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Abstract—Optimal caching strategies of popular
contents in heterogeneous cellular networks are
studied. The increasing demand for data traffic
by users of the wireless network can be handled
by rapaciously caching most frequently accessed
contents by users. Hence, we propose an efficient
popular content placement strategy, the first step
in the content caching process, typically for pop-
ular video files. To do so, we introduce a novel
approach for caching popular contents. This caching
strategy follows a dynamic programming approach
to tackle the optimization complexity of selecting
most popular files among a wide range of files,
under certain constraints. The proposed strategy
gives the combination of popular files to be cached
that maximizes the optimal cache hit probability
with a pseudo-polynomial time complexity. To that
end, we used the well-known resourcing algorithm,
called the 0/1-Knapsack problem, assuming that
files are cached without partitioning.

I. INTRODUCTION

In the heterogeneous cellular network (HCN), a
small percentage of the services acquire higher popu-
larity, at some time, and produces the largest portion
of the traffic in the network. These traffic contents
are vogue files which receive frequent requests from
many users. Local caching of these contents, both
at the radio access edge and the user equipments
(UE), is very important to improve the quality of
experience (QoE) in mobile networks. Content caching
brings files closer to UE; thus it reduces the redundant
requests of files to the backhaul network. Once the
files are stored at the network edge closer to the
user, i.e, the mobile helper (MH), the requests can
be served by these MH. As a result, the backhaul
congestion may be significantly reduced. In addition,
the network response time may drastically reduce,
even zero when the requested file is already cached
at the UE itself. Fortunately, the advance in memory
technology and the caching capability of current end-
user devices renders the proposed caching strategy
to be practical. The performance attained by the
caching of popular contents is further enhanced by the
deployment of advanced techniques such as device-to-
device (D2D) communication, clustering, cooperation
and coordination, transmission media control, and
coded information transmission.

A. Background and Related Work

Presently, few contents are very popular and gen-
erate large percentage of the mobile traffic. Hence, in

mobile network architectures, these popular contents
are locally cached in the order of their popularity.
They are cached at different parts of dedicated net-
work edges such as, macrocell base stations (BS),
microcell base stations (SBS), or cache enabled UE
[1]. For the past decade, the research has focused on
the strategies and policies of caching popular contents
to increase the cache hit and content delivery proba-
bility, the number of served requests, and decrease the
response delay.

In [2], the authors analyse the gains of popular video
content caching strategy in D2D communications.
They evaluate the downlink traffic load reduction on
the cellular backhaul attained by distributed caching
scheme that uses family of admissible protocol, that
handles the random file and helper association. The
content exchange in the D2D link is further facil-
itated by a D2D-aware caching policy in work of
[3]. In this policy, files are partitioned into two non-
overlapping groups, which is far from the most popular
content (MPC) policy. In [4], authors proposed a
hybrid caching strategy where identical files are cached
at each BSs while different SBS cache different files.
This increases the time and spatial reuse. In fact,
unplanned network densification affects increases the
cost of caching. In [5] an appropriate network den-
sification, with advanced D2D-discovery mechanism,
is proposed to make the D2D communication more
effective and less costly.

In [6], the authors developed a contention-based
multimedia content delivery protocol, which avoids
possible collision among concurrent transmissions by
different active transmitters. An optimal caching
mechanism is proposed based on caching the most
popular files to each MH. This maximizes the success-
ful content delivery probability to the user equipment
and the coverage probability. In addition, in [7], the
authors focused on cooperative caching strategy, and
show that, by caching files at the off-peak time, it is
possible to further enhance the performance through
a broadcasting technique.

