure. fog05 leverages on a communication protocol 
that can work with poor network connectivity (intermittent or low bandwidth) and has a fully distributed 
control plane that allow runtime discovery of new compute nodes. 
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Figure 5 fog05 high level architecture 

fog05 has a full plugin architecture (Figure 5), that ease the support of new hypervisors, SDN controllers, 
deployable units or MANO algorithms. This functionality will be used to enable to the ETSI MEC support in 
5GCity. 

A more detailed description of fog05 can be found in D2.2 Section 3.7.3. 

2.3.2 Applicability of ETSI MEC architecture in 5GCity 

 

 
Figure 6. 5GCity MEC Mapping 

Figure 6depicts the updated architecture for MEC in NFV that will be used as a base for the integration 
between MEC and NFV in 5GCity.  Some reference points have been removed (the one highlighted using 
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dashed lines and as well as federation reference points) while the MEAO and MEMP-V will use fog05 
extended with specifically implemented plugins for both MEMP-V and MEAO as described in (D4.1 – Section 
2.1 [10]).  

Moreover, in the 5GCity architecture the NFVO will act as a master with respect to onboarding packages, 
while the final decision regarding placement will be always taken by the 5G service placement algorithms. 
This means that the MEAO and the NFVO should collaborate when it is time to instantiate or migrate an ME 
application/service, while this collaboration should go through another interface which is not the one used 
to send management information.  

Another key component of the MEC architecture is the MEPM-V, which is responsible for Life Cycle 
Management (LCM) and Performance Monitoring (PM) for the Mobile Edge Platform. This component will 
act as an Element Manager from an NFV point of view, and will interact with the MEAO through the Mm3* 
reference point to retrieve configuration for the ME platform coming from MEAO or to notify something to 
it. This reference point is different from ETSI MEC Mm3 because in our case LCM will go directly through the 
VNFM. Interface Mm5 (not yet specified in ETSI MEC) will be used for sending configurations (DNS rules, 
configuration of persistence storage and so on) to the ME platform as well as receiving notifications or 
request from this one, regarding cardinality one MEAO can manage different MEPM-V, but one MEPM-V can 
be managed only by one MEAO. 
Then we have the Mobile Edge platform that allows ME app to register and access the different platform 
services, as well as managing DNS rules and other useful information, such as RNIS. In 5GCity, an ME platform 
will be developed as PoC to demonstrate in some use cases how MEC applications can communicate. 
Regarding the management of traffic redirection, it will be triggered by the MEAO under request of the 
MEMP-V, and will be put in place by the NFVO mainly for three reasons: 
 
1) The MEAO does not have any direct connection with NFVI and Data plane. 
2) It makes more sense that all the actual configuration is done by only one orchestrator, the NFVO. 
3) It gives us the possibility to remove the Mp2 interface between ME platform and the Data Plane.  
 
For the mapping of a ME Host in an NFV concept, we will use NFVI-PoP and zones. As a consequence, we 
consider a single ME platform and a MEMP-V for each zone, solving the problem of allocation. The problem 
of reallocation (e.g. migrating a ME app between different zones) is a gap in ETSI NFV that still needs to be 
solved.  
 
For each issue identified by ETSI MEC (Table 1), we identified the 5GCity solution in Table 4: 

 

Issue Description 5GCity Solution Comment 

ISSUE#1 Mapping between 
ME app VNFs and 
NS  

The MEAO will have a map between ME 
app VNFs inside NSs 

The map comes when the 
MEAO takes the descriptors 
form NFVO 

ISSUE#2 NSD should 
express eventual 
dependency to 
other NSs. 

5GCity information model will address 
this issue. 

Extending NSD with MEC 
relevant fields. 

ISSUE#3 Communication 
between MEAO 
and NFVO. 

Communication goes through Mv1 ~ 
Os-Ma-nfvo, OSM REST API 

 

ISSUE#4 Communication 
between MEMP-V 
and VNFM. 

Communication goes through Mv2 ~ 
Ve-Vnfm-em. MEPM-V act as Element 
Manager for the Mobile Edge Platform 
need to keep track of LCM operation 

Ve-Vnfm-em is not exposed in 
OSM, we have to implement 
this interface for the MEMP-V. 
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initiated by the NFVO, it also needs to 
access to PM counters for the 
virtualized resources in which ME apps 
VNFs related to the ME platform that is 
managed by the MEPM-V. PM 
information uses OSM MON tool. 

ISSUE#5 Communication 
between VNFM 
and ME App VNFs. 

As Mv3 ~ Ve-vnfm-vnf no changes are 
needed. 
 

MEC doesn’t cover this part, 
we can use the NFV approach. 

ISSUE#6 MEC AppD vs NFV 
VFND. 

5GCity information model will take in 
account both descriptors. MEAO stores 
only MEC information. NFVO stores 
only NFV information. 

Need to extend out 
Information Model to cover 
relevant MEC fields. 
 

ISSUE#7 Packages of ME 
Apps vs VNFs. 

5GCity packages will contains files 
related to NFV and MEC. 

MEAO will store only MEC part, 
and NFVO only NFV part. 

ISSUE#8 NS/ME app 
onboarding. 

NFVO is the master, and MEAO is the 
slave, this means that the onboarding 
comes first to NFVO that validate 
eventual MEC information, store the 
mapping between ME app and NS, and 
send MEC information to MEAO and 
NFV information will be used by the 
NFVO. 

 

ISSUE#9 Management of 
traffic redirection. 

The ME platform ask traffic redirection 
through Mm5(which is an unspecified 
reference point) then this information 
goes to MEAO through Mm3* and the 
MEAO create a NFP based on the new 
traffic rules and uses Mv1 to ask the 
NFVO to instantiate. 

The MEAO is the trigger for 
traffic redirection, then the 
actual configuration is done by 
NFVO for the NFV part and by 
the ME platform for the MEC 
related part. 

ISSUE#10 Comparison 
between AppD 
and VNFD data 
structures  

See issue 6.  

ISSUE#11 Multi-access Edge 
Host in NFV. 

ME Host can be the NFVI in a cabinet. 
MEAO need to be able to ask NFVO to 
deploy in specific cabinets. Each NFVI-
PoP can be a ME Host. 

MEC should be able to reuse 
such as NFVI-PoP (basically, a 
data centre) and Zone (a set of 
co-located and well-connected 
physical resources which is a 
subset of an NFVI-PoP). This 
can be mapped to well known 
definition of availability-zone 
in an OpenStack deployment. 
 

ISSUE#12 
ME App VNF 
Instance 
Relocation 

The MEAO and NFVO should 
collaborate when is time to relocate a 
ME App instance, this communication 
goes through a reference point 
separate from Mv1 

Relocation is triggered by 
MEAO based on information 
coming from MEPM-V 

ISSUE#13 Application 
instantiation  

Same as issue#12 Instantiation is triggered by 
MEAO 
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ISSUE#14 Application 
instance 
termination 

Same as issue#12 Termination in triggered by 
MEAO based on information 
coming from MEPM-V 

Table 4. 5GCity approach – issues and solutions 
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3 Computing Virtualization 

Computing virtualization consists in abstracting the system hardware resources to run multiple independent 
instances of an application. Different techniques exist today to implement such abstraction: Hypervisors, 
Containers and Unikernels are the most important ones (Figure 7). 

In this section, the 5GCity enhancements to computing virtualization techniques are detailed after a 
presentation of these techniques as state of the art. 

 

 

Figure 7. Virtualization solutions architectures [11] 

A hypervisor (e.g., Kernel-based Virtual Machine – KVM [12] and XEN [13]) is a software layer able to create 
virtual instances of hardware resources such as CPUs, memory, devices, etc. It enables the execution of 
multiple operating systems (virtual machines) on the same hardware. The virtualisation provided by type-1 
(e.g., Xen) hypervisors is implemented at the operating system level, meaning that two virtual machines 
(VMs) running on the same host share the hypervisor but do no not share the OS implementation, nor the 
libraries, the runtime and any other higher-level component.  

Containers (e.g., Docker 6 ), on the other hand, use operating systems features to package applications 
together with all their dependencies (libraries, binaries, etc.). In the case of Linux, control groups (cgroups) 
and namespaces are leveraged to provide, respectively, resource management and isolation between the 
container instances. Therefore, virtualisation is implemented in this case at the libraries and runtime level. 
These shared components are read only, while each container has its own specific access point for writing 
them. Containers can be instantiated faster than virtual machines, but do not have the same level of isolation 
provided by the hypervisor. For this reason, to enable multi-tenancy, containers are usually isolated inside 
virtual machines, as shown in Figure 7.  

Finally, unikernels (e.g., Unikraft, RumpRun, etc.) are specialised, single-address-space virtual machine 
images virtualized at the library operating system level, in the sense that the operating system in this case 
is seen as a library from which the application can select only the needed components in a modular way. 
They shrink the attack surface and resource footprint of cloud services. Unikernels share the isolation 
properties of the hypervisors and the very low instantiation time of containers because of their smaller 
image/footprint. 

