
International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

EXECUTABLE SECURITY POLICIES: SPECIFICATION AND
VALIDATION OF SECURITY POLICIES

Ryma Abassi1 and Sihem Guemara El Fatmi2

1Sup’Com, University of 7th November, Tunisia
abassi.ryma@gmail.com

2Sup’Com, University of 7th November, Tunisia
sihem.guemara@supcom.rnu.tn

1 ABSTRACT

Security Policies constitute the core of network protection infrastructures. However, their development is
a sensitive task because it can be in opposition with the security requirements (e.g. lack of rule or
conflicting rules). A specification task seems to be indispensible in order to clarify the desired exigencies.
A validation process for security policies becomes then necessary before their deployment to avoid
resources network damages. Nowadays, there is no automated tool in the network security world
allowing such task. Moreover, we have found that the theory developed for this aim in the software
engineering domain can be adapted for security policies because several similarities exist between the
expressions of the needs in the two domains as mentioned in several studies. Hence, we propose in this
paper a specification and validation framework for security policies, inspired from software engineering
tools, where: (1) we introduce the concept of executable specifications to build the concept of Executable
Security Policies (2) we propose a new specification language based on an adapted modeling and
inspired from Promela (3) we build a validation model based on the newly introduced language and (4)
we define a 3-steps validation process of the executable security policy. The validation process is based
on the main security properties, i.e. consistency, completeness and preservation of safety and liveness.
Moreover, the consistency related to multiple security policies is treated through a detection algorithm
and a resolution method.

2 KEYWORDS

Security Policy, Executable Security Policy, Specification, S-Promela, Validation, Consistency,
Completeness, domain, conflict.

1. INTRODUCTION

Organizations are aware about the importance of securing their information systems to
guarantee basic security requirements, i.e. confidentiality, integrity and availability. Hence,
security solutions that are implemented without any previous analysis of the real security needs
can lead to important network assets damages. In order to prevent such lacks, it is relevant to
define before implementing any security solution, a set of security rules defining for each
request an adequate response allowing or denying the access according to the network security
requirements. When defined, these rules are grouped in a document and are commonly called
‘Security Policy’ (SP). So, it is essential to prove that the rules composing the SP are
conforming to a set of the security properties defined by the organization owner of the network.
The proof can be obtained by a validation process. Unfortunately, there is nowadays no
automated tool allowing this task in the security domain. The work presented in this paper
proposes an automated environment allowing the specification and the validation of SP. This
method is inspired from the theory established in the software engineering domain that presents
several similarities with the security domain concerning the two previous aspects [2, 3] that are
essential in any system development project and have been favorably considered. Their aim is to

1

mailto:sihem.guemara@supcom.rnu.tn
mailto:abassi.ryma@gmail.com

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

determine whether the requirements for a system or a component are complete and correct and
if the product of each development phase fulfils the requirements or conditions imposed by the
previous phase. They also determine whether the final system or component complies with
specified requirements. Hence, one of the major contributions of this paper is the use and/or
adaptation of tools and principles defined in software engineering to manipulate the SP
specification and validation. Mainly, we have focused on the executable specification concept
as a specification technique for validation purposes and have presented an approach to validate
a SP based on its executable specification.

Our contribution is 4-fold. First, the executable specification concept is introduced as a useful
tool to formally represent the SP components and hence the executable security policies (ESP)
concept. Second, a specification language inspired by Promela is proposed. This language is
based on a formal SP modeling intended to support the representation of all the aspects inherent
to SP and to provide the basis facilitating their validation. Hence, a well formed syntax is
proposed as well as a clear semantics. This latter cope principally with the system state
representation, the transition concept definition and the reachability graphs construction i.e.
represent the system state evolution). Third a validation process checking whether a candidate
security solution is conforming to a SP is proposed. This process, which is based on the
construction and the verification of the RGs, compares the evolution of the studied system while
running according to the SP or without it. The main shortcut of such proposition is that it may
return infinite state sets and consequently, infinite RG that are impossible to use. To remedy to
such problems, we introduced two hypotheses (uniformity and regularity) allowing the
reduction of the size of states set while preserving mandatory properties. Fourth, the special
case of multiple security policies environment is treated. In fact, consistency proving is different
in such environment.

The remaining part of this paper is structured as follows. Section 2 presents some Security
Policies basics. Section 3 introduces the concept of Executable Security Policy as well as its
inherent concepts’. Section 4 introduces S-Promela, our Executable Security Policy
specification language through a well defined syntax and a clear semantics. In Section 5, a
three-step validation process is proposed in order to deal with the consistency proving, the
completeness proving and the preservation of security properties proving. Finally, Section 6
concludes this paper.

2. SECURITY POLICIES BASICS

The RFC 2196 [1] defines a SP as a "formal statement of the rules by which people who are
given access to an organization technology and information assets must abide". More generally,
the main objective of a SP is to maintain the principles of the organization's general security
strategy. These principles cover several aspects such as detailed in [1]. However, due to the
diversity of these aspects, SP definition may generate some inconsistency or contain errors
concerning for example the needs expression. To avoid such problems, each SP definition
requires a validation process to check if the policy matches the security needs. The deployment
of such process is generally made through a SP modeling.

SP modeling constitutes a very important task because it helps the definition of the security
rules and allows their validation. We have modeled in previous works [2,3,4] a SP as a
communication mean following the several rules composing the SP, where a subject s reach an
object o only if the requested action a is granted by the SP. According to the previous SP
definition and considering the whole system in which a SP can be deployed, we have found that
a modeling task requires the definition of the following concepts: (1) subject (s) that represents
an active entity in the system like human users, employees, processes, applications or programs
(2) object (o) that represents a passive entity in the system like ports, data or hosts (3) action (a)

2

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

that represents an action that can be performed by a subject on an object like connection or read
and/or write requests (4) constraints (c) that used to precise an action applicability scope (5)
events (e) that are triggers of rules and (6) security rule that expresses the appropriate security
decisions (allow or deny) to be taken for each action attempt made by an object relatively to a
specific object.

These concepts are useful for the modeling of rules on which a SP can be based. For our part,
we have found that the following rules are sufficient to represent a SP and to formally specify
SP while specification is used principally to support the verification of the conformance of the
SP with the defined security requirements. This functionality is called validation. It is performed
at the specification level through the use of specific tools.