In the literature, we find three general caching
approaches. The first one is cooperative caching where
the helpers cooperate to cache required files and pass
to the user [2], [7]-][10]. The second approach uses clus-
tering of the network elements based on parameters
such as the requested file or the cooperation distance
[4], [9], [10]. The third approach is distributed caching



where the required files are stored at different tier of
the network to increase the areal spectral efficiency [6],
(8], [9]-

The aforementioned caching strategies mainly deal
with the physical parameters of the network. Beyond
that, in [8], the authors proposed a systematic strategy
of caching contents based on the predicted location of
the UE. Indeed, as the network densification increases,
this caching scheme becomes very complex and de-
mands a robust handover decision algorithm. Hence,
the predicted-location based caching can benefit the
synergy of using effective handover techniques, such as
the one proposed in [11]. In addition, the work in [12]
presented a caching strategy based on the prediction
of file popularity and future requests. This study con-
siders the ephemerality of contents popularity while
most other works stick to the static Zipf property.
There are still emerging opportunistic techniques that
improve content caching, based on an information
theory perspective. For example, in [8], [13], [14],
the authors proposed the use of mature information
coding schemes in content caching strategies that can
improve network performance and meet the traffic
demand.

In most caching strategies, content placement is
controlled by a central controller that decides which
content has to be cached to which MH or UE. This
is more functional in the clustered and coordinated
caching techniques. In some other cases, caching is
done independently: the association of a file with a
UE or MH is maybe done randomly.

In the popular content caching process, we have
three steps: content placement, content transmission,
and content delivery. In this work, we focus only on the
first step and propose an intuitive approach to improve
content placement performance.

B. Motivation and Contribution

The content caching strategies developed so far
focus on improving the physical parameters of the
network and basically are probabilistic approaches.
Most of the researches stick to constant parameters
such as equal sized file fragments, static popularity
distribution, and non-overlapping association. These
assumptions are far from the real-time network traffic
behaviour. In fact, the real time traffic dynamically
changes and has extremely varying parameters. Hence,
characterizing real-time mobile network is complex.
Because of this, we do not have optimal content
caching policy. Both the physical and content related
parameters hinder the solution of optimal caching.

Here, we envision that the cellular traffic content
has to be considered as a resource, when referring
to the request redundancy measure. Frequently re-
quested files are important resources. Hence, it has to
be properly allocated, similarly to the radio resource
allocation done in [15] and [16]. Considering as a file
popularity as a resource, we introduce a new resource
allocation technique to the content caching policy. To
that end, we use a dynamic programming method

that can tackle the complexity of obtaining the opti-
mal caching solution, subject to a physical parameter
constraint. The approach is enumerating of files and
optimizing files popularity gain, without dealing with
the physical parameters of the medium. As a result,
the proposed algorithm showed a high performance of
caching strategy over the baseline strategies.

The contents are placed to the caching device of
the network in such a way that we can maximize the
gain, in our case the cumulative popularity, subject to
a given constraint of the cache memory size. By using
the Knapsack algorithm, we optimize the gain of the
cache hit probability.

The rest part of this paper is organized as follows.
Section II presents the system model, Section III for-
mulates the content placement optimization problem
and gives the proposed solution, and Section IV, eval-
uates the performance of proposed caching strategy.
Lastly, Section V, contains the conclusions.

II. SYSTEM MODEL

We consider the downlink direction of a cache en-
abled, three tier heterogeneous cellular network. As
shown in Fig. 1, the network composes of BS, SBS,
and UEs which are assumed to follow a general point
process (PPP). The BS and SBS are the first and
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Fig. 1: Representative mobile network. The BS caches
files, mainly at off-peak time, to non-overlapping SBS.

second tiers, respectively. The BS contains set of
popular video files in its finite-sized library, M =
{H{pr. 1} {p2, o}, o {pjarylaa }} where p; and 1; [MB]
are the popularity and length of i*" file, respectively.
The size of these files is not necessarily equal. We
consider that the SBS can cache the selected popular
files in its cache memory, size L, which makes a subset
of files, C, such that C C M. The buffer size of
different SBS varies but each SBS shall be capable
of caching all requested files from the UEs. In this
scheme, we use the SBS and the MH interchangeably.
The UEs request files independently from the cache
enabled MHs, where files are cached based on their
popularity. Files’ request profile is collected by the MH
from UEs. The frequency of request to a file accounts
for the file’s popularity, such that Zf\il pi < 1[17].
The popularity measure of the files is not necessarily
static but may dynamically change in time.