                                                             
6 Please see: https://www.docker.com/  

https://www.docker.com/
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3.1 State of the Art 

3.1.1 KVM 

KVM is an open source hypervisor included in the Linux kernel, available for different CPU architectures (e.g., 
x86, ARM, s390, etc.) and implemented as a kernel module which is accessed by a standard IOCTL (input-
output control) interface. It exploits CPU Virtualization Extensions to execute guest’s instructions directly on 
the host processor(s) and to provide VMs with an execution environment almost identical to the real 
hardware.  

KVM borrows directly from the Linux kernel functions such as memory management and CPU scheduling. As 
a consequence, the hypervisor codebase is light and simple compared with other solutions. Additionally, it 
relies on external user space components to execute virtual machines. In fact, KVM doesn’t offer itself 
machine or device models abstractions (bios, devices, etc.), but uses Quick Emulator (QEMU7) for emulating 
guest hardware devices and instantiating guests. For example, QEMU is able to emulate a specific network 
interface card (E1000 Intel NIC, etc.), as well as a specific machine model (ARMv7 A15, x86 with q35 chip, 
etc.). Other external components, such as the C library for Virtualization libvirt8, are used to remotely manage 
the hypervisor and to connect it to Virtualized Infrastructure Managers like OpenStack. 

In the KVM paradigm guests are seen by the host as normal POSIX (Portable Operating System Interface for 
Unix) processes, with QEMU residing in the host userspace and utilizing KVM to take advantage of the 
hardware virtualization extensions. QEMU and KVM are able to run unmodified guests using emulation. 
However, since emulation is reputed to add significant overhead, KVM also supports Input Output (IO) para-
virtualization through Virtio, a standard abstraction solution for different hypervisors IO drivers. Virtio 
driver/device for KVM are today available for different IO types: e.g., network, disk (block), random number 
generator and balloon (for memory over commitment). 

3.1.2 VOSYSmonitor 

An important challenge for virtualization today is to address consolidation while keeping separated different 
levels of criticality on a common hardware platform. For example, an operating system providing security, 
critical or real-time services can be executed together with other virtualized OSes which provide streaming, 
gaming and social network services. This is very important in use cases like those of smart cities, Internet of 
Things (IoT) and automotive, where the virtualized applications interaction with Cyber Physical Systems (CPS) 
needs to address specific certification, real-time or security requirements. 

 

Figure 8. VOSYSmonitor architecture 

VOSYSmonitor, presented in Figure 8, is the Virtual Open Systems proprietary solution that addresses this 
challenge on ARMv8 processors, the low power architecture widely used in mobile, embedded and edge 
systems, and today also in the server side by System on Chip (SoC) makers such as Qualcomm [14] and Cavium. 
VOSYSmonitor enables the native concurrent execution of a safety/security critical OS (e.g., a Trusted 
                                                             
7 Please see; https://www.qemu.org/  
8 Details at: https://libvirt.org/  
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Execution environment or a Real Time Operating System - RTOS) along with another operating system which 
supports the execution on hypervisors, containers and unikernels. Communication between the two OSes is 
implemented through a virtual Ethernet connection, VOSYS VirtualNet. 

VOSYSmonitor runs in the monitor layer, the most secure operating mode available on ARM processors with 
the TrustZone [15] hardware security extension, which manages the interaction between two execution 
worlds and guarantees peripherals and memory isolation between critical and non-critical OSes. It is built 
with low level programming languages to provide highest performance and programmability. The most 
important component of the architecture is the Exception Level 3 (EL3) Monitor layer, which handles 
exceptions and context switching operations between the safety critical and non-safety critical environments. 
Moreover, drivers to access low level peripherals are implemented on top of the Platform API, which abstract 
driver function calls for the Monitor Layer. Finally, a specific programmable interface (Service Layer), is 
needed to dispatch secure services and handle interrupts in the real time safety critical environment. 

3.1.3 Unikraft 

In recent years, several papers and projects dedicated to specialized OSes, network stacks, protocols and 
unikernels have shown the immense potential for performance gains that these have. For instance, in [16] 
the authors specialize the network stack and use domain-knowledge to pre-prepare packets in order to 
significantly speed up video delivery. Likewise, by leveraging   specialization and the use of minimalistic OSes, 
unikernels are able to yield impressive numbers. MirageOS [17] uses Mini-OS [18], a minimalistic operating 
system that is part of the Xen ecosystem, to build OCaml-based, tiny unikernels able to boot in tens of 
milliseconds and thus provide just-in-time virtualized services, instantiated as the first packet in a flow arrives 
at a host. Erlang on Xen [19] provides a small memory footprint Erlang unikernel that can execute mixed 
workloads. Further, ClickOS  [20] also uses Mini-OS as its basis by building a unikernel that includes the Click 
Modular Router software [21], along with multiple optimizations to the network sub-system, to build a NFV 
unikernel able to perform at high rates of 10+Gb/s. Along those lines, Minicache [22] provides a CDN cache 
node that can service high-definition video content at rates of up to 40Gb/s while assigning a single CPU core 
to the unikernel. Multiple other unikernel or virtualized operating systems exist that can be used as basis for 
building specialized OSes: OSv, Solo5 and IncludeOS [23], [24], [25] are but a few examples. In terms of 
memory footprints, it is not uncommon for such unikernels to require as little as hundreds of KBs or a few 
MBs to run web servers or other functionality [17], [26]. 

The fundamental drawback behind specialization, and unikernels in particular, is that they require that 
applications be manually ported to the underlying minimalistic OS (e.g., having to port nginx, Python, mysql 
or memcached to MiniOS or OSv); worse, once this process is done, optimization and tweaking the resulting 
image is time-consuming, manual work, where an expert developer has to perform multiple cycles consisting 
of measurement, programming improvements, rebuilding and measuring again. 

By providing an automated tool for unikernel creation, Unikraft, an open source project under the auspices 
of the Xen Project and the Linux Foundation, seeks to drastically reduce the amount of expert time needed 
to implement specialized images. In addition, the fact that such build process will be automated will allow 
Unikraft to fully automate the optimization/tweaking cycle mentioned above, once again removing the time-
consuming and expensive effort from an expert from the equation. Finally, Unikraft will take specialization 
to the extreme, by allowing users to easily choose which features from all layers of the software stack, 
including the operating system, they would like to have in support of their application. 

3.1.4 Virtualization security and trust 

Security and trust are particularly important in smart cities environments because of their distributed 
architecture and for the importance of the data they use. In fact, citizen’s data (coming from cameras, 
mobility services, health, etc.) need to be well protected to avoid data leakages that can be sold or used for 
retaliations by attackers. Moreover, in an architecture where Edge devices are scattered throughout the city 
and possibly connected through wireless technologies like 5G, the risk of man in the middle, device identity 
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stolen and fake requests is important. To make things worse, edge devices are often in a position difficult to 
secure from being stolen/tampered, and it might be easy for an attacker to replace/add/tamper devices 
making them not trustworthy. 5GCity will provide a virtualization-based security and trust infrastructure that 
can be used by developers to enhance security, authenticate devices and secure citizens data. 

These points are of course well known to ETSI, which within the GS NFV-SEC 003 document (also known as 
NFV Security and Trust Guidance), defines Trust as “confidence in the integrity of an entity for reliance on 
that entity to fulfil specific responsibilities”. To achieve Trust, NFV-SEC 003 identifies attribution, attestation, 
non-repudiation and identity as elements that have to be combined together [27].  

The concept of Trust in NFV needs to be implemented at all layers, starting from the hardware up to the 
higher levels of the software architecture. In the next sections, Trust challenges for NFVI, VNFs and VIM are 
detailed while the plans for development in 5GCity are detailed in section 3.2.2. 

3.1.4.1 NFVI Trust 

At the bottom layer of the NFV architecture, the NFVI component runs directly on the hardware and creates 
the abstraction that enables portability for the VNFs. The key technology to know the state of the platform 
and to implement Trust in hardware is the Trusted Platform Module (TPM), a device standardized by the 
Trusted Computing Group [28]. TPMs implement cryptographic functions needed to enforce specific 
behaviours and protect the system against unauthorized changes and attacks. TPMs are used for secure 
storage, disk encryption as well as platform integrity verification. Another technology in the same direction 
is the Trusted Execution Environment (TEE) by standardized by GlobalPlatrofm [29]. The TEE is a secure area 
of the main processor which provides an isolated and trusted environment. Main implementations existing 
today include: 

 Intel TXT is a hardware technology from Intel which aims to provide root of trust and verify the 
integrity of platform by relying on TPM [30]. During the boot time measurement, the cryptographic 
hash of platform components (such as BIOS, OS, hypervisor) are calculated and are verified against 
known good measurement values.  

 Intel SGX or Intel Software Guard Extensions is an extension to Intel processors’ architecture which 
enables the use of protected areas of execution in memory, called enclaves. It makes an application 
code executing within the enclave protected even when the BIOS or operating system are 
compromised [31]. 

 Arm TrustZone technology implements TEE as a system-wide approach to security. TrustZone is 
hardware-based security built into SoCs by semiconductor chip designers who want to provide secure 
end points and a device root of trust [32].  