Authorization rule: allows making difference between the authorized and the unauthorized
subject’s actions. It could be viewed as a request for which a response is expected. Such rule
can be expressed as follows:

req(s × o × a × c × [e]) → resp

where resp is the response expected by the security rule. This response may evolve over time
i.e. according to the satisfaction of certain constraints; it can be yes or no. For example,
someone trying to access to his office is authorized to so only during work hours. Formally, this
situation can be expressed as: req(employee, access, office, time,-) → yes if time is during work
hours or req(employee, access, office, time,-)→ no if time is outside work hours.

Obligation rule: expresses actions that a subject s is forced to perform in response to the
occurrence of some event e. Such rule can be expressed as follows:

ob (s × a × o × [c] × e)

An obligation rule can be considered as an ECA rule (Event-Condition-Action) e.g “ON event
IF condition DO action”.

For example, ob (teacher, return, student-notes,-, at the latest 3 days after the exam) means that
a ‘teacher’ has to ‘return’ ‘student-notes’ ‘at the latest three days after the examination’.

Prohibition rule: states that the SP prohibits the occurrence of a certain action in the protected
system. The prohibition syntax is similar to the request rule syntax in that sense that it is a
request made by a subject and to which the SP must respond. However, prohibition response is
always 'no'. Formally, it is expressed by:

phb (s × a × o × [c] × [e]) → no

For example, someone trying to withdraw money from a bank account that does not belong to
him will always be forbidden to carry out this action. Formally, this can be expressed as: phb
(client, withdraw, money, foreign account, -) → no.

Delegation rule: enables a given subject s to delegate his permissions (according to an existing
SP) to perform a given action a to another subject r who wasn’t initially able to perform them.
Formally, it is expressed by:

delg (s × [a] × [o] × [c] × r × associated-rule) → resp

where r (recipient) is the delegation beneficiary, associated-rule is the rule by which s has a
given permission and resp can have the value ‘yes’ (positive delegation) or ‘no’ (negative
delegation). For example, the following rule states that an administrator cannot delegate his
right to modify passwords to students. This right was accorded to administrator by the rule r1.

3

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

delg (administrator, change, password, -, student, r1) → no

Let’s note that ‘[]’ introduce an optional argument and that ‘-’ replaces an empty argument e.g.
an optional argument not used in the rule.

In addition to the rules, another concept can be associated to a SP: the domain, usually noted by
Dom (SP). In [14], Hosmer defines a policy domain as “a logical construct defining the area of
responsibility of an authority”. In this work, we propose the following formalisation:

DEFINITION 1 (SP Domain) a SP domain is a set of objects (O), subjects (S) and actions (A)
where any subject can potentially manipulate any object through any operation according to
the SP. It can be expressed by:

Dom (SP) = S × O × A.

This definition leads to a rule domain definition that corresponds to a given object, subject and
operation where the subject can handle the object through the action.

3. EXECUTABLE SECURITY POLICIES

Let’s recall that we have found it useful to associate to SP specific tools allowing their
representation, proof and verification. Moreover, we have found several similarities between SP
engineering and software engineering concerning the three previous aspects handling such
mentioned and used in [3]. So, one of the major contributions presented in this paper concerns
the use of the tools and principles defined in software engineering to manipulate the major SP
aspects. Our aim is to define a SP by the mean of a formal specification and to validate it by the
mean of executable specification, like it is usually made in the software engineering domain. So,
because an executable specification can be considered as an extension of formal specification,
we have found it useful to propose Executable Securities Policies as an extension of Security
Policies.

3.1. ESP Definition

A SP can be viewed as a specification for security solutions as well as a software specification
has been defined as “a document that prescribes, in a complete, precise, verifiable manner, the
requirements, design, behaviour, or characteristics of a system or system component” [5].
Similarly, a SP can be depicted as giving a precise description of the required behaviour of any
secured network or network component. In addition, SP, like software specification must have a
clear syntax and a precise semantic.

However, SPs present some differences with software specifications. The main one is that
software specifications declare a process, using a modeling method, while a SP is just a set of
requirements. The second difference is that manipulated variables in software specifications are
essentially predefined types such as integers and floats, while objects and subjects manipulated
in SP are elements of the network such as work stations, servers, routers, firewalls and switches.

In this paper, only the similarities between software engineering and security engineering are
considered and used to construct the whole of our contribution.

In [2], we have proposed the concept of Executable Security Policy (ESP) as a mean of SP
validation. In fact, we defined an ESP as a SP model that can generate the expected behaviour
of a secured system communicating with its environment according to the security exigencies
specified by the SP. Moreover, when using ESP, the behaviour of the SP can be observed and
tested before it is actually performed on the desired system.

4

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

3.2. ESP Modeling basis

The ESP representation needs the use of an adequate specification language. In our context and
knowing the studied environment, we have found interesting to propose a new specification and
validation model inspired by Promela [6]. This choice is motivated by the following three
reasons. Firstly, Promela's type objects can be adequately used to represent the SP model
components depicted previously e.g. subjects by variables, rules by processes, etc. The second
reason justifying our choice is that a SP, like a protocol, formalizes the interaction of subjects
with their environment by standardizing the use of network assets. There is a third reason
allowing a proposition of a like-Promela model: Promela is associated with a model checker
(SPIN) that: (1) provides diagnostic information in the case where the property is not validated
(counterexample); (2) supports partial validation (no complete requirement specification is
needed) and (3) uses temporal logic that is required when specifying SP.

Figure 1 represents a SP as a mean of communication between two network components where
the communication is made following the several rules composing the SP. In this Figure, four
actors are depicted: the subject, the object, the SP and the trigger of events. All potential
interaction between a subject and an object must be made through the SP i.e. a subject cannot
interact directly with an object.

Figure 1. ESP modeling

In this Figure, the communication channel is split into four half duplex channels depending on
the actor where the request come from and the actor where the request is addressed. A subject s
submits his request via the channel s-to-SP. The SP verifies the legitimacy of the request from
the set of SP rules. In the case where the request is granted, it is transmitted to the
corresponding object o via the SP-to-o channel. The response of this request is then sent back by
the object via the o-to-SP channel. Once received by the SP, this response reaches the subject s
via the SP-to-s channel. In the case where the requested access is denied, the SP reject it into
the out channel and delivers to the subject an error message without implying the SP-to-o and
o-to-SP channels. Moreover, each channel can be accessed either for insertion or extraction.
Hence, a mode is associated to each one of these operations: the write mode for insertion and
the read mode for extraction.

