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1 ABSTRACT

Security Policies constitute the core of network protection infrastructures. However, their development is  
a sensitive task because it  can be in opposition with the security  requirements  (e.g.  lack of  rule  or  
conflicting rules). A specification task seems to be indispensible in order to clarify the desired exigencies.  
A validation process  for  security  policies  becomes  then  necessary  before  their  deployment  to  avoid  
resources  network  damages.  Nowadays,  there  is  no  automated  tool  in  the  network  security  world  
allowing such task.  Moreover,  we have found that  the theory developed for this aim in the software  
engineering domain can be adapted for security policies because several similarities exist between the  
expressions of the needs in the two domains as mentioned in several studies. Hence, we propose in this  
paper a specification and validation framework for security policies, inspired from software engineering  
tools, where: (1) we introduce the concept of executable specifications to build the concept of Executable  
Security  Policies  (2)  we propose  a  new specification  language  based  on  an  adapted  modeling  and  
inspired from Promela  (3) we build a validation model based on the newly introduced language and (4)  
we define a 3-steps validation process of the executable security policy. The validation process is based  
on the main security properties, i.e. consistency, completeness and preservation of safety and liveness.  
Moreover, the consistency related to multiple security policies is treated through a detection algorithm  
and a resolution method.
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1. INTRODUCTION

Organizations  are  aware  about  the  importance  of  securing  their  information  systems  to 
guarantee  basic security  requirements,  i.e.  confidentiality,  integrity  and  availability.  Hence, 
security solutions that are implemented without any previous analysis of the real security needs 
can lead to important network assets damages. In order to prevent such lacks, it is relevant to 
define  before  implementing  any security  solution,  a  set  of  security  rules  defining  for  each 
request an adequate response allowing or denying the access according to the network security 
requirements. When defined, these rules are grouped in a document and are commonly called 
‘Security  Policy’  (SP).  So,  it  is  essential  to  prove  that  the  rules  composing  the  SP  are 
conforming to a set of the security properties defined by the organization owner of the network. 
The  proof  can  be  obtained  by  a  validation  process.  Unfortunately,  there  is  nowadays  no 
automated tool  allowing this  task in the security domain.  The work presented in this  paper 
proposes an automated environment allowing the specification and the validation of SP. This 
method is inspired from the theory established in the software engineering domain that presents 
several similarities with the security domain concerning the two previous aspects [2, 3] that are 
essential in any system development project and have been favorably considered. Their aim is to 
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determine whether the requirements for a system or a component are complete and correct and 
if the product of each development phase fulfils the requirements or conditions imposed by the 
previous phase.  They also determine whether the final  system or  component  complies  with 
specified requirements. Hence, one of the major contributions of this paper is the use and/or 
adaptation  of  tools  and  principles  defined  in  software  engineering  to  manipulate  the  SP 
specification and validation. Mainly, we have focused on the executable specification concept 
as a specification technique for validation purposes and have presented an approach to validate 
a SP based on its executable specification.

Our contribution is  4-fold. First, the executable specification concept is introduced as a useful 
tool to formally represent the SP components and hence the executable security policies (ESP) 
concept. Second, a specification language inspired by Promela is proposed. This language is 
based on a formal SP modeling intended to support the representation of all the aspects inherent 
to  SP and to  provide the basis  facilitating their  validation.  Hence,  a well  formed syntax  is 
proposed  as  well  as  a  clear  semantics.  This  latter  cope  principally  with  the  system  state 
representation,  the  transition concept  definition and the  reachability graphs construction i.e. 
represent the system state evolution). Third a validation process checking whether a candidate 
security  solution  is  conforming  to  a  SP  is  proposed.  This  process,  which  is  based  on  the 
construction and the verification of the RGs, compares the evolution of the studied system while 
running according to the SP or without it. The main shortcut of such proposition is that it may 
return infinite state sets and consequently, infinite RG that are impossible to use. To remedy to 
such  problems,  we  introduced  two  hypotheses  (uniformity  and  regularity)  allowing  the 
reduction of the size of states set while preserving mandatory properties. Fourth, the special 
case of multiple security policies environment is treated. In fact, consistency proving is different 
in such environment. 

The remaining part of this paper is  structured as follows. Section 2 presents some Security 
Policies basics. Section 3 introduces the concept of Executable Security Policy as well as its 
inherent  concepts’.  Section  4  introduces  S-Promela,  our  Executable  Security  Policy 
specification language through a well  defined syntax and a clear  semantics.  In Section 5, a 
three-step validation process is  proposed in order  to deal  with the consistency proving,  the 
completeness proving and the preservation of security properties proving. Finally,  Section 6 
concludes this paper.  

2. SECURITY POLICIES  BASICS

The RFC 2196 [1] defines a SP as a "formal statement of the rules by which people who are  
given access to an organization technology and information assets must abide". More generally, 
the main objective of a SP is to maintain the principles of the organization's general security 
strategy.  These principles cover several aspects such as detailed in [1]. However, due to the 
diversity of  these aspects,  SP definition may generate  some inconsistency or  contain errors 
concerning  for  example  the  needs  expression.  To avoid  such  problems,  each  SP definition 
requires a validation process to check if the policy matches the security needs. The deployment 
of such process is generally made through a SP modeling. 

SP  modeling constitutes a very important task because it helps the definition of the security 
rules  and  allows  their  validation.  We  have  modeled  in  previous  works  [2,3,4]  a  SP  as  a 
communication mean following the several rules composing the SP, where a subject s reach an 
object  o only if the requested action  a is granted by the SP. According to the previous SP 
definition and considering the whole system in which a SP can be deployed, we have found that 
a modeling task requires the definition of the following concepts:  (1) subject  (s) that represents 
an active entity in the system like human users, employees, processes, applications or programs 
(2) object (o) that represents a passive entity in the system like ports, data or hosts (3) action (a) 
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that represents an action that can be performed by a subject on an object like connection or read 
and/or write requests (4)  constraints (c) that used to precise an action applicability scope (5) 
events (e)  that are triggers of rules and (6) security rule that expresses the appropriate security 
decisions (allow or deny) to be taken for each action attempt made by an object relatively to a 
specific object. 

These concepts are useful for the modeling of rules on which a SP can be based. For our part, 
we have found that the following rules are sufficient to represent a SP and to formally specify 
SP while specification is used principally to support the verification of the conformance of the 
SP with the defined security requirements. This functionality is called validation. It is performed 
at the specification level through the use of specific tools.