These hardware technologies need to be made available to hypervisors and exposed to the VIM to extend 
the concept of Trust also to the higher levels of the NFV architecture. Extensions to the NFVI system 
(operating systems, boot procedures, hypervisor, driver libraries, agents) needs to be developed today to 
address this challenge. 

3.1.4.2 VNF Trust 

Trust-enabled NFVI systems can use trust to verify the integrity and reliance of the VNFs that are running on 
top of it [33]. In fact, without a proper integrity verification procedure, a corrupted VNF image can be selected 
by the hypervisor and threatening the entire system (included the other VNFs). OpenStack has had an image 
signing feature since its release Mitaka, but it does not consider scenarios where the image server is 
compromised.  

To establish trust in VNF one should address the challenges of encrypting or signing a VNF, verifying the 
integrity of a VNF, preventing insider attacks. This can be done only by relying on a Trust-enabled NFVI and 
extending the components that take part to the VNF launch procedure. 
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Additionally, Trust capabilities exposed by the NFVI can be also used inside the guests, to enhance the safety 
and the security of the VNFs. These challenges can be met by the virtualization of the Trusted Platform 
Module. Including a virtual TPM as a part of the NFVI will allow the VNFs to benefit from the hardware TPM's 
secure storage and cryptographic functions. Each VNF should be provided with a dedicated TMP functionality, 
each emulating the functions of a hardware TMP [34].  

Virtualizing the TPM is a complicated task which is addressed by the Trusted Computing Group with the 
foundation of the Virtualized Platform Work Group and the release of the Virtualized Trusted Platform 
Architecture Specification [35]. 

3.1.4.3 VIM Trust 

One of the challenges in resource management is the task of identifying a host to launch the VNFs. The host 
selection process is performed based on resource criteria (RAM, vCPU, NICs, etc) while launching an instance. 
In a trusted environment the criteria is extended with the additional requirement that the host is functional 
and it is trusted. Resource selection can also be performed by specifying the location details or the geographic 
boundaries where the VNFs must be launched. The geo-location trust can be verified with the help of a 
component in the TPM, which stores the geo-tagging index. 

The hardware-based security, combined with an external stand-alone, web-based remote attestation server, 
ensures that the compute node runs only software with verified measurements and a secure cloud stack. 

3.1.4.4 OpenStack Trusted Compute Pools feature 

With the goal of meeting some of the VIM Trust challenges, OpenStack provides a Trusted Compute Pools 
feature [36] which today relies only on the Intel TXT technology. There is not work done yet incorporating 
different TPM implementations, like ARM TrustZone. 

The trusted pools consist of compute nodes with Intel TXT technology enabled, verified by a remote 
attestation server. The nova-scheduler component of OpenStack Compute queries the attestation server to 
collect the list of trusted hosts and places workloads and VMs into the trusted servers (Figure 9).  

The verification steps performed by the attestation server are described as [36]: 

 Compute nodes boot with Intel TXT technology enabled. 

 The compute node BIOS, hypervisor, and operating system are measured. 

 When the attestation server challenges the compute node, the measured data is sent to the 
attestation server. 

 The attestation server verifies the measurements against a known good database to determine node 
trustworthiness. 

 

Figure 9. OpenStack attestation with Trusted Compute Pools [37] 
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With Intel TXT enabled in the compute nodes, the measured data is sent to the attestation server in the form 
of a TCG-standard TPM Quote, a signed report of the current Platform Configuration Registers (PCRs) values 
[38].  A detailed representation of this process is shown in Figure 10. 

Figure 10. TMP Quote collection [39] 

Once received by the attestation sever the TPM Quote is verified against stored whitelist values. OpenStack 
does not provide a description of setting-up the attestation service but provide a reference to the 
OpenAttestation project [40] . It is an Intel-maintained open-source project that is a software development 
kit (SDK) based on a server-client architecture for managing host integrity verification [39]. The client is highly 
dependent on the HW and has the following requirements: “Client system must have TPM 1.2 compliant 
device with driver installed, and TPM/TXT enabled in BIOS”. The SDK architecture is shown in Figure 11  and 
some of its main features include: 

 Support of major Linux-hosted operating systems and the associated hypervisors (Xen, KVM) 

 Java-based privacy certificate authority 

 Java-based host agent that accesses the platform TPM through the open source TSS (TrouSerS) 
trusted computing software stack 

 RESTful-based simple Query API 

 Basic whitelist service and API, with whitelist management capabilities  
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Figure 11. OpenAttestation SDK architecture overview [39] 

3.2 5GCity Enhancements in computing virtualization 

3.2.1 Unikraft Context and Enhancements 

Quickly developing, upgrading and deploying applications is the core function of the IT industry: online 
content providers, network operators, CDNs, business-to-business providers, and even Internet of Things 
providers need to be able to quickly rollout software releases to enhance their product offerings while 
reducing developer time and increasing customer satisfaction. Such software is typically deployed and runs 
on shared hardware hosted either in public (e.g. EC2), private or mobile-edge clouds or other federated 
infrastructures (such as CDNs or customer premises equipment). The huge success of public clouds and the 
ongoing mobile-edge cloud deployments is testament to the huge benefits of sharing hardware among 
different entities which lowers costs and provides the ability to scale resources on demand. 

Running software on shared hardware massively boosts efficiency but also reduces isolation. When public 
clouds appeared, the standard unit of deployment was the virtual machine; indeed, running VMs on the same 
machine reduces isolation a bit (e.g. various forms of covert channels are possible), but the risk was deemed 
acceptable and this lead to a huge uptake of cloud computing. Traditional virtual machines, however, are 
heavyweight as they require a full operating system image to run; this implies that running many of them on 
the same hardware requires a lot of RAM and CPU cycles and can reduce performance: memory and disk 
space is wasted and starting / stopping VMs takes tens of seconds in the best case, and often much longer. 

For these reasons, the software industry has embraced containers as a replacement to VMs for a wide variety 
of applications, with the goal of further improving performance of shared hardware, reducing dev-ops costs 
and speeding-up software deployment. Containers are as cheap as traditional operating system (OS) 
processes which means that starting, stopping or migrating them can be done in well under one second; they 
share the OS kernel thus reducing the memory wasted by duplicating OS functionality across VMs. Finally, 
tool stacks such as Docker allow to easily create containers starting from existing ones or predefined 
templates. 

Despite their efficiency, containers offer poor isolation as shown by their many vulnerabilities. Additionally, 
the Meltdown9 attack permitted any container to read the memory of any other container on the same 
machine, thus evading isolation altogether. Meltdown has been solved in the meantime, at the cost of a 
severe loss in performance.  

At this point, the software world appears stuck with inherently insecure and not-so-efficient containers, 
because virtual machines are deemed too expensive to use in many scenarios. This is especially troublesome 
in scenarios where critical infrastructure, as is the case in municipalities in general and for 5GCity in particular, 
is in play: such infrastructure needs to be shared but needs to be shared with strong isolation and security 
but also efficiency. 

Within this context, Unikraft seeks to solve this problem by enabling smart city software developers to easily 
build and quickly deploy lightweight virtual machines starting from existing applications. Unikraft is targeting 
the development of tools that will enable lightweight VM development to be as easy as compiling an app for 
an existing OS, enabling EU players, and smart cities in particular, to lead the next generation of cloud 
computing services and technology.  

Lightweight virtual machines are VMs that include only the minimum functionality to achieve the task of the 
VM, and so are ideal for smart city deployments where resource-constrained devices are often the norm. As 
most VMs run a single (or a small number of) app such as a web or database server, by creating a VM that 
includes only the minimal amount of software needed to make the target application run, we can reduce the 

                                                             
9 Plaese see: https://meltdownattack.com/  

https://meltdownattack.com/
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memory footprint of the VM and its boot time by orders of magnitude; e.g. the image of a lightweight VM 
containing a python interpreter can be as small as 4MB, which is to be contrasted with, for instance, a 
standard Ubuntu VM that is typically around 1GB in size (which again, would be too large to run in many, if 
not most, smart city deployment sites such as lamp posts or street cabinets). 

Unikernels are the smallest lightweight VMs one can create: they are VMs where there is no traditional 
operating system running underneath the application; instead, the application is compiled against bits of OS 
functionality that it needs, resulting in a very small app+OS bundle. Many unikernels have been developed 
already such as ClickOS, MiniCache, Mirage, Minipython, Solo5, OSv, Erlang on Xen, HalVM; they all offer 
great performance and low memory footprint for their chosen task. For instance, LightVM [26] has shown 
that one can run 8000 unikernels on the same hardware (more than containers), while still achieving very 
good performance. 

Despite their advantages, developing applications with unikernels is a manual process today requiring 
significant expert resources, which prevents them from being widely used by the software industry. 

Within the 5GCity project, Unikraft aims to enable standard developers and dev-ops engineers to create, 
maintain and deploy smart city-focused unikernels with ease. It will achieve this goal by developing an open-
source toolchain that will enable secure and portable unikernel development. Developing unikernel based 
applications will be reduced to slight changes in the app Makefile, choosing from a menu of available 
implementations for the required system functionality, and compiling the app. 