The model represented by the Figure 1 considers also a trigger of events allowing the generation
of all potential events for which the SP must react. These events are useful for obligation rules
as explained previously.

Let’s note that the model depicted by Figure 1 is a generic one. It can be customized following a
particular rule type. In our context, three customized models respectively represented by Figure
2, Figure 3 and Figure 4 can be defined as follows.

Subject
(s)

SP

s-to-SP SP-to-o

o-to-SP

Object
(o)

Trigger of Events

SP-to-s

Event

Out

deny

5

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

3.2.1. Authorization rule modeling

As depicted by Figure 2, such rule can be described by the following elementary operations:
(1) A request is sent by s (s-write).
(2) The request is extracted by the SP (SP-read) and its legitimacy is verified.
(3) In the case where this request is granted, the SP forwards it in the adequate channel

corresponding to the destination object (SP-write).
(3’) However, if the request is denied, then it is simply dropped by SP into the channel out
while a reject notification is sent back to s.
(4) The object o extracts the request (o-read).
(5) , (6), (7) and (8) allows the object response to reach the subject.

Figure 2. Authorization rule modeling

3.2.2. Obligation rule modeling

Assuming that the SP has a predefined table containing all the events for which it must react
as well as their corresponding procedures, Figure 3 depicts the obligation rule modeling by the
following elementary steps:

(1) The event e is triggered,
(2) The SP initiates the corresponding obligation procedure to inform s that it has to

perform a particular action relatively to a particular object o (SP-write).
(3) The subject s extracts this action (s-write).
(4) The subject s inserts the action into the SP channel (s-write).
(5) The SP receives this action (SP-read).
(6) The SP forwards the received action without any verification, to the object o (SP-write).
(7) The object o extracts the action (o-read) which is so, performed.

Figure 3. Obligation rule modeling

3.2.3. Prohibition modeling

As represented by Figure 4, an obligation rule is depicted by the following elementary steps:

Subject
(s) SP

(1)
s-write

(7)
SP-write

(3)
SP-write

(5)
o-write

Object
(o)

(8)
s-read

(2)
SP-read

(6)
SP-read

(4)
o-read

Out

(3’) deny

Subject
(s) SP

(4)
s-write

(2)
SP-write

Object
(o)

(3)
s-read

(1) Trigger of Events

(7)
o-read

(5)
SP-read

(6)
SP-write

e

6

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

(1) A subject s sends a request to the SP that is known to be prohibited (s-write),
(2) The SP extracts the action (SP-read).
(3) The SP drops it on the Out channel and sends back a reject notification to the subject

(SP-write).
(4) The subject s is then acquainted with the prohibition (s-read).

Figure 4. Prohibition rule modeling

3.2.4. Delegation modeling

A delegation rule expresses what a subject can delegate (or not) to another subject. Hence, it can
be seen as authorization request handling with a right to delegate (by analogy to a request
dealing with an action to perform). In fact, when a subject requests to delegate a given right, the
SP verify the legitimacy of such request and then grants it or not. If the request is granted, it is
forwarded to the recipient. But, if it is forbidden, then it simply dropped (into the channel out)
and a notification is sent back to the subject. Hence, Figure 2 is still valid and depicts the
elementary operations generated by a positive delegation rule:

(1) The request is inserted into the channel by the subject (s-write).
(2) The SP extracts the request (SP-read).
(3) The SP inserts the delegation request into the adequate channel (SP-write).
(4) The object o (the recipient) extracts the request (o-read) and so, appropriates the rights.

However, steps (5), (6), (7) and (8) are not involved in such communication.

4. S-PROMELA: AN ESP SPECIFICATION LANGUAGE

Although, Promela is not adequate to specify SP because it was initially developed for SE, it
offers interesting concepts and basis that can be useful for SP domain. Hence, the aim of this
section is to introduce a new Promela based language, called S-Promela (Security-based
Promela). This language resumes the fundamental Promela basis and extends them with some
SP specificities needs. Moreover, S-Promela allows specifying in a precise way the desired
behavior of a subject interacting with objects and thus, in conformance with the SP rules. To be
able to define such language, we assume that each subject interacting, in a secured system (e.g.
by the use of a SP), with a given object does it through the SP and using elementary statements,
that we call security-policy based primitives.

4.1. S-Promela Syntax

An S-Promela specification defines a set of process. A process describes a rule.

SP S-PromelaSPec ::= Procs

Procs ::= Procd |Procs

Procd ::= Rule

Figure 5. S-Promela Specification structure

Subject
(s) SP

(1)
s-write

(3)
SP-write

(4)
s-read

(2)
SP-read

7

Out

deny

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

A ‘Rule’ is an iterative expression. As depicted by Figure 6, while a given condition holds, a
sequence of actions is performed. A ‘Condition’ can be either an expression or the occurrence
of an event. A ‘Sequence’ can be a primitive, a single action or another rule.

Rules Rule ::= ‘While’‘(’Condition‘)’‘do’ Sequence [andor Sequence]*

Condition ::= Expr |Evt-occur

Expr ::= Expr |Expr Binaop Expr
|Expr logic Expr |Sequence

Evt-occur ::= ‘occurs’ ‘(‘ event ‘)’

Sequence ::= ‘{’ Primitive ‘}’ | ‘{’ pfm-ation‘}’
|‘{’ Procd‘}’

Figure 6. BNF rule syntax

An important part of the S-Promela syntax is declaration. As depicted by Figure 7, an S-
Promela specification can use several variables types e.g. channel, subject, object, action,
message, event, constraint, notification. Moreover, a specification can include procedures,
structures with procedure and tables. A ‘Procedure’ is constituted by an action (or a set of
actions) that must be performed. A ‘Structure’ associates an event to a Procedure executed
when the event is triggered. A ‘Table’ is a set of ‘Structure’.

Declaration channel ::= name

|subject ::= name

|object ::= name

|action ::= name

|message ::= name

|event ::= name

|constraint ::= name

|notification ::= name

|Procedure ::= ‘procedure’ name ‘(’ [event] ‘)’

|Struct ::= ‘struct’ name ‘{’ (event, Procedure) * ‘}’

|Table ::= Struct name ‘[’ integer ‘]’

Figure 7. S-Promela Declaration Part

Pre-defined Terms define constants and terms such as ‘skip’, shorthand for a dummy; ‘Entity’
that can be a subject, an object or a SP or ‘Recipient’ that can be only a subject.

