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1 Executive Summary

1.1 Challenge

We were tasked with evaluating fairness in its myriad forms, and mapping
the various expressions of fairness to the data science workflow.
Accenture challenged us to aggregate and organise the elements of the
fairness literature into a manageable structure, and to provide meaningful
visualisations that facilitate productive discussions around fairness in an
analytical project. In this study, we focus on financial services and, in
particular, on credit allowance in retail banking, where there is a
prevalence of algorithms impacting customers and the services they are
able to receive.

1.2 Objectives

Our overall aim was to create a workflow to facilitate reasoning about
potential issues of fairness at various stages of the analytical process.
Accenture needed a means of quantifying fairness, and improving upon
any unfairness present in a process. Imposing fairness constraints often
comes at the cost of model accuracy. It was important for the tool to
include evaluations of the fairness-accuracy and fairness-cost trade-offs.
Most importantly, since Accenture deals with a diversity of analytical
projects, a flexible tool that could work with many types of analysis was
required.

1.3 Approach

Fairness comes in many varieties and different considerations apply to
different stages of the analytics process. Furthermore, it is not always
clear what the right approach to achieving fairness is. These
considerations are sometimes the remit of the data scientist, but more
often also require input from experts and consultant in the relevant field.
With this in mind, we decided that the most useful tool we could develop
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would lay the groundwork for a structured means of considering fairness
at the various stages of data analytics, from data exploration through to
model finalisation.

Our approach over the five days began with a review of the literature on
the various aspects of fairness. We assessed the ways in which the data
scientist’s work is impacted by fairness considerations and then
prototyped a workflow that could begin to facilitate these requirements.
We then honed in on particular aspects of quantitative fairness that could
form part of a lightweight analytics tool. Finally, experiments were carried
out and options for visualisations explored. We believe we have laid the
groundwork for this tool by providing a means for reasoning about, and
visualising metrics of, fairness for analysts and consultants who may not
be aware of hidden prejudices in their data set or model. We have
mapped some qualitative definitions of fairness onto their quantitative
counterparts.

1.4 Limitations

• The German Credit Data Set is relatively small. It contained the
decision taken on whether to grant the loan or not, but did not
include an indicator on whether individuals who were granted a loan
repaid it or not.

• Sometimes unfairness cannot be truly remedied algorithmically but
requires human intervention and possibly a change in for example
the data-gathering process. This is an inherent limitation within which
our week’s work had to operate.

• We have focused on fairness issues mainly at the stages of data
preparation and model building. While we brought attention to the
wider context in which these stages belong, we did not have enough
time to adequately expand upon the other parts of the workflow.
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1.5 Sections overview

In Section 2 we provide further details on the workflow concepts. Section
3 introduces the German Credit Data [1]. Concepts of quantitative fairness
are defined and discussed in Section 4, and experiments based on these
definitions are in Section 5. Suggestions for further work are in Section 6.
We were a team of fourteen, all from different fields of research, and all
deeply engaged in the issues of fairness that loom large in a society that’s
increasingly regulated by algorithms. In Section 7 a short description of
each member is provided.

2 Mapping the analytical journey

In order to get from the initial proposition of an analytical project to the
finalised results, a lot of data processing occurs and a lot of decisions
are taken. There are many points in the process where fairness concerns
are relevant, so that it can be challenging to remain cognizant of every
potential issue. We propose a lightweight fairness assessment tool that
integrates the various modules of the data science workflow.

Our aim is to establish fairness safeguards as a crucial and standard
element of model evaluation, and, more generally, to raise awareness
amongst data scientists, consultants, and others involved in the decision
making process. We spoke to a retail banking expert who underlined the
need for integrated guidelines on the qualitative and quantitative forms of
fairness.

Figure 1 compartmentalises the data journey, highlighting some fairness
considerations that can be accounted for at each stage. Olteanu et al. [2]
provide a taxonomy of biases that can occur. Here, we step through the
analytics workflow, drawing attention to a few examples of biases that can
arise. We recommend a close reading of Olteanu et al. to understand the
complete picture.

At the point of ideation: Is the group of people tasked with brainstorming
relatively homogeneous? If so, they may not have an adequately diverse
set of viewpoints between them. This is particularly troubling if the analysis
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Mapping the journey of the analytical project

Figure 1: The stages of the analytical process.

concerns a population of people that include individuals very different to
the brainstorming decision-makers.