Unikraft decomposes operating systems into elementary pieces called libraries (e.g., schedulers, memory 
allocators, drivers, filesystems, network stacks, etc.) that users can then pick and choose from, using a menu, 
to quickly build images tailored to the needs of specific applications. In greater detail, Unikraft consists of 
two basic components (see Figure 12 below): 

 

 

Figure 12. Unikraft components 
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Library pools contain libraries that the user of Unikraft can select from to create the unikernel. From the 
bottom up, library pools are organized into (1) the architecture library tool, containing libraries specific to a 
computer architecture (e.g., x86_64, ARM32 or MIPS); (2) the platform tool, where target platforms can be 
Xen, KVM, bare metal (i.e. no virtualization), user-space Linux and potentially even containers; and (3) the 
main library pool, containing a rich set of functionalities to build the unikernel from. This last library includes 
drivers (both virtual such as netback/netfront and physical such as ixgbe), filesystems, memory allocators, 
schedulers, network stacks, standard libs (e.g. libc, openssl, etc.), runtimes (e.g. a Python interpreter and 
debugging and profiling tools. These pools of libraries constitute a code base for creating unikernels. As 
shown, a library can be relatively large (e.g libc) or quite small (a scheduler), which should allow for a fair 
amount of customization for the unikernel. 

The Unikraft build tool is in charge of compiling the application and the selected libraries together to create 
a binary for a specific platform and architecture (e.g., Xen on x86_64). The tool is currently inspired by Linux’s 
kconfig system and consists of a set of Makefiles. It allows users to select libraries, to configure them, and to 
warn them when library dependencies are not met. In addition, the tool can also simultaneously generate 
binaries for multiple platforms. 

Beyond these important and basic capabilities, we will use Unikraft to implement the neutral host use case, 
in particular running various applications in lean, efficient unikernels at the edge of the smart city networks. 
In addition, we will be investigating the possibility of supporting the other 5GCity use cases [41] with Unikraft, 
for instance by creating a ML prediction unikernel to support the illegal waste dump detection use case. 

3.2.2  NFVI and VIM Trusted computing extensions 

In 5GCity trusted computing extensions for the NFVI and VIM components will be developed, enhancing 
several open source implementations of NFV components such as KVM, libvirt and OpenStack to build an 
infrastructure capable of addressing the challenges detailed in Section 3.1.4. 

3.2.2.1 TPM Virtualization through VOSYSmonitor 

The first basic technology that will be implemented in 5GCity is TPM virtualization for ARM devices, aiming 
to enable each VNF to have a virtual TPM (vTPM) instance to be used in the guest to secure applications 
processing, as shown in Figure 13. To do this, VOSYSmonitor, libvirt and KVM will be extended in a way that 
guests can access securely to their own TPM implementation. 

Figure 13. 5GCity vTPM extensions 

At the lowest layer of the system architecture, VOSYSmonitor will be enhanced with a vTPM support module, 
which will support the concurrent execution of multiple TPM binaries in the ARM TrustZone Secure World. 
Each of them will serve a different virtual machine or VNF, with an additional TPM allocated exclusively to 
the NFVI. The OPTEE [42] open source TEE project will be used as a reference implementation. 
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As a consequence, both the NFVI and the guests will be extended to access TPM functions. In the case of the 
NFVI, VOSYS will focus on extending KVM and its OpenStack driver libvirt to expose TPM capabilities to the 
higher components of the NFV architecture and to enable both NFVI authentication (useful for geo-tagging) 
and VNF verification. In the guests, tools and drivers from the OPTEE project will be extended to support the 
5GCity vTPM solution. 

3.2.2.2 5GCity EdgeVIM: OpenStack Trusted Compute Pools for ARM 

In 5GCity an EdgeVIM based on OpenStack with a Trusted Computing Pools feature and Arm support will be 
developed leveraging on VOSYSmonitor, libvirt, KVM extensions (explained in the previous section) and on 
the OpenStack Filter scheduler's TrustedFilter. One of the key objectives of this work is to solve the geo-
fencing issues that the 5GCity municipalities might have. 

To achieve the goal of porting Trusted Compute Pools on ARM there is a need to a) extend the existing 
attestation service and b) enhance the existing Nova scheduler to support Trusted ARM compute nodes. 

For the attestation service, the current implementation is highly dependent on Intel TXT enabled compute 
nodes. In order add support for ARM compute nodes there is a need of an attestation server capable of 
verifying the integrity of ARM TrustZone enabled computes. To do this, both the creation of an ARM TEE 
attestation client and the possibility to develop a simplified attestation service (maybe integrated in the Nova 
Scheduler) will be explored. 

 

Figure 14. 5GCity EdgeVIM architecture 

Regarding the OpenStack scheduling, currently the nova-scheduler service is configured by default as a filter 
scheduler.  It supports a variety of compute filters as well as the addition of custom filters’ implementations. 
VOSYS will leverage and extend the functionality provided by the TrustedFilter to filter hosts that do not meet 
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the trust requirements. The request to run a VM on a trusted host will be specified as an additional property 
of the OpenStack flavor. 

Figure 14 represents the overall EdgeVIM architecture and the interaction between the VIM and the 5GCity 
NFVI during the verification of a compute node as trusted or not. 
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4 Network Virtualization 

Networking virtualization is the process of combining hardware and software network resources/functions 
into a single software-based administrative entity: the software defined virtual network. 

In this section, the 5GCity networking virtualization enhancements are detailed after a presentation of the 
related state of the art. The state of the art description is limited only to technologies and components of 
interest for 5GCity (e.g., only OVS-DPDK and VOSYSwitch are presented as virtual switch solutions because 
they will be extended during the project). 

4.1 State of the Art  

4.1.1 OVS-DPDK 

Open vSwitch (OvS) is an open source implementation of a virtual switch, used to connect virtual machines 
between them and with the external network. When taking decisions on how to forward data packets, native 
OvS uses kernel correlations of matches and actions to determine how to process a packet. The decisions are 
taken based on a flow table that is located in the kernel space. When a packet is received, it enters this kernel 
space and if there exists a rule that matches the packets, the corresponding actions are performed, e.g. 
sending the packet over a specific interface. This is the so called fast path, where a packet can quickly be 
processed by the kernel space process. If no rule matches the packet, the packet is handed over to the user 
space daemon, that contains all the programmed rules, and it is processed there. The check performed in the 
user space is slower, which is why this sort of packet switching is called slowpath. When a slowpath packet 
hits one of the switching rules, the daemon inserts this rule in kernel space table, so that further incoming 
packets with the same match can be processed via fastpath.  

The performance of native OvS depends on the performance of the Linux network stack, which may reach is 
limits when dealing with heavy traffic, as it can be the case in 5GCity use cases, where heavy traffic loads 
from media use cases or telco traffic needs to be handled. A set of user space libraries allow to eliminate the 
bottleneck caused by the necessity of switching packets through the kernel space: the Data Plane 
Development Kit (DPDK10).  

The DPDK libraries allow to bypass the kernel, connecting the user space daemon directly with the network 
interfaces. This shifts the fastpath from the kernel space directly to the user space. This incurs in a noticeable 
switching speed increase of up to around 15 times the speed achieved with native OvS. A major drawback of 
using DPDK is the additional software overhead: DPDK needs modified code in the applications to work, 
therefor requiring an additional effort when programming the software. 

4.1.2 VOSYSwitch virtual switch 

VOSYSwitch is a user-space, modular and NFV-ready virtual switch based on the open source Snabb [43] NFV 
framework (Figure 15). It is developed in Lua and provides better performance than OVS-DPDK [44] thanks 
to the acceleration provided by the LuaJIT11 (Lua Just in Time compiler). In fact, by leveraging on LuaJIT, 
VOSYSwitch can benefit of a well-engineered trace based just in time (JIT) compiler [45], which relies on 
profiling execution information collected at runtime to detect and compile performance critical application 
fragments. Unlike most just in time compilers that operate at the method level, trace-based compilers delve 
in deeper into the control-flow of a method by profiling the execution of program paths. The ultimate goal is 
to capture the smallest set of execution traces that are representative of the dynamic behavior of the 
                                                             
10 Please see: https://dpdk.org/  
11 Please see: http://luajit.org/  

https://dpdk.org/
http://luajit.org/
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application. Doing so, a trace-based compiler can focus its entire optimization budget on a tiny, yet very 
important part of an application [46]. This concept, well known in compilers literature, is applied to 
networking Virtualisation by VOSYSwitch. As a result, the optimized machine code of this virtual switch is 
reflecting the actual network traffic which is passing through it. 

 

Figure 15. VOSYSwitch virtual switch architecture 

VOSYSwitch can be executed on Intel and ARMv8 server architectures. It can be enriched with modules that 
implement specific functions (e.g., rate limiter, firewall, Open Data Plane, etc.) and it is configured through a 
JSON (JavaScript Object Notation) file which defines the switch components and their links in the form of 
network forwarding graph. The configuration file can be edited by the network administrator or by the 
OpenStack Neutron agent. Furthermore, the switch architecture implements a master-worker 
multiprocessing scenario where workers are configured and controlled via shared memory communication. 