Pre-def terms Boolean ::= true |false

|Comment ::= /'*' comment '*'/

|skip ::= ‘skip’

8

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

|nil ::= ‘nil’

|Pfm-action ::= ‘pfm-action’ ‘(’ Entity ‘,’ Parameters ‘)’

|name ::= char [char | number] *

|Entity ::= subject |object |SP

|Recipient ::= subject

|Parameters ::= channel ‘,’ [action | message] ‘,’ object
|action |event |constraint

|Affectation ::= Var ‘=’ Expr

|Var ::= Entity |event |message

Figure 8. Predefined terms BNF syntax

An S-Promela specification uses also control flow expressions as depicted by Figure 9. A
‘Conditional’ expression resumes the classical if-then-else statement. A ‘Separator’ allows
enumerating expressions. The logical operators ‘&&’ and ‘||’ are used respectively for expressing
conjunction and disjunction. Binary operators ‘Binarop’ are used in order to perform expression
comparison.

Ctrl-flow Conditional ::= ‘If’ ‘(’ Condition ’)’ ‘then’ Sequence [andor Sequence]*
 [‘else’ Sequence]

|Separator ::= Expr ‘;’ Expr

|Andor ::= ‘&&’ | ‘||’

|Binarop ::= ‘==’ | ‘<’ | ‘>’
| ‘≠’ |‘≥’ |‘≤’

Figure 9. Control flow BNF syntax

Figure 10 depicts S-Promela basic statements. In accordance to our modeling,
introduced previously, two primitives can be used: ‘write’ and ‘read’. The write
statements allows to an entity (subject, object or SP) to insert into a channel where
the read statements allows to an entity to extract from a channel.

Basic stmts |Primitive ::= Write |Read

|Write ::= entity ‘-’ ‘write’ ‘(’ parameters ‘)’.

|Read ::= entity ‘-’ ‘read’ ‘(’ parameters ‘)’.

Figure 10. Basic statements BNF syntax

Let’s recall that obligation rules are triggered by an event. More precisely, the
trigger can be a single or a composed event. A composed event is either a
‘Synchronization’ of events e.g. conjunction or disjunction, a ‘Precedence’ between
events or a ‘Repetition’ of a given event.

Evt operators Synchronization ::= ˄ |˅
|precedence ::= event1 → event2

|repetition ::= n * event

Figure 11. Event composition operators BNF syntax

9

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

4.2. S-Promela Semantics

The S-Promela semantics, defines the behaviour of an S-Promela model by describing how the
global directed graph of all reachable system state, for any given S-Promela model is to be
generated. Similarly to Promela, the semantics of S-Promela is defined in terms of an
operational model [6]. This model contains one or more processes, zero or more variables, zero
or more channels, and a semantics engine' that defines how the actions of the processes may be
interleaved in time. The processes are defined by Reachability Graphs (RG) defined as (P, PS,
∑, →) such that:

• P is the starting state.

• Ps is the set of states.

• ∑ is the set of labels = {write, read, evt-occur}.

• → ⊆ Ps ×∑× Ps is a transition relation.

Let’s recall that seven components representing the studied environment have been revealed:
(1) four unidirectional channels, (2) two operation modes, read and write and (3) a SP. Each
channel can be characterized by a state observed at a given time. A channel state is defined by
an ordered list of the operations inserted to it (by s-write, f-write) but haven’t been extracted yet
(by SP-read, o-read). Any operation made on the channel, is registered as an event and leads to
a channel content modification and so to a channel state modification. Formally, to each channel
state Si ∈ Ps, we associate the time ti that corresponds to the occurrence time of the event leading
to it.
Figure 12 depicts two successive occurrence channel state modifications observed at the
instants ti-1 and ti+1 and generated respectively by the arrival of the requests ri-1 and ri+1 which are
two legitimate SP inputs. Let’s note that in this figure, the request ri has been dropped because
denied by the associated rule and hence, the current state Si-1 is maintained.

Figure12. Temporal channel state evolution

The channel state observed at a given time tobs correspond to the channel state Si established at
the time ti where ti < tobs and ti is the last time before tobs corresponding to the last channel
modification. Hence, the description of the system state is based on a set of couples depicting
the manipulated input and the destination object.
As denoted by Figure 13, the system state observed at tobs ∈ [ti-1, ti+2] is defined by {ti, (ri, oi),
(ri+1, oi+1)} knowing that ti+1 is the time corresponding to the last observed event, (ri, oi), (ri+1,
oi+1) are the content of the channel and (ri-1, oi-1) has been already extracted by the destination.

10

ti-1 ti+1

State Si-1State Si

SP-write SP-write

ri-1 ri ri+1

ti-1
Si+1

SP-write SP-write

ri-1 ri+1

SP-write

o-read

ri

SP-write

ti+1ti
SiSi-1

tobs

t
i+2

r
i+2

S
i+2

t

t

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

Figure13. System State Representation

Let’s note that the considered channels are managed following a FIFO discipline in that sense
that the extraction of the request ri-1 implies that all the precedent requests were already
extracted.

5. SECURITY POLICIES VALIDATION USING EXECUTABLE SECURITY POLICIES

According to Lindsay [7], "the validation of a SP model can be done by showing that the
specification is mathematically consistent, the security enforcing functions preserve the desired
security properties, and the specification is complete with respect to its input space". Similarly,
our SP validation process can be defined by 3 steps: (1) the consistency proof, (2) the
completeness proof and (3) the SP properties preservation as presented by the remaining part of
this section.

5.1. Consistency proof

In the software engineering domain, consistency is defined as a "property stating that there are
no requirements that contradict each other" [8]. In SP context, we define consistency as a
property stating that there are no rules that contradict each other. In order to prove consistency,
we propose to look about inconsistencies and thus based on rules relations. These relations are
based on the five rules components, i.e. subjects, objects, actions, constraints and events. Let Ri

and Rj be two rules. We note by Si (respc Sj) the Ri (respc Rj) subject set; by Oi (respc Oj) the Ri

(respc Rj) objects set; by Ai (respc Aj) the Ri (respc Rj) action; by Ci (respc Cj) the Ri (respc Rj)
constraint set and by Ei (respc Ej) the Ri (respc Rj) event set. Six relations can be observed
between these sets. Let’s note that these relations are widely used in the literatture [11]. So, we
tried to propose a new formalization adapted to the SP field as well as two new relations
appropriate for SP. This can be expressed by the following six definitions.