Data collection: Is the collected sample representative of the population
it is supposed to represent? If you’re trying to build a model to predict
whether a person will default on their loan, and the sample is made up of
people who were granted a loan based on criteria such as credit score,
then your model will not be predictive in the population at large, but merely
in the subpopulation of people who had a credit score exceeding a certain
threshold.

Data processing: There are many issues that can arise here. One
example concerns missing values. If a choice is made to work with
‘complete cases’ only, then any observations with missing data will be
excluded from the analysis. Yet this missingness could be systematic, so
that a subpopulation is systematically underrepresented after the data
cleaning. Data aggregation can also cause bias because reducing the
granularity of the data may obscure crucial differences between
subpopulations.

Analysis and evaluation: Depending on the model that is chosen to
represent the data, very different results can be achieved. It is important
to compare several models in terms of predictive performance in
subgroups defined by protected characteristics such as gender. In
Section 4 we highlight several methods evaluating and correcting for
differences in model accuracy between these subgroups.
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3 Data

The German Credit Data [1] was used to test and evaluate various
fairness metrics. The data consists of 1000 loan applicants. For each
observation, there are 20 variables, including demographic information
(e.g. age, gender) and financial information (e.g. savings and credit
history), and an decision outcome representing whether the applicant
was classed as a good or bad credit risk. From now on we call it the
credit data.

Very little processing of the data was required. The field ‘personal status
and gender’ combined marriage status and gender in one. This was
separated out into two separate variables.

A cost matrix was provided with this data set. A false positive cost five
units, a false negative cost one unit, and there were no costs involved for
a true positive or true negative.

In our experiments we suppose that gender and age are protected
variables. Let G ∈ (m, f) represent gender and A ∈ [18, 65] represent the
ages of the applicants, which fell within the range 18 to 65. Suppose a
model has been built to predict whether an individual will be given a loan.
The outcome D ∈ (0, 1) represents the ground truth of whether the loan
was granted (d = 1) or not, and the classification model outputs a
predicted score for each individual, S, where a higher value indicates a
stronger belief that the individual will be granted the loan. A classifier is
created from the score by choosing a threshold, s∗, so that the predicted
decision D̂ = 1 if S > s∗. The other predictors in this data set,
X = (X1, ..., Xn), are not protected features, but may be associated with
gender. Let p represent the prevalence of the decision outcome D. The
prevalence is p = 0.7, meaning 70% of the applicants were granted a
loan.

4 Concepts of Fairness in Analytics

There are many ways of enforcing fairness constraints in data analytics
and not all of them can be achieved at once. Additionally, fairness often
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involves a compromise on model accuracy. Thus, it is important to
understand what the implications of each constraint are. In this section
we go into greater detail about concepts of fairness that are most relevant
to the realm of the data scientist’s work: issues around data processing,
modelling, and model evaluation. These concepts are illustrated with
reference to the credit data. For simplicity, we suppose that gender is the
only protected attribute when providing examples.

4.1 Disparate impact

The term disparate impact is used to describe the occurrence of
unintended discrimination. Even if gender is excluded from a model,
discrimination can still occur if there are variables associated with gender
in the model. Examples are variables such as salary and profession,
which have different distributions for each gender. It is also helpful to
consider the less serious example of shoe size, because it is a good
example of non-obvious associations. After a model is built (with
protected variable G excluded from build), if

P (D̂ = 1|G = m) 6= P (D̂ = 1|G = f) (1)

then a form of discrimination has occurred. Disparate impact can be
rectified, either by enforcing demographic parity so that

P (D̂ = 1|G = m) = P (D̂ = 1|G = f), (2)

or by requiring the predictions to be more alike, although not identical, by
setting acceptable bounds on the ratio of disparity as proposed by
Feldman et al., 2015 [3]:

τ < P (D̂ = 1|G = m)/P (D̂ = 1|G = f) < 1/τ (3)

Feldman et al. suggest an 80% rule that sets a threshold τ = 0.8.
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4.2 PPV, TPR, and FPR

4.2.1 Predictive parity

If a model is well-calibrated, then

P (D = 1|S > s∗, G = m) = P (D = 1|S > s∗, G = f) (4)

The COMPAS algorithm for predicting recidivism was well-calibrated so
that it satisfied this equality [4]. However, this was thought to be an
inadequate safeguard against discriminatory algorithms because it
underpredicted recidivism for white defendants and overpredicted it for
black defendants [5]. In other words, the true positive rate (TPR) and
false positive rate (FPR) rates in the black and white subgroups were
different and this was a source of unfairness.