In this work, we give attention to a hierarchical
placement of traffic content on the cache-enabled de-
vices; in the 5G and beyond mobile networks. A simple
representation of the popular file placement is shown
in Fig. 2, where the content is cached from the BS to
the SBS. The files are sent to targeted SBS by selecting
the best combination of candidate files, from a large
set of combinatorial search space. Since the placement
of the popular contents takes place at the off-peak
time period, we assume that the backhaul link is not
a performance limitation.
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Fig. 2: Content placement scheme. The BS can select
the best popular files that can give maximum popularity
at the target caching SBS.

Symbol Definition

pi Popularity of ¢*" file
Length of it file
Zipf parameter

Buffer size of the MH

Set of popular files at BS
M={{p1,l1},{p2,l2},--.{pps): {|as1 }}
Set of cached files at the helper
CCcM
Number of files in M and C, respectively
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III. PROPOSED SOLUTION

In this section, we present the enumerative approach
of file selection to get the best combination of files,
which are to be cached at the SBS, that maximizes the
cached files popularity. For this work, we consider that
each file in M will be cached without partitioning to
sub parts, means we take them as indivisible objects,
that either the whole file is cached or not cached at
all. Hence, given independent popularity and lengths
for each file, we make an exhaustive search for the
whole combinations of files that can fit the cache size,
called the constraint. This leads to the brute-force
method which gives an optimal selection of contents
from a wide range of combinatorial search space,
S = {S1,852,..., S|}, where S; is a subspace that
contains exactly one file, two files, three files and so
on. Hence, the total search space will have 2/MI — 1
subspaces. The brute-force method gives an optimal
selection but at a cost of high complexity O(2/M1),
which becomes infeasible as the | M| increases. To solve
this, we apply dynamic programming (DP) approach
by which the problem is partitioned to smaller sub-
problems and solved sequentially. The solution of the

sub-problems is memoized for a repeated use in solv-
ing the next sub-problems. The optimal solution is
found by combining these optimal sub-solutions. This
process has computational complexity of O(|M|L) so
that it saves time at cost of space. To this extent, we
use the well known 0/1-Knapsack problem, subject to
a single constraint. This algorithm gives an optimal
solution with a pseudo-polynomial time, mainly as the
L gets larger [18]. In this algorithm, the file selection
problem is solved by using a memoization table. Its
pseudo-code is shown in Table 1, where the optimal
sum of popularity of cached files is the last entry of
the table. Finally, selected files can be tracked back
from the memoization space.

Algorithm 1 Knapsack memoization problem
procedure BOTTOM-UP COMPUTATION
Input: M= {{pl, ll}, {pg, lg}, ceey {p|N[|, lmﬂ}}

SBS cache size L
for 0<j<Ldo
VI[0,j]=0;
end for
for 1 <i<|M| do
for 0<j<Ldo
if j > 1; then
Vlij) = maz(V[i — 1,5), pli] + VIi — 1,5 — L))
else
Vi, j] = V[i - 1,J]
end if
end for
end for
optimal value= V[|M]|, L]

**Identify the files**
i=|M|+1, j=L+1;
Input: temp= VI[i,j]
While VI[i,j]>0
if temp # V[i — 1, j] then
select i file

J=3-1

1 =1—1

temp=V[i,j]
else

it =1—1, (do not select file)
end if
end while

A. Performance Metrics

The content placement strategy is basically to max-
imize the file popularity gain at the SBS, hence, we
evaluate the performance of the network by using the
cache hit probability.

Cache hit probability: Is the probability that a
requested file by a UE is found stored at the MH.
In [19], it also indicates as the degree of successfully
transmitting the requested file to the user. In [10], the
cache hit probability is used as a measure of the ratio
of the cache space allocated to the most popular files
compared with non-popular files. Cache hit probability
is used as objective function in many literatures such



as in [10], [6] and [17]. It is suitable for instantaneous
serving of requests where there is no need of a queueing
files. Hence, we used the cache hit probability (¥) as
the measure of performance in our model. It is denoted

as follows.
Ulp, 1] = pe (1)
ceC

where p. is the popularity of cached file ¢ in C. It is
clear that |C| < |M].