DEFINITION 2 (Equality, ‘=’) Rules Ri and Rj are equal if every component in Ri is equal to its
corresponding component in Rj. Formally, Ri = Rj iff :

Si = Sj and Oi = Oj and Ai =Aj and Ci = Cj and Ei =Ej

DEFINITION 3 (Intersection,’∩’) Rules Ri and Rj have an intersection if every component in Ri

is a subset or a superset or equal to its corresponding component in Rj.
Formally Ri ∩ Rj ≠ ∅ iff

∃ s, o, a,c,e / s∈Si ∩ Sj, o∈Oi ∩ Oj, a∈Ai ∩Aj, c∈Ci ∩ Cj, e∈Ei ∩ Ej And
∃ s’, o’, a’, c’, e’ / s’∉ Si ∩ Sj, o’∉ Oi∩ Oj, a’∉ Ai ∩ Aj, c’∉ Ci∩ Cj, e’∉ Ei∩ Ej,

DEFINITION 4 (Generalization, ‘⊂’) Rule Ri generalizes Rj if they do not exactly match and if
every component in Ri is a subset or equal to its corresponding component in Rj.
Formally, Rj ⊂ Ri iff

∀s ∈Sj, ∀o ∈Oj ,∀a ∈Aj ,∀c ∈Cj ,∀e ∈Ej / s∈ Si, o∈ Oi, a∈ Ai ,c∈ Ci , e∈ Ei And
∃ s’∈Si, o’∈Oi, a’∈Ai , c’∈Ci, e’∈Ei, / s’ ∉ Sj, o’∉ Oj ,a’∉ Aj, c’∉ Cj, e’∉ Ej.

11

t

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

DEFINITION 5 (Disjunction, ‘≠’) Rules Ri and Rj are disjoint if there is at least one component
of Ri does not interfere with its corresponding component in Rj. Formally, Ri ≠ Rj iff

Si ∩ Sj =∅ or Oi ∩ Oj =∅ or Ai ∩ Aj =∅

In addition to these classical relations, we propose two new relations: dependence and cross
dependence.

DEFINITION 6 (Dependence, ‘⊕’) Rule Ri is dependent of rule Rj if Ri subjects and objects
are equal or a superset to their corresponding in Ri while the operation field of Ri is a
superset to its corresponding in Ri .Formally, Rj ⊕ Ri iff

Si ⊇ Sj and Oi ⊇ Oj and Ai ⊂ Aj

DEFINITION 7 (Cross dependence, ‘⊗’) Rule Ri is cross dependent of rule Rj if Ri subjects
are equal or a superset to their corresponding in Ri , the Ri objects are subset of their
corresponding in Ri while the operation field of Ri is a superset to its corresponding in Ri .
Formally, Rj ⊗ Ri iff

Si ⊃ Sj and Oi ⊂ Oj and Ai ⊂ Aj
or

Si ⊂ Sj and Oi ⊃ Oj and Ai ⊂ Aj

The consistency proof proposed in this paper is summarized by Algorithm 1 in which the SP is
checked by evaluating rules two by two. The domain of a rule corresponds to the set of potential
packets that can be treated by the rule filter and for which it can give a response. The first action
is then to compute the domain intersection R. If it is empty then Ri and Rj are consistent; else the
second alternative is to look for an element, belonging to the intersection-rule, and that lead to
two different responses. If such element exists, then an inconsistency is detected.

For each couple of rules (Ri, Rj)

R ← dom (Ri) ∩ dom (Rj)

if (R = ∅) then consistency

else if (∃p ∈ R / (respi(p)≠ respj(p)))

then inconsistency

Algorithm1. Consistency proof

We have to note, however, that this detection procedure has an exponential complexity. But, the
examples we have considered have few rules, thus problem is still tractable.

5.2. Completeness proof

Completeness in the software engineering domain is defined as a "property stating that all
significant requirements are included, and responses to all possible inputs are defined" [8]. In
SP context, we define completeness as a property stating that all significant security
requirements are included and that rules, allowing the SP to respond to all possible inputs, are
defined.
In order to prove the completeness of SP, we propose to use a reachability analysis of the states
set. This analysis is done via two RGs. Figure 12 depicts this proposition: the first step is to
compute all the potential acceptable actions (that a subject can perform) from the initial state.

12

do

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

Each action leads to a state which is attached to the attempts RG Uar (the right one in the
figure). Then, a label “secure” is associated to states declared as being acceptable. Moreover,
the graph is supposed to be made finite-state. To that effect, a depth limit is imposed. The
second step is to compute, parting from the same initial state, all the states that can be reached
according to the SP rules. These states constitute the secure RG Usr (the left one in the figure).

Figure 12. Completeness proof

The third step is hence, to compare the two graphs: each labelled state must appear in Uar
otherwise, the SP is incomplete and rules must be added. The completeness problem is then
reduced to the verification that all secure-marked states belonging to Uar belong also to Usr.

5.3. Security properties preservation proof

Security properties are essentially integrity, confidentially, access control and availability [1]. In
order to prove the preservation of these properties we started by associating them to two classes:
liveness and safety. Then, we generated appropriate claims and proposed an adequate
methodology to each one of the previous classes. The use of a model checker allows to validate
(or invalidate) the previous properties. Generally, the latter is reduced to checking emptiness of
automata. In our case, it has to prove safety and liveness properties. This can be done with the
help of a reachability analysis of a finite state model as mentioned by the authors of [9]. The
remaining part of this subsection deals with the proof of the two properties.

Liveness property: is a statement claiming that something “good” will “eventually” happen. In
other words, a liveness property dictates that a given activity will eventually be performed,
presumably because it is good and desirable. Good condition can be represented by an assertion
PL and the fact that it will eventually occur during the execution by ◊PL.
For SPs, “good things” are actions that if happen do not compromise the system security.
However, the formalisation presented above cannot be directly transposed to SP. In fact, a
future response is not sufficient: a temporal limit must be specified and respected. Let us
consider the context of the Dos attack. In this attack, a user is prevented from using a remote
resource by, for instance, flooding the network with bogus messages. Here, the “good thing” is
the possibility for a host to reply in a limited time. Hence, liveness is the guarantee of a
maximum waiting delay for each operation. This can be formalized by: p => ◊d q where p and
q are assertions and ‘◊d ’denotes: finally before a given delay.