Authorization rule: allows making difference between the authorized and the unauthorized 
subject’s actions. It could be viewed as a request for which a response is expected. Such rule 
can be expressed as follows:  

req(s × o × a × c × [e]) → resp

where resp is the response expected by the security rule.  This response may evolve over time 
i.e.  according  to  the  satisfaction  of  certain  constraints;  it  can  be  yes  or  no.  For  example, 
someone trying to access to his office is authorized to so only during work hours. Formally, this 
situation can be expressed as:  req(employee, access, office, time,-) → yes if time is during work 
hours or req(employee, access, office, time,-)→ no if time is outside work hours.

Obligation rule: expresses actions that  a subject  s is  forced to perform in response to  the 
occurrence of some event e. Such rule can be expressed as follows:                

ob (s × a × o × [c] × e)

An obligation rule can be considered as an ECA rule (Event-Condition-Action) e.g   “ON event 
IF condition DO action”.

For example, ob (teacher, return, student-notes,-, at the latest 3 days after the exam) means that 
a ‘teacher’ has to ‘return’ ‘student-notes’  ‘at the latest three days after the examination’. 

Prohibition rule: states that the SP prohibits the occurrence of a certain action in the protected 
system.  The prohibition syntax is similar to the request rule syntax in that sense that it is a 
request made by a subject and to which the SP must respond. However, prohibition response is 
always 'no'.  Formally, it is expressed by:

phb (s × a × o × [c] × [e]) → no

For example, someone trying to withdraw money from a bank account that does not belong to 
him will always be forbidden to carry out this action. Formally, this can be expressed as: phb 
(client, withdraw, money, foreign account, -) → no.

Delegation rule: enables a given subject s to delegate his permissions (according to an existing 
SP) to perform a given action a to another subject r who wasn’t initially able to perform them. 
Formally, it is expressed by:

delg (s × [a] × [o] × [c] × r × associated-rule) → resp

where  r (recipient) is the delegation beneficiary,  associated-rule  is the rule by which  s has a 
given  permission  and  resp  can  have the  value  ‘yes’  (positive  delegation)  or  ‘no’  (negative 
delegation).  For example, the following rule states that an administrator cannot delegate his 
right to modify passwords to students. This right was accorded to administrator by the rule r1.  
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delg (administrator, change, password, -, student, r1) → no

Let’s note that ‘[]’ introduce an optional argument and that ‘-’ replaces an empty argument e.g. 
an optional argument not used in the rule. 

In addition to the rules, another concept can be associated to a SP: the domain, usually noted by 
Dom (SP). In [14], Hosmer defines a policy domain as “a logical construct defining the area of 
responsibility of an authority”. In this work, we propose the following formalisation: 

DEFINITION 1 (SP Domain) a SP domain is a set of objects (O), subjects (S) and actions (A)  
where any subject can potentially manipulate any object through any operation according to  
the SP. It can be expressed by:

Dom (SP) = S × O × A.

This definition leads to a rule domain definition that corresponds to a given object, subject and 
operation where the subject can handle the object through the action. 

3. EXECUTABLE SECURITY POLICIES

Let’s  recall  that  we  have  found  it  useful  to  associate  to  SP  specific  tools  allowing  their 
representation, proof and verification. Moreover, we have found several similarities between SP 
engineering  and  software  engineering  concerning  the  three  previous  aspects  handling  such 
mentioned and used in [3]. So, one of the major contributions presented in this paper concerns 
the use of the tools and principles defined in software engineering to manipulate the major SP 
aspects. Our aim is to define a SP by the mean of a formal specification and to validate it by the 
mean of executable specification, like it is usually made in the software engineering domain. So, 
because an executable specification can be considered as an extension of formal specification, 
we have found it useful to propose Executable Securities Policies as an extension of Security 
Policies.   

3.1. ESP  Definition

A SP can be viewed as a specification for security solutions as well as a software specification 
has been defined as “a document that prescribes, in a complete, precise, verifiable manner, the  
requirements,  design,  behaviour,  or  characteristics  of  a  system or  system  component”  [5]. 
Similarly, a SP can be depicted as giving a precise description of the required behaviour of any 
secured network or network component. In addition, SP, like software specification must have a 
clear syntax and a precise semantic. 

However,  SPs  present  some  differences  with  software  specifications.  The  main  one  is  that 
software specifications declare a process, using a modeling method, while a SP is just a set of 
requirements. The second difference is that manipulated variables in software specifications are 
essentially predefined types such as integers and floats, while objects and subjects manipulated 
in SP are elements of the network such as work stations, servers, routers, firewalls and switches. 

In this paper, only the similarities between software engineering and security engineering are 
considered and used to construct the whole of our contribution.

In [2], we have proposed the concept of Executable Security Policy (ESP) as a mean of SP 
validation. In fact, we defined an ESP as a SP model that can generate the expected behaviour 
of a secured system communicating with its environment according to the security exigencies  
specified by the SP.  Moreover, when using ESP, the behaviour of the SP can be observed and 
tested before it is actually performed on the desired system. 
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3.2. ESP Modeling basis

The ESP representation needs the use of an adequate specification language. In our context and 
knowing the studied environment, we have found interesting to propose a new specification and 
validation model  inspired  by Promela  [6].  This  choice  is  motivated  by the  following three 
reasons.  Firstly,  Promela's  type  objects  can  be  adequately  used  to  represent  the  SP  model 
components depicted previously e.g. subjects by variables, rules by processes, etc. The second 
reason justifying our choice is that a SP, like a protocol, formalizes the interaction of subjects 
with their  environment  by standardizing the  use  of  network assets.  There  is  a  third reason 
allowing a proposition of a like-Promela model: Promela is associated with a model checker 
(SPIN) that: (1) provides diagnostic information in the case where the property is not validated 
(counterexample);  (2)  supports  partial  validation  (no  complete  requirement  specification  is 
needed) and (3) uses temporal logic that is required when specifying SP. 

Figure 1 represents a SP as a mean of communication between two network components where 
the communication is made following the several rules composing the SP. In this Figure, four 
actors  are  depicted:  the  subject,  the  object,  the  SP and the  trigger  of  events.  All  potential 
interaction between a subject and an object must be made through the SP i.e. a subject cannot 
interact directly with an object.