4.2.2 Equal opportunity

Equal opportunity means that the TPR are equal across the protected
groups:

P (D̂ = 1|G = m,D = 1) = P (D̂ = 1|G = f,D = 1), (5)

where D̂ is the predicted outcome. Thus, this is a requirement that the
model is performing equally well in terms of TPR, but the proportions of
women and men that are predicted to be loan-worthy won’t necessarily be
the same.

In our example, a true positive is a person who paid back their loan and
for whom it was predicted that they would do so. In this context, a
difference in TPR is unfair because it means that the rate at which the
model predicts D̂ = 1 for the individuals who were decidedly loan-worthy
is different between subgroups.
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4.2.3 Equalized false positive rate

This is sometimes referred to as predictive equality. It is similar to equal
opportunity, except it instead concerns the FPR:

P (D̂ = 1|G = m,D = 0) = P (D̂ = 1|G = f,D = 0). (6)

In banking, a false positive can represent a loss of business. Corbett-
Davies et al. [6] suggest it is more sensible to equalise FPR to achieve a
measure of fairness in certain contexts. For example, in deciding whether
or not to grant a loan to individuals we can only measure FPR, not FNR
(nor TPR), in future model validations, because where the loan application
was rejected we cannot know whether that individual would have returned
the loan or not.

4.2.4 Equalized odds

If we enforce both the constraints of equal opportunity and equalized FPR
we achieve equalized odds,

P (D̂ = 1|G = m,D = d) = P (D̂ = 1|G = f,D = d) (7)

for d ∈ (0, 1). Enforcing both constraints simultaneously has the potential
to significantly detrimentally affect accuracy and should be implemented
with caution. We suggest the various visualisations outlined in Section
11 that show the trade-off involved in any of the above-outlined fairness
adjustments.

4.3 Counterfactual fairness

Kusner et al. [7] define counterfactual fairness in the context of decision
making as ”a decision that is fair towards an individual if it [is] the same
in (a) the actual world and (b) a counterfactual world where the individual
belonged to a different demographic group.” The authors point out that
enforcing equal opportunity (Section 4.2.2) at the modelling stage will not
meaningfully protect equal opportunity if the individuals in the training data
have not experienced equal opportunity in already.
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The formulation of counterfactual fairness is similar to that of demographic
parity (Section 4.1) but the constraint is more context dependent in that it
also accounts for non-protected features X ∈ (X1, ..., Xn). A predictor is
counterfactually fair if, for all X = x and G ∈ (m, f)

P (D̂ = 1|G = m,X = x) = P (D̂ = 1|G = f,X = x). (8)

This approach is required if the set of variables X is not a complete
representation of the world. Kusner et al. propose a counterfactual
fairness model that involves modelling the latent features that have a
bearing on the data set D = (G,X, Y ). Let there be a latent variable U
that represents all socioeconomic, demographic, etc variables that
influence the life of each individual and the mechanism for deciding
whether or not to grant them a loan. The authors draw on causal
inference to extract the latent variable U and then build a predictive
model. Bantilan [8] provides a python tutorial that implements the work of
Kusner et al. It uses the German Credit Data [1].

Where the true causal model is unknown, Russell et al. [9] provide an
extended definition of counterfactual fairness that holds in every plausible
causal ‘world’. Cihappa et al. [10] propose a definition of path-specific
counterfactual fairness which states that ”a decision is fair towards an
individual if it coincides with the one that would have been taken in a
counterfactual world in which the sensitive attribute along the unfair
pathways were different.”

Due to the complexity of implementing conterfactual fairness methods,
they don’t form part of a lightweight workflow, so they are not included
experiments. Nevertheless, we wanted to draw attention to them because
we find they have the potential to meaningfully redress unfairness in data
science.