Safety property: is a statement claiming that something "bad" will not happen. In other words,
a safety property dictates that a given activity will never be performed presumably because the
activity is bad and undesirable.
For SP, “bad things” are actions that if they happen compromise the system security. Hence, SP
safety properties are statement claiming that actions compromising system security never
happen. Bad things can be represented by an assertion Ps which is mapped to true in exactly
those states in which the condition is true. For a safety property to be true ¬Ps must be an
invariant. A property Ps is an invariant if for each execution ρ =S0 S1 …Sn where S0 = initial state

Secure

Secure

Secure

Uar Usr

13

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

and S1 …Sn successor states and for any i ∈N, Si |= Ps. Thus, an invariant is expressed as □PS

= ∀i PS (Si).
The verification of such properties can be made by the use of invariants trough a search of the
state space. First, we generate invariant corresponding to the compromising action. Second,
while exploring the RG, the invariant is verified with a Boolean test. If a specification violates
the invariant and consequently the safety property, then there is a finite behaviour that displays
the violation. The following depicts an invariant modeling through the use of never claim as in
Promela [6] and depicted as follows:

Never {/* two state machine: initial and final */
 do
 :: SP /* must be verified in the initial state of the SP model */
 :: ! SP → break /*final state /
 od
}

5.4. Deriving Finite Reachability Graphs from Security Policies Specification

In order to validate a SP, two kinds of RGs are generated from it specification as presented
previously. These graphs have to be finite, complete and correct. In fact, an exhaustive RG is
not usable in practice since it is infinite. For this reason, we have adapted the techniques used by
Gaudel in [10], especially those used to reduce an exhaustive set.
Let SS be a SP specification and ESS an ESP under validation. A validation is successful if it
concludes to the satisfaction of the validation experiment by ESS, and we note it ESS |= Γ where
Γ is the validation, i.e. completeness properties. Given a specification SP, the exhaustive
validation set for it, noted Exhaust RG is the set of all the states of the RG:

Exhaust RG = {Φσ| Φ ∈ SS, σ = σi: var (Φ)i →Ti| i ∈ I}

where Ti is the validation properties set and I is the set of states components.

An exhaustive validation of ESS against SS is the set of all the validation experiments of ESS
against the states belonging to the exhaustive RG Exhaust RG.
Because it is practically impossible to consider the exhaustive RG due to its infiniteness, we
introduce the concept of hypotheses that is shown to considerably reduce the RG size.

Let’s have ExhaustRG, the validation set for the policy specification SS resulting from the
construction of the exhaustive RG. Even though it covers all the validation space, this validation
set is practically not useful to assess all SP implementations because it is often infinite. Hence,
during RG construction, only a subset of ExhaustRG may be sufficient. However, some
properties should be guaranteed by this subset. Eliminating infiniteness must be done according
to a procedure that preserves the properties of ExhaustRG. The two major requirements consist in
the fact that the selected states set should be valid and unbiased [10]; meaning that incorrect SP
implementations should be discarded, and that all correct SP implementations are accepted. To
this end, we use selection hypotheses in order to reduce the exhaustive validation set
(particularly RG) to a finite validation set (and consequently finite RG). Two hypotheses are
considered: uniformity and regularity. Formally, they are expressed by the following
definitions.

Definition 1: Uniformity hypothesis. Given a rule Φ (X) where X is a variable, a uniformity
hypothesis on a sub-domain D for an ESP ESP is the assumption:

(∀t0 ∈ D) (P ╞ Φ (t0)) (∀ t∈ D) (P ╞ Φ (t))

14

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

This hypothesis states that the validation result can be generalized to a whole domain if the
validation is performed at a single point of this domain. This corresponds to the determination
of sub-domains of the variables where the program is supposed to have the same behaviour.
Assuming that, it is no more necessary to have all the ground instances of the variables but only
one by sub-domain. Such criteria are modelled in our framework by uniformity hypotheses
Another type of hypothesis, called the regularity hypothesis, relies on generating states for
several variables that do not exceed a defined 'size'. This notion of size can be customized to
represent multiple aspects of SP objects.

Definition 2: Regularity hypothesis. Given a vocabulary Σ, a rule Φ (X) where X is a variable,
a function of interest |t|, a regularity hypothesis for a program P is the assumption:

((∀ t ∈ Σ) (t≤ k ⇒ P |= Φ (t))) ⇒ (∀ t ∈Τ ∑) (P |= Φ(t)).

6. DEALING WITH MULTIPLE SECURITY POLICIES ENVIRONMENT

When various SPs are used, several problems can be observed, of whom we can note the three
more important. The first one concerns a modeling problem: when several SP models are used
(R-BAC [16], LaPadula [15] …), a communication problem due to the heterogeneity of these
latter may occurs. The second problem concerns the SP implementation where several
mechanisms can be employed for the same security service. The third problem, that constitutes
our interest object in this paper, is related to a coexistence problem: various SPs are used and
conflicting responses are obtained for the same request.
According to [12], a policy conflict “occurs when the actions of two rules that are both satisfied
simultaneously contradict each other” and creates a problem because “the entity implementing
the policy would not be able to determine which action to perform”.
Similarly, a multi-policy conflict occurs when the interaction between a given subject and a
given object can be achieved via several SPs for the same operation. This situation creates a
conflict if the involved SPs give contradictory responses.
In the following sub-sections, a formalization of multi SPs conflicts is given based on a
definition of potential SP domain relations.

6.1. Multi Policy Environment Conflict definition

According to the SP rules formalization introduced in Sub-Section 5.1, we have brought out two
conflict kinds i.e. “modality conflict” and “type conflict”. Modality conflicts are due to the
existence of a domain relation (such presented above) as well as a rule modality difference.
Type conflicts, however, are due to the existence of a domain relation as well as a rule type and
modality difference.
Let’s recall that we specified a rule by the following 7-uplets: (type, modality, subject, object,
action, [constraint], [event]) and let’s note by Ti, the type of the rule Ri and by Mi its modality.

DEFINITION 7 (Modality Conflict) A modality conflict, between two rules R1 and R2, occurs if
they have the same type (T1 = T2), a domain relation (equality, dependence, intersection or
generalization) and different modalities (M1 ≠ M2).

According to this definition and to the previously introduced rules formalization, one can note
two modality conflicts: the first one occurs when obligation/ interdiction rules are interacting.
The second one occurs when positive request/ negative request rules are interacting.

DEFINITION 8 (Type Conflict) A type conflict, between two rules R1 and R2, occurs if they
have a domain relation (equality, dependence, intersection or generalization), different
modalities (M1 ≠ M2) and different types (T1 ≠ T2).