Figure 1. ESP modeling

In this Figure, the communication channel is split into four half duplex channels depending on 
the actor where the request come from and the actor where the request is addressed. A subject s 
submits his request via the channel s-to-SP. The SP verifies the legitimacy of the request from 
the  set  of  SP  rules.  In  the  case  where  the  request  is  granted,  it  is  transmitted  to  the 
corresponding object o via the SP-to-o channel. The response of this request is then sent back by 
the object via the o-to-SP channel. Once received by the SP, this response reaches the subject s 
via the SP-to-s channel.  In the case where the requested access is denied, the SP reject it into 
the out channel and delivers to the subject an error message without implying the SP-to-o and 
o-to-SP channels. Moreover, each channel can be accessed either for insertion or extraction. 
Hence, a mode is associated to each one of these operations: the write mode for insertion and 
the read mode for extraction.

The model represented by the Figure 1 considers also a trigger of events allowing the generation 
of all potential events for which the SP must react. These events are useful for obligation rules 
as explained previously. 

Let’s note that the model depicted by Figure 1 is a generic one. It can be customized following a 
particular rule type. In our context, three customized models respectively represented by Figure 
2, Figure 3 and Figure 4 can be defined as follows. 

Subject 
(s)

SP

s-to-SP SP-to-o

o-to-SP

Object
(o)

Trigger of Events 

SP-to-s

Event

Out 

deny
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3.2.1. Authorization rule modeling

As depicted by Figure 2, such rule can be described by the following elementary operations:
(1) A request is sent by s (s-write). 
(2) The request is extracted by the SP (SP-read) and its legitimacy is verified. 
(3) In the case where this request is granted, the SP forwards it in the adequate channel 

corresponding to the destination object (SP-write).
(3’) However, if the request is denied, then it is simply dropped by SP into the channel out 
while a reject notification is sent back to s. 
(4) The object o extracts the request (o-read). 
(5) , (6), (7) and (8) allows the object response to reach the subject. 

Figure 2. Authorization rule modeling

3.2.2. Obligation rule modeling

Assuming that the SP has a predefined table containing all the events for which it must react 
as well as their corresponding procedures, Figure 3 depicts the obligation rule modeling by the 
following elementary steps: 

(1) The event e is triggered, 
(2) The  SP  initiates  the  corresponding  obligation  procedure  to  inform  s that  it  has  to 

perform a particular action relatively to a particular object o (SP-write). 
(3) The subject s extracts this action (s-write).
(4) The subject s inserts the action into the SP channel (s-write).
(5) The SP receives this action (SP-read).
(6) The SP forwards the received action without any verification, to the object o (SP-write).
(7) The object o extracts the action (o-read) which is so, performed. 

Figure 3. Obligation rule modeling

3.2.3. Prohibition modeling

As represented by Figure 4, an obligation rule is depicted by the following elementary steps: 

Subject
(s) SP

(1)
s-write

(7)
SP-write

(3)
SP-write

(5)
o-write

Object
(o)

(8)
s-read

(2)
SP-read

(6)
SP-read

(4)
o-read

Out 

(3’) deny

Subject
(s) SP

(4)
s-write

(2)
SP-write

Object
(o)

(3)
s-read

(1) Trigger of Events  

(7)
o-read

(5)
SP-read

(6)
SP-write

e  
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(1) A subject s sends a request to the SP that is known to be prohibited (s-write), 
(2) The SP extracts the action (SP-read).  
(3) The SP drops it on the Out channel and sends back a reject notification to the subject 

(SP-write).
(4) The subject s is then acquainted with the prohibition (s-read). 

Figure 4. Prohibition rule modeling

3.2.4. Delegation modeling

A delegation rule expresses what a subject can delegate (or not) to another subject. Hence, it can 
be seen as authorization request  handling with a right  to delegate (by analogy to a request 
dealing with an action to perform). In fact, when a subject requests to delegate a given right, the 
SP verify the legitimacy of such request and then grants it or not. If the request is granted, it is 
forwarded to the recipient. But, if it is forbidden, then it simply dropped (into the channel out) 
and a notification is  sent  back to the subject.  Hence, Figure 2 is still  valid and depicts  the 
elementary operations generated by a positive delegation rule: 

(1) The request is inserted into the channel by the subject (s-write).
(2) The SP extracts the request (SP-read).
(3) The SP inserts the delegation request into the adequate channel (SP-write). 
(4) The object o (the recipient) extracts the request (o-read) and so, appropriates the rights. 

However, steps (5), (6), (7) and (8) are not involved in such communication.

4. S-PROMELA: AN ESP SPECIFICATION LANGUAGE

Although, Promela is not adequate to specify SP because it was initially developed for SE, it 
offers interesting concepts and basis that can be useful for SP domain. Hence, the aim of this 
section  is  to  introduce  a  new  Promela  based  language,  called  S-Promela (Security-based 
Promela). This language resumes the fundamental Promela basis and extends them with some 
SP specificities needs.  Moreover,  S-Promela  allows specifying in a precise way the desired 
behavior of a subject interacting with objects and thus, in conformance with the SP rules.  To be 
able to define such language, we assume that each subject interacting, in a secured system (e.g. 
by the use of a SP), with a given object does it through the SP and using elementary statements, 
that we call security-policy based primitives. 

4.1. S-Promela Syntax 

An S-Promela specification defines a set of process. A process describes a rule.  

SP S-PromelaSPec ::= Procs 

Procs ::= Procd |Procs

Procd ::= Rule 

Figure 5.  S-Promela Specification structure

Subject
(s) SP

(1)
s-write

(3)
SP-write

(4)
s-read

(2)
SP-read 
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A ‘Rule’ is an iterative expression. As depicted by Figure 6, while a given condition holds, a 
sequence of actions is performed. A ‘Condition’ can be either an expression or the occurrence 
of an event. A ‘Sequence’ can be a primitive, a single action or another rule. 

Rules Rule ::= ‘While’‘(’Condition‘)’‘do’ Sequence [andor  Sequence]*

Condition ::= Expr |Evt-occur

Expr ::= Expr  |Expr Binaop Expr
|Expr logic  Expr |Sequence

Evt-occur ::= ‘occurs’ ‘(‘ event ‘)’

Sequence ::= ‘{’ Primitive ‘}’  | ‘{’ pfm-ation‘}’  
|‘{’ Procd‘}’

Figure 6.  BNF rule syntax 

An important  part  of  the  S-Promela  syntax  is  declaration.  As  depicted  by Figure  7,  an  S-
Promela  specification  can  use  several  variables  types  e.g.  channel,  subject,  object,  action, 
message,  event,  constraint,  notification.  Moreover,  a  specification  can  include  procedures, 
structures with procedure and tables.  A ‘Procedure’ is  constituted by an action (or a set of 
actions) that  must  be performed.  A ‘Structure’ associates an event  to a Procedure executed 
when the event is triggered. A ‘Table’ is a set of ‘Structure’.