5 Experiments

For each concept of fairness outlined in Section 4 (apart from
counterfactual fairness), we have implemented methods for quantifying
and correcting for unfairness in data and the modelling process. This
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includes evaluating the fairness-accuracy trade-off inherent in each
process. We propose a platform for integrating the considerations of
model accuracy and its cost implications with those of fairness. We show
what this could look like for each type of fairness constraint.

5.1 Initial data exploration

To get a better understanding of how the variables interrelate, bivariate
analyses of each combination of variables was carried out. Mutual
information was chosen as the measure of inter-variable dependence.
Brown et al. [11] provide a short introduction to this metric. The mutual
information between two variables, X1 and X2, tells us how much
knowing the value of one variable, say X1, informs us about the value the
other, X2, might take. It is calculated as

MI(X1;X2) =
∑
X1,X2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
, (9)

where X1 and X2 each represent the values taken by the X variables. Note
that if the variables are independent, p(x1, x2) = p(x1)p(x2) so that the MI
value will be zero. In reality, it will be close to, but not exactly, zero if the
variables are independent.

The maximum possible value of MI is achieved if the two variables are
completely dependent, so that knowing one tells you what value the other
will take. However, MI is not just a function of dependence, but also
depends of the number of different values taken by each variable and the
marginal distribution of each, so that the maximum possible value varies
between variable combinations. It is common to normalize MI when
making comparisons between diverse variables. By dividing the MI by
min(entropy(X1),entropy(X2)) a normalized MI is achieved. It takes a
minimum value of zero if the variables are independent, and a maximum
value of one if they are fully dependent. It should be noted that there is
more than one way of normalizing [12].

MI can only be applied to discrete variables. We discretised the
continuous variables by binning each into a maximum of five bins with an
equal number of observations in each bin. Figure 2 displays the
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(a) NMI values (b) Significance testing

Figure 2: Normalized mutual information for each combination of variables
in the German Credit Data in plot (a). In plot (b), dark blue squares indicate
a statistically significant relationship between two variables at the 0.05
level.

normalized MI values for each variable combinations. To test the
significance of these values, calculate the G-statistic as
2 ∗N ∗MI(X1;X2). It follows the χ2 distribution [13].

Further exploratory analysis could build on the MI work to look at the
markov blanket around variables of interest, say, the protected variable
gender, [14]. This would give an understanding of the variables that are
most important for predicting gender.

5.2 Disparate impact

5.2.1 Evaluating disparate impact

Feldman et al. [3] propose a model based approach to identifying
disparate impact by using the concept of balanced error rate (BER). If
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(a) No correction (b) Corrected

Figure 3: The plots show the data set (a) before it is corrected for disparate
impact, and (b) after the correction has been applied.

X = (X1, ..., Xn) are the non-sensitive predictors of the German Credit
Data and G is gender, build a model, f(X) to predict G from X. Then the
BER is defined as:

BER(f(X), G) =
P (f(X) = m|G = m) + P (f(X) = f |G = F )

2
(10)

Then G is said to be ε-predictable from X if BER(f(X), G) ≤ ε. And it is
‘ε-fair’ if the BER exceeds this threshold. See Feldman for a full description
of the method. As this method is model dependent, it must be kept in mind
that if the ‘right’ classifier is not applied, the BER will not be accurate. In
this study, a hinge-loss SVM was applied, in line with the approach taken
by Feldman et al. The paper [3] also uses the German Credit Data.

Where bias is not corrected for, or not completely corrected for, it is
possible for this bias to become amplified in the model build process.
Bias amplification identification was proposed by Zhao [15] to evaluate
the change in disparity between two groups in terms of outcome. We did
not focus on this method in the Data Study Group, but wish to highlight its
existence. In summary, first calculate the maximum likelihood probability
of default based on the observed outcome for each subgroup,
P (D = 1|G = m) and P (D = 1|G = f). Then compare this to the
classifications output from the model, P (D̂ = 1|G = m) and
P (D̂ = 1|G = f). If there is a difference between the values, this suggests
that bias amplification has occurred.
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5.2.2 Correcting for disparate impact

Feldman et al. state that their method removes all information leakage
that leads to disparate impact while preserving the rank. In our case, this
is the rank of individuals in terms of credit-worthiness (we did not verify
this in our experiments). They propose several approaches for partially
‘repairing’ the data so that the disparate impact is reduced. The complete
removal of disparate impact is cautioned against because it can lead to a
significant reduction in model accuracy.