15

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

According to the rules formalization specified previously, two type conflicts can arise. The first
one occurs when positive request / interdiction rules are interacting. The second one occurs
when negative request/ obligation rules are interacting.

6.2. Multi Policy Environment Conflict Detection
The first step towards conflict resolution is the detection. In the following, we propose an
algorithm for SP conflicts detection according to the formalization introduced above.
Let’s start by giving the assumptions used in this algorithm. First, we associate to each rule the
structure: R= {type t, modality m, Subject s, Object o, Action a}
Second, we assume that the intersection of two rules (let’s say Ri and Rj) is a rule (let’s say R)
such that:

 Ri.s ∩ Rj.s R.s
Ri ∩ Rj ≡ Ri.o ∩ Rj.o = R.o

 Ri.a ∩ Rj.a R.a

Third, we note by Di=Dom(Ri); Dj=Dom(Rj); D= Dom(R).
The detection algorithm can be then, depicted following two steps. In the first step, the
intersection of rules domain is computed: all the presented relations can be inferred from the
intersection i.e. they are special cases of the intersection. In the second step, this intersection is
tested. If it isn’t empty then a potential conflict may exist. Else (if the rule domains do not
coincide), the rules are disjoint and there is no conflict. These steps are detailed as follows.

Input: Ri ; Rj
Output: conflict

1: For each couple of rules (Ri, Rj) do
2: If mi ≠ mj then {different modalities}
3: D Dom(Ri) Dom(Rj)← ∩
4: if (D = Di = Dj) then {Domains are equal}
5: relation ← true
6: conflict ← EQUALITY
7: else if ((D = Di) or (D = Dj)) then {one domain is
completely included in the other}
8: relation ← true
9: conflict ← GENERALIZATION
10: else if (R.a = Ri.a) or (R.a = Rj.a) then {this rule
is dependent of the other}
11: relation ← true
12: conflict ← DEPENDENCE
13: else
14: relation ← true
15: conflict ← INTERSECTION
16: end if
17: else {no relations exist}
18: relation ← false
19: end if
20: if ti ≠ tj and mi ≠ mj and relation = true then {different
types and modalities but there is a domain relation}
21: conflict ← TYPE {type conflict}
22: end if
23: end for

Algorithm2. SP conflict detection Algorithm

16

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

Algorithm2 discovers rule conflicts by implementing the rule relations presented previously.
Moreover, the algorithm can detect modalities conflicts corresponding to domain relations (lines
3-19) as well as type conflicts (lines 20-22).

6.3. Multi Policies Environment Conflicts Resolution
The resolution approach proposed in this paper creates a specific view each time a conflict
situation occurs. This view considers all the non conflicting rules added to a set of alternative
rules, each alternative rule can be one of the conflicting rules or a new rule, defined by the
conflict resolution process. The alternative rule choice can be done according to two extreme
approaches:

Permissive approach: states that the positive rule is retained. However, this solution is not
secure because it may allow the achievement of forbidden actions.

Restrictive approach: states that the negative rule is retained. However, this decision is also not
useful because it is too limitable.

In the following, a resolution approach mixing the permissive and the restrictive approaches and
based on SP combination is presented i.e. generating a conflict free SP view from two
conflicting SP as defined in DEFINITION 10.

DEFINITION 9 (rule combination) A combination of two rules (R1 and R2) associated
respectively to D1=Dom (R1) and D2=Dom (R2) is a symmetric operation that can modify R1 and
R2 and/or generates a new rule R3 with a domain D3 and that using some alternative rules.

DEFINITION 10 (SP combination) A SP combination is the set of rules combination where the
combination of two sub SPs (SP1 and SP2) generates a new policy SP3.

The combination process is based on two steps: modality conflict resolution and type conflict
resolution.

6.3.1. Modality conflict resolution
When two conflicting rules have the same type but different modalities, they are treated
according to the relation they’re involved in. Formally, given two SPs, SP1 and SP2 such that
R1 ∈ SP1 and R2 ∈ SP2,

Equality conflict: in this case, the retained rule can be the negative one if the restrictive
approach is privileged or the positive one if the permissive approach is the privileged.

If R1=R2 then SP3 ← {R1 or R2}1

Generalization conflict: the proposed solution is to conserve the more specific rule and to
modify the more general to remove the common part (already treated by the first rule).

If R1⊂ R2 then SP3 ← {R1 and R2\R1}
where ‘ \’ stands for except.

Intersection conflict: the proposed solution is to add a third rule dealing with the common part
while removing it from the two existing rules.

If Rc = R1 ∩ R2 then SP3 ← {R1\ Rc, R2\Rc, Rc}
The problem arise here is the Rc modality. Our proposition is to apply a modality according to
the chosen approach.

Dependence conflict: two solutions are proposed: remove the dependent rule (if there is
equality between subjects and objects) or remove the common part from the dependent rule.

1 According to the adopted approach

17

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

If R1.s=R2.s and R1.o=R2.o and R1.op ⊂ R2.op then
SP3 ← {R2}

However, if the subject and the object of one rule are included in their corresponding in the
other rule, then we propose to remove the common part from the dependent rule.

If R1.s ⊃ R2.s and R1.o ⊃R2.o and R1.op ⊂ R2.op then
SP3 ← {R1.s\R2.s and R2}

Cross Dependence conflict: the proposed solution is to remove the common part from the
dependent rule.

If R1.s⊃ R2.s and R1.o⊂ R2.o and R1.op ⊂ R2.op then
SP3 ← {R1.s\R2.s, R2}

For the second case of cross dependence:
If R1.s⊂ R2.s and R1.o⊃ R2.o and R1.op ⊂ R2.op then

SP3 ← {R1.o\R2.o, R2}
6.3.2. Type conflict resolution
The second kind of conflict is “type conflict”. Our resolution proposition is to give priority to
the obligation type regard to request. In fact, we assume that obligation includes implicitly the
authorization e.g. a subject that is required to update his password is implicitly authorized to
achieve this update. This is expressed by the following precedence principle:

“Positive (respectively Negative) obligation overrides the negative (respectively positive)
request”

Let’s consider the following two rules:
R1: req (teacher, change, password) → no
R2: ob (teacher, change, password, beginning- month)
There is a type conflict because a teacher is obliged to change his password monthly by R2 but
he isn’t authorized to do this change by R1. Using the precedence principle proposed
previously, the first rule is removed and the SP view will contain only R2.