Declaration channel ::= name 

|subject ::= name

|object ::= name

|action ::= name

|message ::= name

|event ::= name

|constraint ::= name

|notification ::= name

|Procedure ::= ‘procedure’ name ‘(’ [event] ‘)’

|Struct ::= ‘struct’ name ‘{’ (event, Procedure) * ‘}’

|Table ::= Struct  name ‘[’ integer ‘]’

Figure 7. S-Promela Declaration Part 

Pre-defined Terms define constants and terms such as ‘skip’,  shorthand for a dummy;  ‘Entity’ 
that can be a subject, an object or a SP or ‘Recipient’  that can be only a subject. 

Pre-def terms Boolean ::= true |false

|Comment ::= /'*' comment '*'/

|skip ::= ‘skip’
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|nil ::= ‘nil’

|Pfm-action ::= ‘pfm-action’  ‘(’ Entity ‘,’ Parameters ‘)’

|name ::=  char [char | number] *

|Entity ::= subject |object |SP

|Recipient ::= subject

|Parameters ::= channel   ‘,’ [action | message] ‘,’ object 
|action |event |constraint

|Affectation ::= Var ‘=’ Expr

|Var ::= Entity |event |message

Figure 8.  Predefined terms BNF syntax 

An  S-Promela  specification  uses  also  control  flow  expressions  as  depicted  by  Figure  9.  A 
‘Conditional’  expression  resumes  the  classical  if-then-else  statement.  A  ‘Separator’  allows 
enumerating expressions.  The logical operators ‘&&’ and ‘||’ are used respectively for expressing 
conjunction and disjunction. Binary operators ‘Binarop’ are used in order to perform expression 
comparison. 

Ctrl-flow Conditional ::= ‘If’ ‘(’ Condition ’)’ ‘then’ Sequence [andor  Sequence]* 
 [ ‘else’  Sequence] 

|Separator ::= Expr ‘;’ Expr 

|Andor ::= ‘&&’  | ‘||’

|Binarop ::= ‘==’  | ‘<’ | ‘>’
| ‘≠’  |‘≥’ |‘≤’

Figure 9. Control flow BNF syntax

Figure  10  depicts  S-Promela  basic  statements.  In  accordance  to  our  modeling, 
introduced previously,  two primitives can be used: ‘write’ and ‘read’.  The  write 
statements allows to an entity (subject, object or SP) to insert into a channel where 
the read statements allows to an entity to extract from a channel.  

Basic stmts |Primitive ::= Write |Read

|Write ::= entity ‘-’ ‘write’ ‘(’ parameters ‘)’.

|Read ::= entity ‘-’ ‘read’ ‘(’ parameters ‘)’.

Figure 10. Basic statements BNF syntax

Let’s  recall  that  obligation  rules  are  triggered  by  an  event.  More  precisely,  the 
trigger  can  be  a  single  or  a  composed  event.  A  composed  event  is  either  a 
‘Synchronization’ of events e.g. conjunction or disjunction, a ‘Precedence’ between 
events or a ‘Repetition’ of a given event. 

Evt operators  Synchronization ::= ˄ |˅
|precedence ::= event1 → event2

|repetition ::= n * event

Figure 11. Event composition operators BNF syntax 

9



International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

4.2. S-Promela Semantics  

The S-Promela semantics, defines the behaviour of an S-Promela model by describing how the 
global directed graph of all  reachable system state, for any given S-Promela model is to be 
generated.  Similarly  to  Promela,  the  semantics  of  S-Promela  is  defined  in  terms  of  an 
operational model [6]. This model contains one or more processes, zero or more variables, zero 
or more channels, and a semantics engine' that defines how the actions of the processes may be 
interleaved in time. The processes are defined by Reachability Graphs (RG) defined as (P, PS, 
∑, →) such that: 

• P is the starting state.

• Ps is the set of states. 

• ∑ is the set of labels = {write, read, evt-occur}.

• → ⊆ Ps ×∑× Ps is a transition relation.

Let’s recall that seven components representing the studied environment have been revealed: 
(1) four unidirectional channels, (2) two operation modes,  read and  write and (3) a SP. Each 
channel can be characterized by a state observed at a given time. A channel state is defined by 
an ordered list of the operations inserted to it (by s-write, f-write) but haven’t been extracted yet 
(by SP-read, o-read).  Any operation made on the channel, is registered as an event and leads to 
a channel content modification and so to a channel state modification. Formally, to each channel 
state Si ∈ Ps, we associate the time ti that corresponds to the occurrence time of the event leading 
to it. 
Figure  12  depicts  two  successive  occurrence  channel  state  modifications  observed  at  the 
instants ti-1 and ti+1 and generated respectively by the arrival of the requests ri-1 and ri+1 which are 
two legitimate SP inputs. Let’s note that in this figure, the request ri has been dropped because 
denied by the associated rule and hence, the current state Si-1 is maintained.

Figure12. Temporal channel state evolution

The channel state observed at a given time tobs correspond to the channel state Si established at 
the time  ti where  ti <  tobs and  ti is the last  time before  tobs  corresponding to the last  channel 
modification. Hence, the description of the system state is based on a set of couples depicting 
the manipulated input and the destination object. 
As denoted by Figure 13, the system state observed at tobs ∈ [ti-1, ti+2] is defined by {ti, (ri, oi),  
(ri+1, oi+1)} knowing that  ti+1 is the time corresponding to the last observed event,  (ri, oi), (ri+1,  
oi+1) are the content of the channel and (ri-1, oi-1) has been already extracted by the destination. 
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Figure13. System State Representation

Let’s note that the considered channels are managed following a FIFO discipline in that sense 
that  the  extraction  of  the  request  ri-1 implies  that  all  the  precedent  requests  were  already 
extracted.