4.1.3 Wireless Virtualization 

5G will integrate different types of radio technologies, such as evolution of LTE, the 5G New Radio (NR) and 
Wi-Fi based technologies. In 5GCity, the targeted dense edge deployments are composed of a potentially 
large number of wireless LTE and Wi-Fi links. Network slicing is one of the core mechanism of the design of 
such 5G networks, requiring the instantiation of multiple virtual networks over a single, shared physical 
infrastructure. In wireless network mediums, virtualization, which is required to enable network slicing, can 
be performed in different ways.  

When speaking in general terms of wireless virtualization, techniques like time-hopping or TDMA enable 
slicing in the wireless medium. Such mechanisms require tight synchronization among wireless devices. In 
Wi-Fi this requires infrastructure mode, where a single access point is responsible for synchronizing the rest 
of the network. In 5GCity we are looking at other ways to implement network virtualization with the same 
goals: to provide network slicing and isolation to support the neutral host case. 

A different and simpler way to virtualize wireless interfaces is to share a wireless interface among a set of 
tenants or series. For example, in LTE, for each tenant, a public land mobile network (PLMN) ID can be 
instantiated on the same carrier to differentiate between the tenants. In the following sections the 
approaches followed by the Wi-Fi and LTE-based solutions deployed in 5GCITY are discussed. 
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4.1.3.1 Wi-Fi Virtualization 

In Wi-Fi, virtualization is implemented in user space by instantiating virtual wireless interfaces on top of 
physical interfaces that run on top of the mac80211 kernel module. Finally, the hardware drivers bridge the 
mac80211 kernel module with the physical NIC, as shown in Figure 16. Wi-Fi supports a series of different 
types of virtual interfaces (vifs): virtual access points, virtual mesh interfaces, etc. For the RAN, the most 
relevant of these options is the one that allows to instantiate virtual access points. In practice, each virtual 
access point has its own SSID that is announced with dedicated beacons, as a physical access point would do. 
This type of virtualization allows, for example, to instantiate dedicated SSIDs for particular tenants or services, 
along with specific settings for critical concepts as security (WPE / WPA /WPA2, etc.). 

 

 

Figure 16. Physical wireless interface (NIC) virtualization in Linux 

Once a physical interface has been virtualized with one or multiple virtual interfaces running on top of it, it 
is possible to use SDN software elements to generate network slices. The basic mechanism consists in adding 
the vifs to virtual software switches like OvS or VOSYSwitch, adding them effectively to the data plane of the 
SDN-based solution. An SDN controller then can handle and configure the configuration of these virtual 
switches in such a way that virtual access points belonging to a tenant or service can be added to a network 
slice, e.g. integrating the vif into a layer 2 subnet, connecting it to other elements of the network slices, e.g. 
wired backhaul, VNFs, etc. 

4.1.3.2 LTE-based virtualization 

RAN virtualisation and RAN slicing are subjects of intense interest in the scope of 5G research, however in 
terms of real-world deployment the subject is still in very early stages. Part of the reason for this is that 4G 
networks do not provide explicit support for slicing and most 4G technical solutions were not conceived to 
support virtual networking. 

Much debate has occurred in vRAN about the possible functional partitioning of the LTE stack between 
datacentre, edge and radio units, with at least 8 possible partitions being defined by 3GPP (Figure 17). 

 



  
 

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 38 of 57 

Figure 17. LTE stack partitioning options 

The consensus emerging today is that a combination of Option 2 and Option 7 will be adopted generally – 
option 2 allowing for a high degree of centralisation of functions which are less time-sensitive, while option 
7 allows for a less global degree of centralisation at the network edge where network timing and latencies 
can be more tightly controlled. 3GPP are in the process of standardizing an Option 2 split for 5G – known as 
the F1 interface – and the Xran organization recently published a proposed specification for an Option 7 
fronthaul interface [47]. 

5GCity will deploy, in realistic city-based scenarios, implementations of virtualized RAN, Multi-access Edge 
Computing networking support and RAN slicing for Neutral Host based on existing 4G technology, with a clear 
upgrade path to 5G NR. 

4.1.4 Service Function Chaining in an NFV enabled environment 

The delivery of end-to-end services often requires various service functions. These include traditional 
network service functions such as firewalls and traditional IP Network Address Translators (NATs), as well as 
application-specific functions. The definition and instantiation of an ordered set of service functions and 
subsequent ’steering’ of traffic through them is termed Service Function Chaining (SFC).  

This section describes an architecture used for the creation and ongoing maintenance of Service Function 
Chains (SFC) in a network. It includes architectural concepts, principles, and components, with a focus on 
those to be standardized in the IETF [48]. It also contains the description of SFC framework in an NFV enabled 
infrastructure [49] and the high-level description of the SFC implementation state of the art within the 
OpenStack [50], considered as the de-facto standard framework which implements VIM functionality Service 
function chains, enabling composite services that are constructed from one or more service functions. 

An overview of the issues associated with the deployment of end-to-end service function chains, abstract 
sets of service functions and their ordering constraints that create a composite service and the subsequent 
"steering" of traffic flows through said service functions, is described in in IETF [48]. The current service 
function deployment models are relatively static, coupled to network topology and physical resources, 
greatly reducing or eliminating the ability of an operator to introduce new services or dynamically create 
service function chains. This architecture presents a model addressing the problematic aspects of existing 
service deployments, including SFC architecture composed by the following elements: 

 Network Service: An offering provided by an operator that is delivered using one or more service 
functions. This may also be referred to as a composite service. The term "service" is used to denote 
a "network service" in the context of this document. For example, to some a service is an offering 
composed of several elements within the operator’s network, whereas for others a service, or more 
specifically a network service, is a discrete element such as a "firewall". Traditionally, such services 
(in the latter sense) host a set of service functions and have a network locator where the service is 
hosted.  

 Classification: Locally instantiated matching of traffic flows against policy for subsequent application 
of the required set of network service functions. The policy may be customer/network/ service 
specific. This network Service definition clearly is totally coherent with the ETSI-NFV definition of 
Network Service. The relevance of SFC framework to ETSI NFV architecture will be discussed later in 
this section. 

 Classifier: An element that performs Classification. Service Function Chain (SFC): A service function 
chain defines an ordered set of abstract service functions (SFs) and ordering constraints that must 
be applied to packets and/or frames and/or flows selected as a result of classification. An example 
of an abstract service function is "a firewall". The implied order may not be a linear progression as 
the architecture allows for SFCs that copy to more than one branch, and also allows for cases where 



  
 

5GCITY- Deliverable 3.1. 5GCity Edge Virtualization Infrastructure Design. Page 39 of 57 

there is flexibility in the order in which service functions need to be applied. The term service chain 
is often used as shorthand for service function chain. 

 Service Function (SF): A function that is responsible for specific treatment of received packets. A 
Service Function can act at various layers of a protocol stack (e.g., at the network layer or other OSI 
layers). As a logical component, a Service Function can be realized as a virtual element or be 
embedded in a physical network element. One or more Service Functions can be embedded in the 
same network element. Multiple occurrences of the Service Function can exist in the same 
administrative domain. One or more Service Functions can be involved in the delivery of added-value 
services. An SF may be SFC encapsulation aware, that is it receives and acts on information in the SFC 
encapsulation, or unaware, in which case data forwarded to the SF does not contain the SFC 
encapsulation. 

 Service Function Forwarder (SFF): A service function forwarder is responsible for forwarding traffic 
to one or more connected service functions according to information carried in the SFC encapsulation, 
as well as handling traffic coming back from the SF. Additionally, a service function forwarder is 
responsible for delivering traffic to a classifier when needed and supported, transporting traffic to 
another SFF (in the same or different type of overlay), and terminating the SFP. 

 Metadata: provides the ability to exchange context information between classifiers and SFs and 
among SFs. 

 Service Function Path (SFP): The SFP provides a level of indirection between the fully abstract notion 
of service chain as a sequence of abstract service functions to be delivered, and the fully specified 
notion of exactly which SFF/SFs the packet will visit when it actually traverses the network. By 
allowing the control components to specify this level of indirection, the operator may control the 
degree of SFF/SF selection authority that is delegated to the network.  

 SFC Encapsulation: The SFC Encapsulation provides at a minimum SFP identification, and is used by 
the SFC-aware functions, such as the SFF and SFC-aware SFs. The SFC Encapsulation is not used for 
network packet forwarding. In addition to SFP identification, the SFC encapsulation carries metadata 
including data plane context information.  

 Rendered Service Path (RSP): The Service Function Path is a constrained specification of where 
packets assigned to a certain service function path must go. While it may be so constrained as to 
identify the exact locations, it can also be less specific. Packets themselves are of course transmitted 
from and to specific places in the network, visiting a specific sequence of SFFs and SFs. This sequence 
of actual visits by a packet to specific SFFs and SFs in the network is known as the Rendered Service 
Path (RSP). This definition is included here for use by later documents, such as when solutions may 
need to discuss the actual sequence of locations the packets visit.  

 SFC-enabled Domain: A network or region of a network that implements SFC. An SFC-enabled 
Domain is limited to a single network administrative domain. 

 SFC Proxy: Removes and inserts SFC encapsulation on behalf of an SFC-unaware service function. SFC 
proxies are logical elements. 