6.3.3. Non conflicting rules combination
Since the proposed conflict resolution method is the combination; one must be able to deal with
non conflicting rules belonging to the conflicting SPs.
The compound rule (noted R12) of two not conflicting rules (let’s say R1 and R2), is the union of
the two rules given by:

R12 = R1 ∪ R2.
For example, a rule disallowing access to files can be used in combination with a rule
disallowing access to the network; the resulting rule disallows access to both files and the
network.

6.3.4. SP combination completeness
Once, SP combination was presented, one must be sure that the obtained SP view preserves all
the domain elements. Similarly to the completeness definition presented in [13], we propose the
following:

DEFINITION 11 (Completeness of SP combination) a SP combination is complete if any
element of the sub-SP domain belongs after combination, to the compound domain. The
completeness of SP = Φ (SP1… SPk) (where Φ is a combination of alternative rules) can be
expressed by)())((SPdomSPdom

i i ⊆� .

PROPERTY 1. The SP combination by alternative rules is complete.
PROOF. From Definition 1, a SP domain, Dom (SP), can be split in three sub domains at the
most, S, O and A. In Definition 10, all elements of Dom (SP) are remapped by the rules defined

18

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

in Sub-Section 6-3-1, where each element is remapped to a new sub-domain. Therefore, the SP
combination is complete.

7. CONCLUSION

Developing a SP is a sensitive task because the policy itself can lead to security weaknesses if it
is not conform to the security needs of the organization. Hence, appropriate techniques are
necessary to check whether a SP verifies the desired properties. These techniques, that should
be the basis of a SP validation task, are unfortunately unavailable in the network security
domain.
In this paper, we have proposed a SP modeling, specification and validation technique, inspired
from the techniques used in software engineering and mainly based on the executable
specification policy (ESP) and the reachability graph concepts. In fact, we introduced in this
paper the ESP concept allowing the specification of the SP and the verification of its
conformance with regard to the security needs. For the SP specification, we proposed S-
Promela, a new executable language inspired from the well known, Promela. S-Promela
syntax’s is based on 2 components (channel and process) and 2 operations (read and write)
where its semantics is based on Labelled Transition Systems. The validation process is then
achieved via 3 steps. The first one performs the inconsistency detection by looking for SP rules
leading contradictory decisions. The second step provides a completeness proof by the use of
the reachability graph concept. Finally, the third step allows the proof of the preservation of
security properties by. In this step, the security requirements are divided in two classes: safety
and liveness. The safety properties proof is made using invariant generation and verification (by
a model checker). The liveness properties proof is allowed if no cycle containing the opposite of
the studied property is detected in the reachability graph. The infiniteness problem has been
encountered for the reachability graph and has been resolved by the use of two hypotheses
concerning the uniformity and regularity properties. The specific case of environment with
multiple SP is also treated.

REFERENCES

[1] Fraser, B. editor, (1997) RFC 2196, Site Security Handbook.

[2] R. Abbassi and S. Guemara El Fatmi, (2008) “A Model for Specification and Validation of
Security Policies in Communication Networks: the firewall case”, In Proceedings of the Third
International Conference on Availability, Reliability and Security, ARES 2008, pp. 467-473,
Barcelona, Spain.

[3] R. Abbassi and S. Guemara El Fatmi, (2008) “An Automated Validation Method for Security
Policies: the firewall case”, In Proceedings of the Fourth International Conference in Information
and Security, IAS 2008, pp 291-294. Naples, Italy.

[4] R. Abbassi and S. Guemara El Fatmi, (2008) “Towards an Automated Firewall Security Policies
Validation Process”, In Proceedings of the Third International Conference on Risks and Security
of Internet and Systems, CRISIS 2008, pp. 267-272, Tozeur, Tunisia.

[5] Institute of Electrical and Electronic Engineers, IEEE (1993). Draft Guide for Information
Technology, IEEE, 345 East 47th Street, New York, NY.

[6] G.J. Holzmann, (1991) "Design and Validation of Communication Protocols", Prentice Hall.

[7] P. A. Lindsay, (1997) "Specification and validation of a network security policy model",
Tech.Rep. 97-05, Software Verification Research Centre, the University of Queensland.

[8] IEEE Guide to Software Requirements Specification. ANSI / IEEE Std 830.

[9] G.J. Holzmann and D. Pelled, (1994) “An Improvement in Formal Verification”, In Proceedings
of FORTE 1994 Conference, Bern, Switzerland.

19

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 1, August 2009

[10] M.C. Gaudel, (1995) "Testing can be formal too" TAPSOFT95, LNCS. Springer Verlag, Vol.
915, pp. 82-96.

[11] E. Al-Shaer and H. Hamed, (2004) “Discovery of Policy Anomalies in Distributed Firewalls.”
In Proceedings of IEEE INFOCOM’2004.

[12] RFC 3198, (2001) “Terminology for Policy-Based Management”, IETF Request for Comments
3198.

[13] J. Dai and J. Alves-Foss, (2003) “A Formal Authorization Policy Model”. Proc. Software
Engineering Research & Applications (SERA '03).

[14] Hosner, H.H, (1993) “The Multipolicy Paradigm for Trusted Systems”, In Proceedings of the
1992-1993 workshop on New security paradigms, p.19-32.

[15] D. E. Bell and L. J. LaPadula, (1976) “Secure Computer Systems: Unified Exposition and
Multics Interpretation”. Technical Report MTR-2997 Rev.1, MITRE Corporation, Bedford,
Mass.

[16] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, (2003) “A LogicalFramework for Reasoning
about Access Control Models”. ACM Transactions on Information and System Security.

Authors

Ryma Abassi is a PH.D candidate in the Higher
School of Communication of Tunis and
member of the ‘Communication
Networks and Security’ research Lab.
She received a Master’s Degree in
Telecommunications in 2005. She is
also working as a teacher in the Higher
Institute of Technological Studies. Her
research interests include network
security, formal specification as well as
validation and verification techniques.

Sihem Guemara EL Fatmi is a Professor in the
Higher School of Communication of
Tunis and member of the
‘Communication Networks and
Security’ research Lab. She received
her PH.D in Computer Science from
the University Pierre and Marie Curie,
Paris VI in 1983. Dr. Sihem Guemara
El Fatmi has many journal and
conference publications in the area of
network security, formal specification,
validation and verification techniques,
quality of Service and optical
Networks.

20

	1 Abstract
	2 Keywords