5. SECURITY POLICIES VALIDATION USING EXECUTABLE SECURITY POLICIES

According to  Lindsay [7],  "the validation of  a SP model  can be done by showing that  the 
specification is mathematically consistent, the security enforcing functions preserve the desired 
security properties, and the specification is complete with respect to its input space". Similarly, 
our  SP  validation  process  can  be  defined  by  3  steps:  (1)  the  consistency  proof,  (2)  the 
completeness proof and (3) the SP properties preservation as presented by the remaining part of 
this section.

5.1. Consistency proof

In the software engineering domain, consistency is defined as a "property stating that there are 
no requirements  that  contradict  each other"  [8].  In  SP context,  we  define  consistency as  a 
property stating that there are no rules that contradict each other. In order to prove consistency, 
we propose to look about inconsistencies and thus based on rules relations. These relations are 
based on the five rules components, i.e. subjects, objects, actions, constraints and events. Let Ri 

and Rj  be two rules. We note by Si (respc Sj ) the Ri (respc Rj) subject set; by Oi (respc Oj) the Ri  

(respc Rj) objects set; by Ai (respc Aj) the Ri (respc Rj) action; by Ci (respc Cj ) the Ri (respc Rj)  
constraint set and by Ei (respc Ej )  the Ri  (respc Rj)  event  set.  Six relations can be observed 
between these sets. Let’s note that these relations are widely used in the literatture [11]. So, we 
tried to  propose a  new formalization adapted to  the  SP field  as  well  as  two new relations 
appropriate for SP.  This can be expressed by the following six definitions.

DEFINITION 2 (Equality, ‘=’) Rules Ri and Rj are equal if every component in Ri is equal to its  
corresponding component in Rj.  Formally, Ri = Rj iff :

Si = Sj and Oi = Oj and Ai =Aj  and Ci = Cj and Ei =Ej

DEFINITION 3 (Intersection,’∩’) Rules Ri and Rj have an intersection if every component in Ri  

is a subset or a superset or equal to its corresponding component in Rj. 
Formally Ri ∩ Rj ≠ ∅  iff 

∃ s, o, a,c,e /  s∈Si ∩ Sj, o∈Oi ∩ Oj, a∈Ai ∩Aj, c∈Ci ∩ Cj,    e∈Ei ∩ Ej        And
∃ s’, o’, a’, c’, e’ / s’∉ Si ∩ Sj, o’∉ Oi∩ Oj, a’∉ Ai ∩ Aj, c’∉ Ci∩ Cj, e’∉ Ei∩ Ej,

DEFINITION 4 (Generalization, ‘⊂’) Rule Ri generalizes Rj if they do not exactly match and if  
every component in Ri is a subset or equal to its corresponding component in Rj. 
Formally, Rj ⊂ Ri  iff 

∀s ∈Sj, ∀o ∈Oj ,∀a ∈Aj ,∀c ∈Cj ,∀e ∈Ej / s∈ Si, o∈ Oi, a∈ Ai ,c∈ Ci , e∈ Ei     And
∃ s’∈Si, o’∈Oi, a’∈Ai , c’∈Ci, e’∈Ei,   / s’ ∉  Sj, o’∉  Oj ,a’∉  Aj, c’∉  Cj,  e’∉  Ej.
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DEFINITION 5 (Disjunction, ‘≠’) Rules Ri and Rj are disjoint if there is at least one component  
of Ri does not interfere with its corresponding component in Rj. Formally, Ri ≠ Rj  iff 

Si ∩ Sj =∅  or Oi ∩ Oj =∅  or Ai ∩ Aj =∅

In addition to these classical relations, we propose two new relations: dependence and cross 
dependence.

DEFINITION 6 (Dependence, ‘⊕’  ) Rule Ri is dependent of rule Rj  if Ri subjects and objects  
are equal  or a superset  to their  corresponding in Ri   while  the operation field  of  Ri  is  a  
superset to its corresponding in Ri .Formally, Rj ⊕  Ri iff  

Si  ⊇ Sj and Oi ⊇  Oj and Ai ⊂ Aj

DEFINITION 7 (Cross dependence, ‘⊗’ ) Rule Ri is cross dependent of rule Rj  if Ri subjects  
are  equal  or  a  superset  to  their  corresponding  in  Ri   ,  the  Ri  objects  are  subset  of  their  
corresponding in Ri   while  the operation field  of Ri  is a  superset to its corresponding in Ri .  
Formally, Rj ⊗  Ri iff  

Si  ⊃ Sj and Oi ⊂  Oj and Ai ⊂ Aj  
or

Si  ⊂  Sj  and  Oi ⊃  Oj  and  Ai ⊂ Aj

The consistency proof proposed in this paper is summarized by Algorithm 1 in which the SP is 
checked by evaluating rules two by two. The domain of a rule corresponds to the set of potential 
packets that can be treated by the rule filter and for which it can give a response. The first action 
is then to compute the domain intersection R. If it is empty then Ri and Rj are consistent; else the 
second alternative is to look for an element, belonging to the intersection-rule, and that lead to 
two different responses. If such element exists, then an inconsistency is detected.

For each couple of rules (Ri, Rj)

R ← dom (Ri) ∩ dom (Rj)

if (R = ∅ ) then consistency

else  if (∃p ∈ R / (respi(p)≠ respj(p))) 

then    inconsistency 

Algorithm1. Consistency proof 

We have to note, however, that this detection procedure has an exponential complexity. But, the 
examples we have considered have few rules, thus problem is still tractable.  

5.2. Completeness proof

Completeness  in  the  software  engineering domain  is  defined as  a  "property stating that  all 
significant requirements are included, and responses to all possible inputs are defined" [8]. In 
SP  context,  we  define  completeness  as  a  property  stating  that  all  significant  security 
requirements are included and that rules, allowing the SP to respond to all possible inputs, are 
defined.
In order to prove the completeness of SP, we propose to use a reachability analysis of the states 
set.  This analysis is done via two RGs. Figure 12 depicts this proposition:  the first step is to 
compute all the potential acceptable actions (that a subject can perform) from the initial state. 
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Each action leads to a state which is attached to the attempts RG  Uar (the right one in the 
figure). Then, a label “secure” is associated to states declared as being acceptable. Moreover, 
the graph is  supposed to be made finite-state.  To that  effect,  a depth limit  is  imposed.  The 
second step is to compute, parting from the same initial state, all the states that can be reached 
according to the SP rules. These states constitute the secure RG Usr (the left one in the figure).  