Our target is to cache as many popular files as
possible to get a maximized sum of file popularity at
the MH. In other words, for all files whose IDs are
assumed stored at C', we want to have the optimum
cache hit probability, as follows:

W [p, 1) = max ng (2)

with respect to one dimensional constraint function of:

Y L<L (3)

ceC
IV. PERFORMANCE EVALUATION

We evaluated the performance of the network un-
der our strategy by doing simulations. We compared
our algorithm with two baseline strategies. The first
baseline strategy is a greedy algorithm that caches a
portion of most popular files after it arranges the files
in the descending order of their popularity. The second
strategy is a random algorithm that randomly chooses
files, and caches to the SBS, from the search space. In
this case, we iterate the selection hundred times to get
the mean cache hit probability.

In all cases, unless otherwise explained, we worked
the simulation with 100 video files, whose length
varies. The files are standard frame rate videos files
of: a 10 minutes length SDR, 720p, a 2 minutes length
SDR 720p, a 2 minutes HDR 2160p(4K), and a 10
minutes HDR 2160p(4K), as recommended by Google.
They have an approximate file size of 3 Gb, 600 Mb,
6 Gb, and 30 Gb, respectively. The cache size of the
SBS is considered to range from 10 Gb to 100 Gb,
which has to be less than the sum of all file sizes.
We chose the Zipf parameter v = 1, means that the
popularity is highly concentrated on a fewer number
of files, and since the v > 1, the network will have
higher successful transmission probability [4], [8]. In
the performance evaluation, we did many simulations
for different cases and, here, only three main scenarios
are reported.

In the first scenario, we choose two sets of HDR
2160(4K) files with equal file sizes of 30 Gb and 6
Gb, independently. In both cases, the files follow a
Zipf distribution. In each set, files are considered as
an equal sized fragments, like in most researchers
such as [7], [9], [20]. The result in Fig. 3 shows that
the greedy algorithm gives an optimal solution, same
also the proposed strategy. In both results, as the
file size increases, we are able to cache less number
of popular files. Therefore, it gives lower cache hit
probability. All algorithms have a monotonically
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Fig. 3: Scenario 1: In case 1 (upper plot), all files have a
6 Gb size, and in case 2 (lower plot), all files have a 30
Gb size. All files follow the Zipf popularity distribution

increasing performance. As the file size is smaller,
the hit probability resembles to strictly increasing
monotonic because it can include more files in the
cache. Here, the random algorithm shows almost a
linear proportionality over the cache size because it
has no optimization role but only tries to fit the sum
of sizes of the cached files to the cache size. Hence,
cache hit probability does on improve by random
content caching. The proposed and greedy algorithms
deal with the popularity and size trade-off. Even
though we increase the cache size, we may not fill all
the space. This shows that only increasing the cache
size does not always improve the cache hit probability.
We can see easily see this by comparing the cases of
using the 6 Gb and the 30 Gb files. In the first case,
the files are smaller in size so that higher numbers
of files can be compacted into the cache space. But
in the second case, only a few most popular files fit
the cache size. As a result, the first case has higher
performance and behaves more strictly monotonic
than the second case, which behaves like a step
function. This is the idea of bin packing dynamic
programming. Clearly, the horizontal step size, seen
in the plot, is equivalent to the file size.

In the second scenario, we take the same set of files
as first scenario but files considered to have equal
popularity. The result in Fig. 4 tells us that any
random selection of files equally works with other two
algorithms, in both file sizes. It is expected that since
all files have the same popularity and size, the selection



process is same for all algorithms and does not matter
on the popularity. But this is a worst-case assumption
because, in real mobile networks, contents do not have
the same length nor popularity. Hence. caching these
contents will not bring any performance improvement.