 

ETSI-NFV and IETF-SFC architectures are complementary in the sense that the first provides a set of tools to 
ensure virtual function lifecycle management, while the second provide a framework to ensure traffic 
steering across network functions. The two architectures show a clear contact point in the definition of the 
path that data follows across the end-to-end service. 

 Service Function Chain (SFC): A service function chain defines an ordered set of abstract service 
functions (SFs) and ordering constraints that must be applied to packets and/or frames and/or flows 
selected as a result of classification. An example of an abstract service function is "a firewall". The 
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implied order may not be a linear progression as the architecture allows for SFCs that copy to more 
than one branch, and also allows for cases where there is flexibility in the order in which service 
functions need to be applied. The term service chain is often used as shorthand for service function 
chain. 

 A VNF Forwarding Graph Descriptor (VNFFGD) describes a topology of the NS or a portion of the NS, 
by referencing a pool of connection points and service access points, the descriptors of its constituent 
VNFs, PNFs and of the VLs that connect them. It may also contain one or more Network Forwarding 
Path (NFP) descriptors. 

 

In the last part of this section we will provide a high-level description of state-of-art of a SFC framework 
implementation in OpenStack, which is the de-facto standard implementation of VIM functionality of the 
ETSI-NFV architecture.  

OpenStack has its own architecture to realize Service Functioning Chain topics. Such architecture is based on 
an extension of the standard Neutron project (Figure 18) with the following elements: 

 Neutron API Service Chain which is a restful API used which grants external and programmatic 
configuration of the SFC primitives within OpenStack 

 A neutron Service Chain Plugin which provides the level of abstraction towards resources 

 Service Chain drivers that provide technology specific primitives for the underlying layer 
configuration. 

 

 

Figure 18. OpenStack SFC architecture [50] 

The typical OpenStack deployment foresees that all OpenStack Networking services and OpenStack Compute 
instances connect to a virtual network via ports making it possible to create a traffic steering model for 
service chaining using only ports. Including these ports in a port chain enables steering of traffic through one 
or more instances providing service functions. 

A port chain, or service function path, consists of the following: 
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 A set of ports that define the sequence of service functions. 

 A set of flow classifiers that specify the classified traffic flows entering the chain. 

If a service function involves a pair of ports, the first port acts as the ingress port of the service function and 
the second port acts as the egress port. If both ports use the same value, they function as a single virtual 
bidirectional port. 

A port chain is a unidirectional service chain. The first port acts as the head of the service function chain and 
the second port acts as the tail of the service function chain. A bidirectional service function chain consists 
of two unidirectional port chains. 

A flow classifier can only belong to one port chain to prevent ambiguity as to which chain should handle 
packets in the flow. A check prevents such ambiguity. However, you can associate multiple flow classifiers 
with a port chain because multiple flows can request the same service function path. 

OpenStack provides an architecture which is flexible enough to provide support to SFC in different 
deployment scenario. Beside the typical case, where SFC-enabled framework is casted over an SDN enabled 
architecture (where the data-plane configuration is done by means of wide range SDN controllers), there is 
a case where SFC-enabled framework is casted over a non-SDN enabled architecture, where the 
configuration of data-plane is done directly by neutron server component residing over OpenStack controller 
node. 

The current OpenStack implementation of IETF-SFC architecture, suffers of the following limitations: 

 OpenStack does not provide support to encapsulation component of the IETF-SFC architecture 

 OpenStack offers a limited range of capabilities in terms of traffic classification (L2, L3 parameters) 

 The model used, allows to steer traffic only between ports which are associated to a VM, with no 
proxy functionality enabled. This model is not flexible enough to provide support for nodes (like MEC 
nodes) which are inline nodes between RAN devices and data-centre devices. 

4.2 5GCity Enhancements in Networking virtualization 

4.2.1 VOSYSwitch 

VOSYSwitch is today a virtual switch technology available for ARM and Intel processors. During 5GCity, 
specific VOSYSwitch extensions will be developed to improve switching performance at the edge.  

First, a lightweight version of VOSYSwitch will be created aiming at improving system security with a smaller 
attack surface and achieving a smaller overhead. 

In addition, hardware accelerators will be used to enhance processing capabilities of the virtual switch, 
targeting to achieve higher performance. Different types of hardware accelerators can be used to offload the 
system general purpose processor, e.g., Application-Specific Integrated Circuits (ASICs), network processors, 
Field-programmable gate array (FPGAs), Graphics Processing Unit (GPU), etc. These are today considered an 
important part of the NFVI and are defined in the Interfaces and Architecture ETSI GS NFV-IFA 001 document 
[51] where accelerators life-cycle and operations are specified (life-cycle management, feature discovery and 
fault tolerance, etc.). Among these solutions, VOSYS will particularly focus on FPGAs, which provide the best 
performance per watt trade-off and are for this reason particularly fitting the edge of the network for their 
reconfigurability and power consumption. More in detail, VOSYSwitch will be enhanced with specific Lua 
modules to enable packet processing directly in the FPGA. 
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4.2.2 Wireless Virtualization 

One main feature required to implement network slicing for the intrinsic neutral host use case of 5GCity is 
the virtualization of the wireless RAN. The achievements discussed in this section emerge from the work 
performed to extend the network slicing features presented in Section 4.1.3, so VNFs and wired backhaul can 
be integrated with RAN elements. The extensions need to provide means to: 

 Use a standard control and management plane to set up and configure wireless interfaces; 

 Provide network isolation and data rate control for the wireless interfaces; 

 Integrate virtual wireless resources with traditional, SDN-based network slices and the rest of the 
5GCity architecture. 

In the following we present the enhancements developed for the Wi-Fi and LTE-based solutions. 

4.2.2.1 Wi-Fi Enhancements 

In order to achieve these features, the wireless RAN virtualization in 5GCity is implemented as a set of 
software modules that range from Linux kernel and user space software modules running on the wireless 
nodes, over a NETCONF-based control and management plane, to the main SDN controller. The latter  is 
responsible for configuring and managing the RAN and that acts as interface to the rest of the 5GCity 
architecture. 

 

 

Figure 19. SDN-based wireless virtualization software components 

Figure 19 depicts an overview of the software components running in the wireless nodes hosting the wireless 
network interfaces (bottom) and the SDN controller in charge of the management and configuration of the 
wireless interfaces (top). We refer to the software running in the Wi-Fi nodes as Agent software, a 
composition of services that enables the network slicing in the Wi-Fi RAN. The agent software is tightly 
coupled to the functions provided by core software modules hosted in the SDN controller. In the following, 
each of these components are explained in detail. 
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Agent software for wireless virtualization 

For the Wi-Fi virtualization two crucial software elements are being developed in order to allow the slicing of 
the RAN: the vif scheduler and the netopeer agent. The vif scheduler is responsible for applying isolation in 
form of airtime slicing of the available radio resources, whereas the netopeer agent hosts a NETCONF server 
that is used to set up and configure the vifs on top of the physical network interfaces installed in a wireless 
node. 

Isolation and data rate adaption: vif scheduler 

A basic slicing feature for networks is the assignment of shares of the available data rate of network 
connections to a specific tenant or service in order to provide QoS. In wired connections, where fix data rates 
are provided (e.g. 1 Gbps), slicing can be easily implemented by using queuing, packet scheduling or other, 
similar mechanism to control the amount of traffic that is sent over interfaces belonging to a specific tenant.  

In wireless communications, while some upper data rate limits can be determined from the hardware 
specification, the actual available data rate of a wireless link can very heavily. In particular, each user 
equipment connected to a Wi-Fi access point can have a different nominal data rate than other users 
attached at the same time due to the position of the equipment, obstacles or even mobility. Further, different 
user equipment may not support all data rates offered by an access point. Another consideration for 
availability of wireless resources is that as more users get connected to an access point, the actual data rate 
decreases more and more due to the CSMA/CA accessing scheme implemented in Wi-Fi. Thus, it is not 
possible to guarantee specific data rates to a tenant as part of their network slice.  

In 5GCity therefore a Wi-Fi RAN slice is defined as the assignment of a ratio of the actually available radio 
resources, in terms of airtime. We define the airtime to be the real time the transmission of a packet occupies 
the radio medium. In order to implement this type of slicing, we design our so called vif scheduler. This 
scheduler is composed of two parts: 

1 The local scheduler, an agent software running in the wireless nodes. This software is implemented as 
a dynamically loadable kernel module that sits on top of the mac80211 module. The scheduler can be 
configured to apply specific airtime ratios for any underlying virtual access points in the downstream 
traffic.  

2 The global scheduler, a software module that forms part of the SDN controller. The global scheduler is 
responsible for configuring the airtime ratios of the local schedulers and for monitoring them in order 
to detect whether the ratios are correctly applied. 