Figure 12. Completeness proof 

The third step is hence, to compare the two graphs:  each labelled state must appear in  Uar 
otherwise, the SP is incomplete and rules must be added. The completeness problem is then 
reduced to the verification that all secure-marked states belonging to Uar belong also to Usr.

5.3. Security properties preservation proof

Security properties are essentially integrity, confidentially, access control and availability [1]. In 
order to prove the preservation of these properties we started by associating them to two classes: 
liveness  and  safety.  Then,  we  generated  appropriate  claims  and  proposed  an  adequate 
methodology to each one of the previous classes. The use of a model checker allows to validate 
(or invalidate) the previous properties. Generally, the latter is reduced to checking emptiness of 
automata. In our case, it has to prove safety and liveness properties. This can be done with the 
help of a reachability analysis of a finite state model as mentioned by the authors of [9]. The 
remaining part of this subsection deals with the proof of the two properties. 

Liveness property: is a statement claiming that something “good” will “eventually” happen. In 
other words, a  liveness property dictates that a given activity will  eventually be performed, 
presumably because it is good and desirable. Good condition can be represented by an assertion 
PL and the fact that it will eventually occur during the execution by ◊PL. 
For  SPs,  “good  things” are  actions  that  if  happen do not  compromise  the  system security. 
However,  the  formalisation presented above cannot  be  directly transposed to  SP.  In  fact,  a 
future response is  not  sufficient:  a  temporal  limit  must  be  specified and respected.   Let  us 
consider the context of the Dos attack. In this attack, a user is prevented from using a remote 
resource by, for instance, flooding the network with bogus messages. Here, the “good thing” is 
the  possibility  for  a  host  to  reply in  a  limited  time.  Hence,  liveness  is  the  guarantee  of  a 
maximum waiting delay for each operation. This can be formalized by:  p => ◊d q where p and 
q are assertions and ‘◊d ’denotes: finally before a given delay. 

Safety property: is a statement claiming that something "bad" will not happen. In other words, 
a safety property dictates that a given activity will never be performed presumably because the 
activity is bad and undesirable. 
For SP, “bad things” are actions that if they happen compromise the system security. Hence, SP 
safety  properties  are  statement  claiming  that  actions  compromising  system  security  never 
happen.  Bad things can be represented by an assertion  Ps which is mapped to true in exactly 
those states in which the condition is true. For a safety property to be true  ¬Ps must be an 
invariant. A property Ps is an invariant if for each execution ρ =S0 S1 …Sn where S0 = initial state 

Secure

Secure

Secure

Uar Usr
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and S1 …Sn successor states and for any i ∈N, Si  |= Ps. Thus, an invariant is expressed as   □PS 

= ∀i PS (Si). 
The verification of such properties can be made by the use of invariants trough a search of the 
state space.  First,  we generate invariant  corresponding to the compromising action.  Second, 
while exploring the RG, the invariant is verified with a Boolean test. If a specification violates 
the invariant and consequently the safety property, then there is a finite behaviour that displays 
the violation. The following depicts an invariant modeling through the use of never claim as in 
Promela [6] and depicted as follows:  

Never {/* two state machine: initial and final */
  do
      :: SP    /* must be verified in the initial state of the SP model */
      :: ! SP → break /*final state /
  od
}

5.4. Deriving Finite Reachability Graphs from Security Policies Specification

In order to validate a SP, two kinds of RGs are generated from it specification as presented 
previously. These graphs have to be finite, complete and correct. In fact, an exhaustive RG is 
not usable in practice since it is infinite. For this reason, we have adapted the techniques used by 
Gaudel in [10], especially those used to reduce an exhaustive set.
Let  SS be a SP specification and ESS an ESP under validation. A validation is successful if it 
concludes to the satisfaction of the validation experiment by ESS, and we note it ESS |= Γ where 
Γ is  the  validation,  i.e.  completeness  properties.  Given  a  specification  SP,  the  exhaustive 
validation set for it, noted Exhaust RG is the set of all the states of the RG: 

Exhaust RG = {Φσ| Φ ∈ SS,  σ = σi: var (Φ)i →Ti| i ∈ I} 

where Ti is the validation properties set and I  is the set of states components. 

An exhaustive validation of ESS against  SS is the set of all the validation experiments of  ESS 
against the states belonging to the exhaustive RG Exhaust RG.
Because it is practically impossible to consider the exhaustive RG due to its infiniteness, we 
introduce the concept of hypotheses that is shown to considerably reduce the RG size. 

Let’s  have  ExhaustRG, the  validation  set  for  the  policy  specification  SS resulting  from the 
construction of the exhaustive RG. Even though it covers all the validation space, this validation 
set is practically not useful to assess all SP implementations because it is often infinite. Hence, 
during  RG  construction,  only  a  subset  of  ExhaustRG may  be  sufficient.  However,  some 
properties should be guaranteed by this subset. Eliminating infiniteness must be done according 
to a procedure that preserves the properties of ExhaustRG. The two major requirements consist in 
the fact that the selected states set should be valid and unbiased [10]; meaning that incorrect SP 
implementations should be discarded, and that all correct SP implementations are accepted. To 
this  end,  we  use  selection  hypotheses  in  order  to  reduce  the  exhaustive  validation  set 
(particularly RG) to a finite validation set (and consequently finite RG). Two hypotheses are 
considered:  uniformity  and  regularity.  Formally,  they  are  expressed  by  the  following 
definitions.

Definition 1:  Uniformity hypothesis. Given a rule  Φ (X) where  X is a variable, a  uniformity 
hypothesis on a sub-domain D for an ESP ESP is the assumption:

(∀t0 ∈ D) (P  ╞ Φ (t0)) (∀ t∈ D) (P  ╞ Φ (t))

14
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This hypothesis states that the validation result can be generalized to a whole domain if the 
validation is performed at a single point of this domain. This corresponds to the determination 
of sub-domains of the variables where the program is supposed to have the same behaviour. 
Assuming that, it is no more necessary to have all the ground instances of the variables but only 
one by sub-domain. Such criteria are modelled in our framework by uniformity hypotheses
Another  type  of  hypothesis,  called the  regularity hypothesis,  relies  on generating states  for 
several variables that do not exceed a defined 'size'. This notion of size can be customized to 
represent multiple aspects of SP objects.