The third scenario is by taking four group of mixed
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Fig. 4: Scenario 2: All files have same size (6 Gb upper
plot and 30Gb lower plot) and equal popularity p = 0.01

files sizes. Every group, of 25% files in BS, has a
600 Mb, a 3Gb, a 6 Gb, and a 30 Gb size. We used
two file popularity distributions: the Zipf and general
distributions. In the general popularity distribution,
we considered that approximately 30% of files in the
set are most popular [12], which are assumed to
generate the 90% of total popularity. In fact, this
popularity distribution is more concentrated than the
Zipf distribution with v = 1. We further assume that
both the file popularity and file sizes are independently
and identically distributed (iid). To guarantee this, we
reshuffled the association ten thousand times and took
the mean of cache hit probability of ten iterations.
This avoids the biased assignment of, which affects
the baseline algorithms, higher popularity to bigger
files. This scenario can better represent the real-time
traffic contents in the HCN. In this real-time scenario,
content caching becomes a constrained problem and,
hence, we preferred to use a dynamic programming
approach than the greedy ones.

The output in Fig. 5 clearly indicates that the
proposed algorithm outperforms, by far, the baseline
algorithms, in both file popularity distributions. This
is because the search to all files in the BS is not blocked
by sizes of the files, under the cache size constraint.
The algorithm can simply check all combinations and
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Fig. 5: Scenario 3: Varying file size and different file
popularity types. Every group of 25% files has size of
600 Mb, 3 Gb, 6 Gb, and 30 Gb. Files follow a Zipf
(v = 1) and general popularity distribution

take the maximum possible file popularity.

The proposed algorithm performs better in the
general popularity distribution because, in this setup,
the file popularity concentrates on few numbers of
files, mean the file popularity is highly skewed. Hence,
the sum of popularity function vanishes faster in the
general popularity than in Zipf distribution. After
caching these files, as far the cache size allows, the
remaining cache space is filled with many small sized
files. It is also clear that the more cache size we have,
a better freedom to cache files; means higher cache hit
probability.

In this setup, the greedy algorithm has better per-
formance with the Zipf distribution at lower cache size.
It is because in the Zipf case, the popularity has order
of a formed distribution so that the selection is only
taking the front groups of most popular files. But in
larger cache size, we have to include more files with
varied file popularity. Thus, the selection becomes less
effective with greedy strategy. We also have seen that
as the skewness of the file popularity increases, the
intersection point of the two plots goes to the left.
This is because, the sum of popularity vanishes faster.

Also comparing with scenario 1, we notice that the
proposed strategy increases the network performance
as the file diversity is increased. The small steps in
the greedy function indicate the size of selected file
sizes, after some free spaces in the cache. This is not
seen in the proposed solution because it can effectively
do the exhaustive search which does not leave cache
space gaps till the next popular file is fitting. Instead,



it further caches other files that are matching size but
maybe less popular. This further selection increases
the cache hit popularity. We also prove that, the
proposed solution reduces the cache memory wastage
at the MHs.

In summary, the cache hit probability can be highly
improved by the proposed placement strategy. Many
literatures unrealistic assume files as equal sized frag-
ments. This is issue is solved in the proposed strategy
because it can handle extremely diversified file sizes.
Parallel to increasing the cache memory size, lifting
up the constraint-which is also limited, we can make a
nice mathematical optimization to increase the cache
hit probability.

The content placement is more likely done at the
off-peak time, according to a request history. In some
cases, the content will be cached while it is instan-
taneously requested by UEs. Hence, we recommend
making a prioritization strategy for the two options.
It can increase the cache hit probability while reducing
backhaul congestion and response time.

V. CONCLUSIONS

In this work, we have considered the downlink di-
rection of the heterogeneous cellular mobile network.
We have given new insights how to deal with non-
uniform parameters of the mobile data traffic such as
library length, file size, and the diverse file popularity.
Developing an optimal caching strategy subject to
these parameters is complex. We used a dynamic
programming approach to tackle this constrained opti-
mization problem. To that end, we have used the 0/1-
Knapsack problem formulation to maximize the cache
hit probability under a cache size constraint. The pro-
posed strategy outperforms the baseline algorithms.
Also, the memory wastage at the MHs is reduced when
using this strategy. As far the cache size allows, we can
cache many popular files to the SBS by selecting from
all possible file combinations. The proposed strategy
can effectively handle any type of file popularity and
increases content diversity. Finally, this strategy can
be deployed at any network hierarchy.
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