Our experiments based on the credit data show the effect of repairing the
data with respect to protected variable gender, Figure 3. This is a
high-dimensional data set, so, to enable a meaningful visualisation of how
the classification quality changes with adjustment for disparate impact,
we projected the dataset into a two-dimensional embedding. The axes
are chosen as the normal vectors of the separating planes of classifiers
trained on reconstructing the protected attributes and predicting the credit
rating, respectively. So the x-axis equals the decision value of a linear
classifier for reconstructing the protected attribute, and the y-axis equals
the decision value of a linear classifier for predicting the credit
rating.

It is advisable to explore the fairness-accuracy trade-off of this method for
various degrees of repair, ranging from none to complete, before finalising
the extent of repair. Any compromise made on the accuracy of the model
will impact a bank’s risk profile. So, similarly, the fairness-cost trade-off
should also be made clear. See Figure 4 for what this visualisation might
look like.

If achieving the desired standard of fairness requires too great a
compromise in terms of model accuracy, the data collection process
should be scrutinised. A completely new data set could be the more
appropriate solution.
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(a) fairness-accuracy trade-off (b) fairness-cost trade-off

Figure 4: Visualising the trade-offs that are involved in enforcing fairness
constraints in disparate impact. Cost analysis is based on a cost of five
units for a true positive and one unit for a false positive.

5.3 PPV, FPR, and TPR

5.3.1 Classification calibration

Several methods have been proposed ([16], [17]) to impose equal
treatment amongst subgroups, say male/female gender, of a data set by
adjusting the classification threshold on model output. These methods
can easily be inserted into a workflow in so far as they are agnostic to the
type of model that has been used to generate the output. The only
requirement is that the model outputs a continuous prediction. In this
study we focus on probability outputs, but it is straightforward to extend
this approach to other continuous model outputs.

A disadvantage of this approach is that it can be naive. Consider the
problem of information leakage described in Section 5.2. Correcting for
differences with respect to a protected variable won’t address the issue
completely if predictor variables are related to it.

In this example we only explore the age variable. However, it is possible
to explore subgroups based on more than one protected variable. For
example, we could look at the four subgroups, women under 30, men
under 30, women 30 or older, men 30 or older, too. Of course, the
number of subgroups explored is limited by the subgroup sizes. We need
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(a) ROC curve (b) Cost analysis

Figure 5: (a) compares the ROC curves of subgroups before classification
calibration is applied. (b) shows the fairness-cost trade-off for different
levels of equalised FPR.

a reasonable number of observations in a subgroup in order to draw
reliable conclusions from statistical analysis.

A logistic regression model with elastic net is applied to the credit data to
obtain predicted probabilities of being given a loan. We then visualise any
divergence in model performance between the categories of the protected
variable using ROC curves. ROC curves permit a comparison of the TPR
and FPR for every possible threshold on the model output D̂. The ROC
curve in the Figure 5 (a) shows that there is a difference between the two
age groups, under 30 years and 30 or older, in terms of model accuracy.
There are statistical tests for determining whether two ROC curves are
different with statistical significance, eg. DeLong’s test [18], which enables
a rigorous statistical evaluation of ROC curve similarity (this is not provided
for in the report).

It is possible to rethreshold the probabilities output by the predictive
model in order to achieve equal FPR and/or TPR in both subgroups.
However, Chouldechova [19] has shown that the TPR, FPR, and PPV
cannot be equalised at the same time using classification calibration
techniques:

FPR =

(
p

1− p

)(
1− PPV

PPV

)
(1− FNR) (11)

Chouldechova notes that if the PPV is kept the same across subgroups
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Figure 6: An interactive GUI for comparing the effects of different fairness
constraints in classification calibration.

but the prevalence, p, differs between groups, equal FPR and TPR across
subgroups cannot be achieved.

A cost analysis of the impact of different equalised FPR thresholds is
provided in Figure 5 (b). Depending on what the primary fairness
concerns are, an alternative plot can be generated to compare, say, the
TPR-PPV trade-off instead of the TPR-FPR of Figure 5.