Definition 2: Regularity hypothesis. Given a vocabulary Σ, a rule Φ (X) where X is a variable, 
a function of interest |t|, a regularity hypothesis for a program P is the assumption:

((∀ t ∈ Σ) (t≤ k ⇒ P |= Φ (t)))  ⇒  (∀ t ∈Τ ∑) (P |= Φ(t)).

6. DEALING WITH MULTIPLE SECURITY POLICIES ENVIRONMENT

When various SPs are used, several problems can be observed, of whom we can note the three 
more important.  The first one concerns a modeling problem: when several SP models are used 
(R-BAC [16], LaPadula [15] …), a communication problem due to the heterogeneity of these 
latter  may  occurs.  The  second  problem  concerns  the  SP  implementation  where  several 
mechanisms can be employed for the same security service.  The third problem, that constitutes 
our interest object in this paper, is related to a coexistence problem: various SPs are used and 
conflicting responses are obtained for the same request.
According to [12], a policy conflict “occurs when the actions of two rules that are both satisfied 
simultaneously contradict each other” and creates a problem because “the entity implementing 
the policy would not be able to determine which action to perform”.  
Similarly,  a multi-policy conflict occurs when the interaction between a given subject and a 
given object can be achieved via several SPs for the same operation. This situation creates a 
conflict if the involved SPs give contradictory responses.  
In  the  following  sub-sections,  a  formalization  of  multi  SPs  conflicts  is  given  based  on  a 
definition of potential SP domain relations.   

6.1.  Multi Policy Environment Conflict definition

According to the SP rules formalization introduced in Sub-Section 5.1, we have brought out two 
conflict  kinds i.e.  “modality conflict” and “type  conflict”.  Modality conflicts  are due to the 
existence of a domain relation (such presented above) as well as a rule modality difference. 
Type conflicts, however, are due to the existence of a domain relation as well as a rule type and 
modality difference.  
Let’s recall that we specified a rule by the following 7-uplets: (type, modality, subject, object,  
action, [constraint], [event]) and let’s note by Ti, the type of the rule Ri and by Mi its modality.

DEFINITION 7 (Modality Conflict) A modality conflict, between two rules R1 and R2, occurs if  
they have the same type (T1  = T2),  a domain relation (equality,  dependence, intersection or  
generalization) and different modalities (M1 ≠ M2 ).

According to this definition and to the previously introduced rules formalization, one can note 
two modality conflicts: the first one occurs when obligation/ interdiction rules are interacting. 
The second one occurs when positive request/ negative request rules are interacting.

DEFINITION 8  (Type Conflict)  A type conflict, between two rules R1 and R2, occurs if they  
have  a  domain  relation  (equality,  dependence,  intersection  or  generalization),  different  
modalities (M1 ≠ M2) and different types (T1 ≠ T2).
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According to the rules formalization specified previously, two type conflicts can arise. The first 
one occurs when positive request / interdiction rules are interacting. The second one occurs 
when negative request/ obligation rules are interacting.

6.2. Multi Policy Environment Conflict Detection 
The first  step towards  conflict  resolution is  the  detection.  In  the  following,  we propose an 
algorithm for SP conflicts detection according to the formalization introduced above.
Let’s start by giving the assumptions used in this algorithm. First, we associate to each rule the 
structure:   R= {type t, modality m, Subject s, Object o, Action a}
Second, we assume that the intersection of two rules (let’s say Ri and Rj) is a rule (let’s say R) 
such that:         

                       Ri.s ∩ Rj.s  R.s
Ri ∩ Rj ≡        Ri.o ∩ Rj.o         =  R.o

         Ri.a ∩ Rj.a   R.a

Third, we note by Di=Dom(Ri); Dj=Dom(Rj); D= Dom(R).
The  detection  algorithm  can  be  then,  depicted  following  two  steps.  In  the  first  step,  the 
intersection of  rules domain is computed: all the presented relations can be inferred from the 
intersection i.e. they are special cases of the intersection. In the second step, this intersection is 
tested.  If it isn’t empty then a potential conflict may exist. Else (if the rule domains do not 
coincide), the rules are disjoint and there is no conflict. These steps are detailed as follows. 

Input: Ri ; Rj
Output: conflict

1: For each couple of rules (Ri, Rj) do
2:    If mi ≠ mj  then {different modalities}
3:        D  Dom(Ri)  Dom(Rj)← ∩
4: if (D = Di = Dj) then {Domains are equal}
5:                   relation ← true
6:                   conflict ← EQUALITY 
7:          else if ((D = Di ) or (D = Dj)) then {one domain is 
completely included in the other}
8:                      relation ← true
9:                      conflict ← GENERALIZATION  
10:       else if  (R.a = Ri.a) or (R.a = Rj.a)  then  {this rule 
is dependent of the other}
11:                     relation ← true
12:                    conflict ← DEPENDENCE 
13:            else  
14:                      relation ← true 
15:                     conflict ← INTERSECTION 
16:         end if 
17:   else  {no relations exist}
18:            relation   ← false 
19:   end if 
20:  if ti ≠ tj and mi ≠ mj  and relation = true then {different 
types and modalities but there is a domain relation}
21:               conflict ← TYPE {type conflict}
22:   end if
23: end for

Algorithm2. SP conflict detection Algorithm
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Algorithm2 discovers rule conflicts by implementing the rule relations presented previously. 
Moreover, the algorithm can detect modalities conflicts corresponding to domain relations (lines 
3-19) as well as type conflicts (lines 20-22). 

6.3. Multi Policies Environment Conflicts Resolution 
The resolution approach proposed in this  paper creates a specific view each time a conflict 
situation occurs. This view considers all the non conflicting rules added to a set of alternative 
rules, each alternative rule can be one of the conflicting rules or a new rule, defined by the 
conflict resolution process. The alternative rule choice can be done according to two extreme 
approaches: 

Permissive approach:  states that the positive rule is retained. However, this solution is not 
secure because it may allow the achievement of forbidden actions.

Restrictive approach: states that the negative rule is retained. However, this decision is also not 
useful because it is too limitable.  

In the following, a resolution approach mixing the permissive and the restrictive approaches and 
based  on  SP  combination  is  presented  i.e.  generating  a  conflict  free  SP  view  from  two 
conflicting SP as defined in DEFINITION 10. 

DEFINITION  9  (rule  combination)  A  combination of  two  rules  (R1 and R2)  associated 
respectively to D1=Dom (R1) and D2=Dom (R2) is a symmetric operation that can modify R1 and 
R2 and/or generates a new rule R3 with a domain D3 and that using some alternative rules. 