 

 

Figure 20. Vif scheduler as part of the agent software running on the Wi-Fi nodes 

The local scheduler, a kernel module integrated into the network stack as shown in Figure 20, processes 
packets to be transmitted from the user space. The local scheduler component needs to fulfill the following 
two basic requirements: First, it needs to be work conserving, i.e., the amount of unused airtime shall be 
minimized by reassigning unused resources to vifs in need of airtime for packet transmissions. Second, it 
needs to be independent from any underlying Wi-Fi drivers and hardware in order to achieve a high degree 
of interoperability and portability. 
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Slicing is performed in the time domain: each user, e.g. a tenant or wireless operator represented as a vif on 
top of a physical radio, is assigned a specific ratio of the available airtime. This share represents a guaranteed 
minimum of the available airtime during a certain time interval, but not a maximum. The ratio assignment is 
done by the SDN controller that takes this input via its Northbound API and configures it on the local 
schedulers running in the nodes via NETCONF. The percentage of time the radio channel can be used by the 
tenant reflects the SLA signed by the tenant.  

The local scheduler keeps track of the usage of each vif and only allows a packet to be handed over to the 
underlying layers if the airtime limit of the tenant has not yet been reached during a periodic interval. Since 
the actual transmission duration of a packet and therefore its airtime is not known a priori to the local 
scheduler, it estimates the transmission duration based on calculations that take into account the current 
degree of congestion of the radio medium, the size of the packet and the currently active modulation coding 
scheme. 

Once the packet has been transmitted, the actually used airtime (which may variate from the expected one) 
is measured. This airtime is discounted from the available airtime of the tenant and the deviation from the 
expected one is used to determine the degree of congestion. If after discounting the credit no more airtime 
is available during the current time slot, no further packets may be transmitted by the tenant and the next 
transmission is delayed until the next cycle. 

The local vif scheduler performs local optimization of the available airtime for a tenant in a work conserving 
manner: any unused airtime during a specific time slot is assigned to the active tenants in order to improve 
the performance. 

SDN Controller: Global Scheduler  

Since the local scheduler optimizes locally and takes into account only transmitted packets into its 
calculations but not received ones, at some points the SLAs might not be fulfilled correctly: in the presence 
of other Wi-Fi nodes operating on the same channel and using the local scheduler, the assigned ratios might 
not be applied correctly. Figure 21 shows a case where two physical interfaces operating in the same 
frequency and in range of each other run the local vif scheduler. Two tenants, A and B, are present and are 
configured to apply an airtime ratio of 30% and 70%, respectively. In the case that tenant A only transmits 
on the first node and tenant B only transmits on the second node, each local scheduler will try to assign the 
full airtime (i.e. 100%) to the vifs. However, since the nodes compete for the channel, the actual resulting 
transmission ratio is 50% both for tenant A and B, as they try to access both the medium in the same way. 
This, however, violates the ratios of 30%/70% accorded in the SLA. 

 

Figure 21. Local schedulers competing for the medium can lead to SLA violations. 

In order to avoid such situations, the global scheduler, running in the SDN controller plays a crucial role: the 
global scheduler module periodically collects information on the actual transmission ratios from the local 
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schedulers. Based on the actual airtime usage it can detect SLA violations. In case of an SLA violation, the SDN 
controller reconfigures the local schedulers in such a way that the desired SLA ratios are applied.  For this 
type of reconfiguration of the local schedulers, but also for the instantiation and configurations of vif in 
general, the SDN controller uses a NETCONF client that talks with the NETCONF servers running on each of 
the nodes. The overall architecture including the software elements of the SDN controller and the Wi-Fi 
nodes in an example with three tenants is shown in Figure 22. Take into account that the same NETCONF 
interface is intended to be used to control and configure the Small Cells. 

 

Figure 22. Example of the scheduler architecture with the global and local schedulers and three tenants 

4.2.2.2 LTE based virtualization enhancements 

The LTE-based RAN architecture for 5GCity (Figure 23) includes several innovations in the area of RAN 
functional disaggregation, RAN and Network Slicing with SDN control and RAN function virtualization.  

 

Figure 23. 5GCity RAN Network Architecture Overview 

Network functions in the architecture are: 

 LTE Layer 1: The physical layer functions of the LTE air interface require specialised processing 
acceleration for DSP functions such as FFT, Turbo coding, etc and execute in each radio head on 
specialised DSP silicon. This is not a virtualised function in 5GCity and is common to all network slices. 

 LTE Layer 2: The RLC and MAC functions of the LTE air interface are required to meet real-time 
schedules and are closely coupled to the LTE physical layer 1 implementation. These functions also 
execute in each radio head. RLC/MAC are not virtualised functions in 5GCity and are common to all 
network slices. 
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 LTE Layer 3: The layer 3 (control plane) function of the LTE air interface is implemented as a virtual 
network function which runs in the Edge NFVI. 5GCity L3 supports network slicing and connection to 
multiple EPC (MME) instances (one per slice).  

 vEPC: EPC (packet core network) is deployed at the network edge to support MEC access and low 
latency applications. Each instance of vEPC supports a network slice offering MEC application access. 

 Datacenter EPC: The RAN functions support connectivity to EPC functions implemented at the data 
center. The neutral host use case assumes multiple EPCs and network slices to support access 
provision to multiple tenant service providers. 

Management and Orchestration of RAN VNFs 

The RAN VNFs provide API’s towards the Edge NFVI SDN controller for dynamic slice management and also 
provide interfaces for classic FCAPS management [52] of the static configuration (e.g. operating frequency, 
global cell parameters, etc) which are configured on installation and are independent from the slice LCM. 

 eNB FCAPS: RAN layer 3 is deployed as a Docker container. General RAN FCAPS management is 
supported via multiple interfaces including BBWF TR069 [53], webGUI and CLI. One of these 
mechanisms is required to initially configure each cell for service in the network.  

 eNB SDN control: RAN L3 provides an SDN control interface supporting the following functions: 

o Initialisation 

o Slice Profile Creation 

o Slice Profile Modification 

o Slice Profile Deletion 

SDN control is implemented using the NETCONF protocol via a datamodel which is formally 
defined in YANG. Figure 24 illustrates the RAN orchestration model as implemented in NETCONF 
/ YANG. 

 

Figure 24. RAN SDN Control Interface Model 
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The data model has been aligned with the approach taken for Wi-Fi orchestration. Each slice 
corresponds to a 3GPP PLMNId (network identifier) and there can be up to six slices created. 
Additionally, per slice, an access control list can be instantiated to control which specific users (IMSI 
identifiers) are permitted access to the slice. Each RAN slice is associated with an MME and EPC via 
a standard S1 connection. This EPC can be either at Edge or Datacentre level. 

 vEPC: The vEPC for edge deployment is also deployed as a Docker container and provides WebGUI 
and/or CLI based configuration interfaces. Traffic is presented to the MEC applications via a standard 
SGi interface. Therefore, termination of GTPu tunnelling protocols is handled within the EPC and is 
of no concern to the Mobile Edge. 

4.2.4 Local traffic steering in MEC node 

In this section we will concentrate on a specific aspect of MEC node design, which is related to how the traffic 
steering among MEC node entities is accomplished. At the current state of the art, there is still no consolidate 
ETSI standard design which describe a solution for this problem. ETSI MEC WG is working on early draft 
document [54] which is more focused on lawful interception and cover only some aspects of traffic offloading 
topics. Also, there is no specific software solution, which is compliant with ETSI MEC in an ETSI NFV compliant 
architecture 

The problem of local traffic handling in an ETSI MEC enabled architecture is central to 5GCity architecture 
which consists in a three-tier architecture with pool of resources available at data-center level, edge level 
and far-edge level (collocated with radio access devices). The acronym MEC stands for Multi-access Edge 
Computing, implying a pool of constrained resources, located at the edge of the cloud administrative domain, 
which acts as bump in the wire, handling traffic coming from multiple radio access technology (LTE, WiFi, 
VOLTE, UMTS, GPRS). Traffic handling at edge node can be divided in 3 different scenarios: 

 Scenario1: traffic received from RAN devices and transparently forwarded to Core resources. 

 Scenario2: traffic received from RAN devices has to be served locally by MEC application which acts 

as end-point. No traffic for these flows is sent to the core resources. 

 Scenario3: traffic received from RAN devices has to be first served locally by MEC application and 

then re-inserted of its normal path to core resources. 

 For all the afore-mentioned scenarios, traffic steering at edge node imply that MEC nodes data and control 
plane must be enabled with full awareness of the protocols flowing across MEC nodes data plane. 5GCity 
radio access frameworks encompass two different access technologies: Wi-Fi and LTE.  

 A part of WP3 activities, the project will investigate a software solution which fully provides traffic handling 
at MEC node level. This design solution need to be realized by specifying:  

- Data-plane which is able to dynamically select traffic according user-plane protocol characteristics  

- Control plane design which is able to dynamically program the data-plane to steer traffic among MEC 
local entities. 

An initial solution is depicted in Figure 25. where the different entities of MEC architecture which comes into 
play to realize traffic offloading are depicted.  MEC platform will implement the control plane functionality 
and will program via mp2 interface MEC host data-plane on the basis of the basis of the joined commands 
received by the MEC orchestration layers (MEPM-V and MEAO) and NFV orchestration layer (NFVO, WAN 
Resource manager).  