With more time, we would have made the ROC curve interactive, so that,
for a given equalized TPR and/or FPR, the model accuracy, cost analysis,
and PPV are recalculated. An example of what this might look like is
provided in Figure 6. Here we visualise a vertical slider that can move
across the plot. When moved to 0.25 on the FPR axis, fairness and
accuracy metrics update to reflect the consequences of equalising the
FPR at that threshold in all subgroups. Due to time constraints we did not
implement this idea but it can be achieved with RShiny.

Apart from an interactive visualisation tool that the analyst can use at the
point of deciding upon a classification calibration (Figure 6), we also
suggest a final visualisation which shows the various fairness and
accuracy metrics for an uncalibrated, traditional model and the ‘fairer’
model. See Figure 7 for an example of what this would look like.
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Figure 7: A comparison of the uncalibrated and calibrated, ‘fairer’
classification calibrations, split out by the protected variable: under 30
years, and 30 years or older. This visualisation could be enhanced with
additional performance metrics.
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Figure 8: A comparison of overall accuracies (listed beneath each pair of
bars) for the unconstrained approach and model calibrations which enforce
parity amongst subgroups of misclassification rate, FPR, FNR, and FPR &
FNR.

5.3.2 Model calibration

Control of the TPR and FPR can also take place at the stage of the
modelling process in limited cases, as proposed by Zafar et al. [17].
Although it is not as convenient to implement as the classification
calibrations of Section 5.3.1 are, we mention it because it can apply to
logistic regression modelling, a common tool in the banking industry.
Additionally, our experiments indicate that, for the same fairness
constraints, higher model accuracy is achieved when we calibrate the
model as opposed to the model output.

Model calibration per Zafar et al. is implemented in the loss function. They
outline a way to maximise accuracy subject to fairness constraints, and a
way to maximise fairness subject to accuracy constraints. Our experiments
explored both of these options, see Figure 8. These constraints can be
imposed strictly or to a specified extent.

A final visualisation equivalent to Figure 7 for classification is also
recommended where model calibration is applied. We worked with code
provided by Zafar et al., which we edited and applied to the credit
data.
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6 Future work

6.1 A fairer data collection strategy

It is important to develop a data set that is representative of the population.
In the context of granting loans, this would mean giving a loan to a random
sample of the population without first requiring them to meet requirements
such as having a credit score above a certain threshold.

6.2 Concepts need further testing

Many of the ideas in this work are drawn from papers in the arXiv
repository, which is not peer-reviewed. We advise that further research
and testing be conducted around these concepts before their
incorporation into processes that will affect people.

6.3 Sensitivity analysis

Friedler et al. [20] have pointed out that fairness-enhancing interventions
can be sensitive to fluctuations in dataset composition, leading to
instability in the predictions. Further work should involve evaluation of this
sensitivity.

6.4 Disparate impact

There may be variables which it is undesirable to transform for the purpose
of reducing data leakage, yet which should factor into the repair process.
One example is an income variable, which is related to age and gender. It
may be useful to banks if this variable could be used in the repair process,
yet excluded from the transformation.

Additionally, it would be interesting to explore cases where the disparate
impact repair algorithm had to flip the outcome label in order to reduce
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bias in the data. This could provide insight into the types of decision
contexts that are biased with respect to the protected variable. We
suggest a nearest-neighbour search for the data points closest to the
‘flipped’ observation. This was cursorily applied to the credit data but
yielded no useful insight.

6.5 Monitoring specific subgroups

Future work could involve quantifying probability of bias in a predefined
set of subgroups. For example, customers that come from a group that is
known to be underrepresented or discriminated against. These fairness
focus groups could be the subject of particular scrutiny in the model build,
and also at future model validations. An application belonging to an
individual from this group could be flagged for review by a human
decision-maker alongside the automated decision algorithm.

6.6 Catching up with qualitative fairness

We have focused on quantifying fairness and relating these concepts to
qualitative notions of fairness. However, quantitative fairness is relatively
new and has not yet caught up with ”the jurisprudential, theoretical, and
activist conversations which continue” [21] in this area. Quantitative
fairness is limited in that is is based on data and data is often not neutral
with respect to societal prejudices. Our work should be understood only
as an entry point to considering the vast challenges of ensuring fairness
in algorithmic decision-making.