DEFINITION 10 (SP combination) A SP combination is the set of rules combination where the  
combination of two sub SPs (SP1 and SP2) generates a new policy SP3.

The combination process is based on two steps: modality conflict resolution and type conflict 
resolution. 

6.3.1. Modality conflict resolution  
When  two  conflicting  rules  have  the  same  type  but  different  modalities,  they  are  treated 
according to the relation they’re involved in. Formally, given two SPs, SP1 and SP2 such that 
R1 ∈ SP1 and R2 ∈ SP2,

Equality  conflict:   in  this  case,  the  retained rule  can be the  negative  one if  the  restrictive 
approach is privileged or the positive one if the permissive approach is the privileged.

If R1=R2 then SP3 ← {R1 or R2}1

Generalization conflict: the proposed solution is  to conserve the  more  specific  rule  and to 
modify the more general to remove the common part (already treated by the first rule). 

If R1⊂ R2 then SP3 ← {R1 and R2\R1}
where ‘ \’ stands for except.

Intersection conflict: the proposed solution is to add a third rule dealing with the common part 
while removing it from the two existing rules. 

If Rc = R1 ∩  R2 then SP3 ← {R1\ Rc, R2\Rc, Rc}
The problem arise here is the Rc modality. Our proposition is to apply a modality according to 
the chosen approach. 

Dependence  conflict:  two  solutions  are  proposed:  remove  the  dependent  rule  (if  there  is 
equality between subjects and objects) or remove the common part from the dependent rule. 

1 According to the adopted approach
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If R1.s=R2.s and R1.o=R2.o and R1.op ⊂  R2.op then
SP3 ← {R2}

However, if the subject and the object of one rule are included in their corresponding in the 
other rule, then we propose to remove the common part from the dependent rule. 

If R1.s ⊃ R2.s and R1.o ⊃R2.o and R1.op ⊂  R2.op then
SP3 ← {R1.s\R2.s and R2}

Cross Dependence conflict: the  proposed solution is  to  remove the  common part  from the 
dependent rule. 

If R1.s⊃ R2.s and R1.o⊂ R2.o and R1.op ⊂  R2.op then
SP3 ← {R1.s\R2.s, R2}

For the second case of cross dependence: 
If R1.s⊂ R2.s and R1.o⊃ R2.o and R1.op ⊂  R2.op then

SP3 ← {R1.o\R2.o, R2}
6.3.2. Type conflict resolution  
The second kind of conflict is “type conflict”.  Our resolution proposition is to give priority to 
the obligation type regard to request. In fact, we assume that obligation includes implicitly the 
authorization e.g. a subject that is required to update his password is implicitly authorized to 
achieve this update. This is expressed by the following precedence principle:

“Positive (respectively Negative) obligation overrides the negative (respectively positive)  
request”

Let’s consider the following two rules:
R1: req (teacher, change, password) → no
R2: ob (teacher, change, password, beginning- month) 
There is a type conflict because a teacher is obliged to change his password monthly by R2 but 
he  isn’t  authorized  to  do  this  change  by  R1.   Using  the  precedence  principle  proposed 
previously, the first rule is removed and the SP view will contain only R2. 

6.3.3. Non  conflicting rules combination
Since the proposed conflict resolution method is the combination; one must be able to deal with 
non conflicting rules belonging to the conflicting SPs.
The compound rule (noted R12) of two not conflicting rules (let’s say R1 and R2), is the union of 
the two rules given by: 

R12 = R1 ∪ R2.
For  example,  a  rule  disallowing  access  to  files  can  be  used  in  combination  with  a  rule 
disallowing access  to  the  network;  the  resulting rule  disallows  access  to  both files  and the 
network.

6.3.4. SP combination completeness 
Once, SP combination was presented, one must be sure that the obtained SP view preserves all 
the domain elements. Similarly to the completeness definition presented in [13], we propose the 
following: 

DEFINITION 11  (Completeness of SP combination)  a SP combination is complete if  any  
element  of  the  sub-SP  domain  belongs  after  combination,  to  the  compound  domain.  The  
completeness of SP = Φ (SP1… SPk) (where Φ is a combination of alternative rules) can be  
expressed by )())(( SPdomSPdom

i i ⊆� .

PROPERTY 1. The SP combination by alternative rules is complete. 
PROOF. From Definition 1, a SP domain,  Dom (SP), can be split in three sub domains at the 
most, S, O and A. In Definition 10, all elements of Dom (SP) are remapped by the rules defined 

18



International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

in Sub-Section 6-3-1, where each element is remapped to a new sub-domain. Therefore, the SP 
combination is complete. 

7. CONCLUSION

Developing a SP is a sensitive task because the policy itself can lead to security weaknesses if it 
is  not  conform to the security needs of  the organization.  Hence,  appropriate techniques are 
necessary to check whether a SP verifies the desired properties. These techniques, that should 
be  the  basis  of  a  SP  validation  task,  are  unfortunately  unavailable  in  the  network  security 
domain.
In this paper, we have proposed a SP modeling, specification and validation technique, inspired 
from  the  techniques  used  in  software  engineering  and  mainly  based  on  the  executable 
specification policy (ESP) and the reachability graph concepts. In fact, we introduced in this 
paper  the  ESP  concept  allowing  the  specification  of  the  SP  and  the  verification  of  its 
conformance  with  regard  to  the  security  needs.  For  the  SP  specification,  we  proposed  S-
Promela,  a  new executable  language  inspired  from the  well  known,  Promela.   S-Promela 
syntax’s  is based on 2 components (channel and process) and 2 operations (read and write) 
where its semantics is based on Labelled Transition Systems. The validation process is then 
achieved via 3 steps. The first one performs the inconsistency detection by looking for SP rules 
leading contradictory decisions. The second step provides a completeness proof by the use of 
the reachability graph concept. Finally,  the third step allows the proof of the preservation of 
security properties by. In this step, the security requirements are divided in two classes: safety 
and liveness. The safety properties proof is made using invariant generation and verification (by 
a model checker). The liveness properties proof is allowed if no cycle containing the opposite of 
the studied property is detected in the reachability graph. The infiniteness problem has been 
encountered for the reachability graph and has been resolved by the use of  two hypotheses 
concerning the  uniformity and  regularity  properties.  The  specific  case  of  environment  with 
multiple SP is also treated. 
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