The final result is that MEC host data-plane is able to steer traffic across MEC local entities (MEC applications, 
and MEC specific services exposed by MEC platform).  The functional block called LGW, is part of the LTE 
stack and enables local termination of GTP-u tunnels sessions. Final solution should also be investigated 
against Issue#9 as described in Section 2.1. 
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Figure 25. Local traffic handling in ETSI MEC architecture 

Given the different scenarios of traffic handling and the different combination of radio access technologies 
and related protocols, a set of requirements for MEC nodes data plane can be derived. The MEC node 
requirements, presented in Table 5, are divided in a first set of requirements, which are pertaining to data-
plane and in a second set which are related to control-plane. 

 

REQ_ID Type Description 

REQ_DP_1 MUST MEC node data-plane must be able to classify traffic entering the MEC node from the normal path 

by operate a filtering according to the following parameters 

- Wi-Fi traffic (MAC addresses, IP Address, VLAN tags) 

- LTE traffic (GTP-U parameters (TEID, Type), IP addresses 

REQ_DP_2 MUST MEC node data-plane must be able to forward traffic to selected output destination port according 

to the following parameters 

- MAC addresses 

- IP addresses  

- VLAN tags GTP-U parameters (TEID, dest_ip_addr) 

REQ_DP_3 MUST MEC node data-plane must be able to steer traffic according to a logic which is SFC oriented. The 

SFC traffic steering involves only MEC applications 

REQ_CP_1 MUST MEC node data-plane must be able to be configured by means of a dedicated control plane, 

embodied by MEC platform 

REQ_CP_2 MUST MEC node must be equipped with VNF (L-GW) which is able to terminate the GTP-u traffic and 

extract plain IP traffic to be served by MEC applications 

Table 5. Requirement list for MEC node data plane and control plane. 

In the remaining part of this section, we will provide a quick state of the art regarding the awareness of 5GCity 
radio access protocols of most common software data-plane implementation as required in REQ_DP_1. Our 
investigation covers only the part related to GTP-u protocol, since full awareness of plain IPv4 protocol is 
already in place in most common data-plane software solutions. 
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The current implementation of Openvswitch (v2.9.0) provides support for functionality related to REQ_DP_1 
and REQ_DP_2 related only when in a scenario where Wi-Fi is the only radio access technology.  When the 
Radio Access technology is LTE enabled, Openvswitch does not offer support to GTP-u protocol in terms of 
being able to configure dataflows entry for GTP-u parameters selection and GTP-u header manipulation (GTP 
header push and pop operations). There are some non-main stream projects which offers patches which 
seems to be a promising approach for the enabling of GTP-u protocol awareness and are actually under 
evaluation.  

The current implementation of VOSYS virtual switch does not provide GTP-u protocol awareness, and there 
are no plans or roadmap to enable the related feature in the next period. 

In addition, it is worth observing that the current Openflow version (v1.5.0) lacks support for custom header 
fields and nesting headers. Potential evolution of Openflow protocol is under analysis by OFN [55]. 

In this section we have provided a rationale which describe a specific problem (local traffic steering in a MEC 
node), we have provided requirements which describe a potential solution and an initial solution which 
integrates MEC host data-plane and control-plane in the wider landscape of 5GCity orchestration platform. 
Next steps to be taken are organized according two main key items: 

 Analysis of the patches to Openvswitch to enable MEC data-plane with full GTP-u protocol awareness 

 Design of an SDN enabled control plane solution integrated with 5GCity orchestration platform which 
is able to interact with MEC Platform entity which operates the configuration of MEC data-plane.  
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5 Conclusions 

Virtualization is a key technology for the 5GCity infrastructure because it provides support for multitenancy, 
flexibility and isolation which are must have features for any smart city. 

This deliverable shows that existing virtualization technologies (both for the virtualization of the computing 
resources in Section 3.1 and network resources in Section 4.1) need to be extended to address smart cities 
challenges and provides documentation on how these challenges will be tacked in 5GCity (Sections 3.2 and 
4.2). Moreover, it documents how 5GCity plans to fully cover the convergence of ETSI NFV and MEC (Section 
2). 

The following table recaps the WP3 objectives presented in Section 1 and shows how these will be achieved 
during the WP3 activities. 

 

 5GCity Virtualization objective How we address it 

1 Optimizing virtualization 
technologies for heterogeneous 
and resource constrained 
devices 

Performance (efficiency, scalability, computing power) is 
addressed with specific developments on unikernels (unikraft) and 
virtual machines (KVM). Thanks to these extensions a higher 
number of more performant guests will be executed on the 5Gcity 
infrastructure. 

Security and trusted computing is added at the infrastructure level 
through the EdgeNFVI and EdgeVIM solutions based on Arm 
TrustZone. These extensions will enable VNFs geo-fencing and 
Trusted Computing features in guests. 

2 Implementing network 
virtualization targeting efficient 
software switches and wireless 
virtualization 

Wireless (Wi-Fi and RAN) virtualization is addressed standardazing 
the control/management plane to configure wireless interfaces 
and adding support to data rate control and isolation. This will 
enable efficient and performant wireless medium slicing. 

Performance will be addressed by optimizing VOSYSwitch for 
resource contrained devices. Moreover, existing Service Functions 
Chaining limitations (e.g., flexibility, support for encapsulation, 
traffic classification) will be addressed focusing on MEC nodes. This 
will enable higher performance/efficiency and traffic steering 
among MEC nodes. 

3 Creating specific VNFs solutions 
for MEC nodes 

MEC is considered as part of 5Gcity. Its integration in the project 
architecture has been designed in this document and will be 
developed by extending the open source project fog05. Thanks to 
this work, MEC applications will be able to run on the 5Gcity 
infrastructure. Further developments in this direction will come 
from Task 3.3 (which will start at M13) and will be documented in 
D3.2. 

Table 6 5GCity WP3 objectives and solutions 
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Abbreviations and Definitions  

Abbreviations 

3GPP 3rd Generation Partnership Project 
API Application Programming Interface 
AppD Application Descriptor 
ASIC Application Specific Integrated Circuits 
BBWF Broadband World Forum 
CDN Content Delivery Network 
CN Core Network 
CPS Cyber Physical Systems 
CPU Central Processing Unit 
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance 
DPDK Data Plane Development Kit 
DSP Digital Signal Processing 
EL3 Exception Level 3 
eNodeB, eNB Evolved Node B 
EPC Evolved Packet Core 
EPS Edge Packet Services 
ETSI European Telecommunication Standard Institute 
EU European Union 
FCAPS fault, configuration, accounting, performance, security 
FFT Fast Fourier Transform 
FPGA Field Programmable Gate Array 
GPRS General Packet Radio Service 
GPU Graphical Processing Unit 
GTP-U GPRS tunneling protocol user plane 
ICT Information Communication Technology 
IETF Internet Engineering Task Force 
IMSI international mobile subscriber identity 
IOCTL Input-Output Control 
IoT Internet of Things 
IoT Internet of Things 
IP Internet Protocol 
JIT Just in time 
JSON JavaScript Object Notation 
KVM Kernel-based Virtual Machine 
LCM Life Cycle Management 
LGW Local Gateway 
LTE Long Term Evolution 
LTE-A Long Term Evolution Advanced 
MAC Media Access Control address 
MANO Management and Orchestration 
MEAO Multi-access Edge Application Orchestrator 
MEC Multi access Edge Computing  
MEPM Multi-access Edge Platform Manager 
MEPM-V Multi-access Edge Platform Manager - NFV 
MME Mobility Management Entity 
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NAT Network Address Translator 
NETCONF Network Configuration Protocol 
NFV Network Function Virtualization 
NFVI Network Function Virtualization Infrastructure 
NFVO Network Function Virtualization Orchestration 
NIC network interface controller 
NR New Radio 
ODP Open Data Plane 
OPTEE Open Platform Trusted Execution Environment 
OS Operating System 
OSM Open Source MANO 
OSS Operations support System 
OVS Open Virtual Switch 
PCR Platform Configuration Registers 
PLMN Public Land Mobile Network 
POSIX Portable Operating Systems Interface for Unix 
QEMU Quick Emulator 
QoS Quality of Service 
RAM Random Access Memory 
RAN Radio Access Network 
REST Representational State Transfer 
RLCC/MAC? Radio Link Control 
RNIS Radio Network Information Services 
SDK Software Development Kit 
SDN Software Defined Network 
SF Service Function 
SFC Service Function Chaining 
SFF Service Function Forwarder 
SFP Service Function Path 
SLA Service Level Agreement 
SoC System on Chip 
SSID Service Set Identifier 
TCG Trusted Computing Group 
TDMA  Time-Division Multiple Access 
TEE Trusted Execution Environment 
TOF Traffic offload function 
TPM Trusted Platform Module 
TSS TrouSerS open source project 
UMTS Universal Mobile Telecommunications System 
VIM Virtual Infrastructure Manager 
VM Virtual Machine 
VNF Virtual Network Function 
VNFFGD VNF Forwarding Graph Descriptor 
VNFM Virtual Network Function Manager 
VOLTE Voice Over LTE 
vRAN Virtual Radio Access Network 
vTPM Virtual Trusted Platform Module 
YANG Yet Another Next Generation 
3GPP 3rd Generation Partnership Project 
API Application Programming Interface 
AppD Application Descriptor 
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ASIC Application Specific Integrated Circuits 
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