6.7 Algorithms and accountability

We did not have time to explore issues around allocating responsibility for
algorithmic discrimination. We point the interested reader to the work of
Data&Society [22] for further information and resources.
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personalisation algorithms, specifically user decisional autonomy,
as well as the possibilities for understanding automated
decision-making. He contributed to this report by providing
meaningful theoretical background on fairness in algorithmic
decision-making and conceptualising an integrated fairness tool.

• Omar Costilla-Reyes: Omar is currently a postdoctoral fellow at
the Brain and Cognitive Sciences department at MIT. Omars
research project aims to develop machine learning techniques to
better understand neural data. Omar obtained his PhD with a thesis
entitled spatio-temporal pattern recognition for security and
healthcare from the University of Manchester, UK (2018) and his
Msc from the University of North Texas, USA (2014). Omar
contributed to the work by helping to map out the workflow, and by
reviewing the counterfactual fairness literature.

• Delia Fuhrmann: Delia is a Postdoc at the MRC Cognition and
Brain Sciences Unit at the University of Cambridge. She studies
how brain and cognition develop over the lifespan. She helped
scope the project and explore the data using mutual information.

• Jonas Glesaaen: Jonas is a Postdoc in the Physics Department
of Swansea University working on lattice gauge theories. Besides
working on code optimisation and HPC application he also dabbles
in the potential of utilising ML techniques on problem in elementary
particle physics. He contributed to this project through the disparate
impact analysis. He assessed and visualised disparate impact on
the dataset, and applied the fix as suggested in the literature.

• Qi He (Katherine He): Qi is a first year PhD candidate of UCL. She
studies Bayesian variable selection and MCMC as well as
implementing machine learning methods in Econometric Studies.
She contributed to this report as the team facilitator. She helped the
group work collectively and also worked on the disparate impact
section.
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• Andreas Kirsch: Andreas is a fellow at Newspeak House and will
start a PhD in Oxford in September. He is engaging with AI safety
and ethics as part of his fellowship. He contributed to the scoping of
the project, and the experimentation and visualisation around
disparate impact.

• Julie Lee: Julie is a PhD student in Neuroscience at UCL. She
performs experiments (and, in the past, has built models) to
understand perceptual and reward-based decisions in the brain.
She contributed to this report by conceptualising a potential process
for integrating fairness evaluations and solutions into an existing
data processing pipeline.

• Mohammad Malekzadeh: Mohammad has started his PhD in
Computer Science at Queen Mary University of London in January
2017 as a member of Centre for Intelligent Sensing. He is also a
member of DataboxProject, an open-source project on
privacy-aware personal data platform. His research focuses on
machine learning for privacy-preserving data analytics, particularly
for time-series data generated by the smart devices. He contributed
to this report by implementing and evaluating existing methods of
model calibration.

• Esben Sørig: Esben is a first year PhD student at Goldsmiths,
University of London. His research is in Interactive Machine
Learning, a field at the intersection of Machine Learning and Human
Computer Interaction. He contributed to the project scoping and to
the identification and evaluation of classification calibration metrics.

• Caryn Tan: Caryn is an Accenture Analytics strategist operating at
the intersection of applied analytics and law/ethics. She advises
senior decision-makers on analytics strategy, target operating model
and analytics business case and manages technical teams to
operationalise and realise these strategies. She also manages
Accentures Responsible AI practice in the UK where she helps
clients confidently deploy responsible AI models with technical,
organisational, governance and brand considerations. She
contributed to this report by bringing the context of the challenge
and how Accenture works with clients on Responsible AI to the
team.
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• Emily turner: Emily is a Research Associate in the School of Law
at the University of Manchester. She applies Machine Learning to
understand recidivism in domestic violence. She was involved in the
scoping of this project and helped collate the various methods
already available for classification calibration. She worked on
visualisations including subgroup-specific ROC curves, Figure 6.

• Dang Quang Vinh: Vinh is a Postdoc of Inria Nancy Grand-Est,
France. His research interests include Applied Machine Learning in
network security. He contributed to this report by studying different
fairness measurements and repairing algorithms, and also evaluated
methods experimentally.
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