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Introduction	

•  Lattice & Computing: suggestions	
– Parallel Computing	

• Computing elements arranged as a lattice, each 
having channels to neighbouring elements	

– A representation of particle interaction in 
physics in crystal solids	

– A spatial discretization for application of finite 
element methods   	
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Introduction	

•  Lattice computing assumes that the basic 
computing structure is a lattice.	

• A lattice             is a Poset          any two of 
whose elements have 	
– a supremum, denoted by	
– an infimum, denoted by	

€ 

x∨ y

€ 

L,∨,∧( )

€ 

L,≤( )

€ 

x∧ y



February 5, 2019	 ENSE, UH2C	 6	

Introduction	

•  Poset	
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•  Computational paradigm shift (Ritter)	
– Traditional Artificial Neural Networks are 

defined on the ring	

– Lattice ANN work on the semi-rings 	

Introduction	
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Introduction	

•  Biological justification 
(Ritter)	
– Dendrites account for 50% 

of brain mass	
– Dendrite computation is 

more akin to AND, XOR, 
NOT logical operations	
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Introduction	

•  Mathematical morphology for image processing is 
also a lattice paradigm shift from linear processing 
(Maragos)  	
– Linear translation-invariant (LTI) operators are 

uniquely represented by linear convolution with the 
impulse response	

– Erosion (Dilation) translation invariant (ETI(DTI)) 
operators are uniquely represented by inf-(sup) 
convolution with the impulse response	
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Introduction	

DTI	

ETI	
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Introduction	

• Kinds of processes in Artificial Intelligence 	
– Filtering 	

– Dimension reduction	

– Classification (supervised, unsupervised)	€ 

ψ :RN → RN

€ 

ψ :RN → Rd ;d << N

  

€ 

ψ :RN →Ω;   Ω = ω1,L ,ωc{ }
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Introduction	

•  Lattice Computing approaches	
– Filtering: Mathematical Morphology	
– Dimension reduction: ? ? ? ? ? ? ?	
– Classification- recognition	

• Fuzzy systems	
• Artificial Neural Networks 	

– Specific processes	
• Target Localization in images	
• Endmember induction in hyperspectral images	
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Introduction	

•  The learning problem	
– Gradient descent schemas need to compute 

derivatives : 	
• derivatives of sup, inf functions are not defined.	

– Heuristic growing produces overfitting 
(category explosion) and there is no proof of 
convergence.	

– Random search algorithms are computationally 
expensive.	
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Some historical landmarks	
•  1979	

–  R. Cuninghame-Green: Minimax 
Algebra	

•  1982	
–  J. Serra: Image Analysis and 

Mathematical Morphology	
•  1991	

–  Carpenter, Grossberg: Fuzzy-ART	
•  1992	

–  Simpson: Min-max Neural 
Networks	

–  Pedrycz: Relational System 
Learning	

•  1995	
–  Yang, Maragos: Min-max 

Classifiers	

•  1998	
–  Ritter, Sussner: Morphological 

Associative Memories	
–  Gader: Shared-weight Morphological 

Neural Networks	
•  2000	

–  Kaburlassos, Petridis: Fuzzy Lattice 
Neurocomputing	

•  2003	
–  Ritter: Dendritic Computing	

•  2005	
–  Kaburlassos: Towards a unified modeling 

and knowledge representation based on 
Lattice Therory	

–  Maragos: Lattice image processing: a 
unification of morphological and Fuzzy 
algebraic systems	

•  2007	
–  Kaburlassos, Ritter: Computational 

Intelligence based on Lattice Theory	
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Lattice Image Processing: A Unification of 
Morphological and Fuzzy Algebraic Systems	

P. Maragos	
Journal of Mathematical Imaging and 

Vision 22: 333–353, 2005	
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Binary erosion.- 

K 

Structuring 
element 
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K 

Binary dilation.- 

Structuring 
element 
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Greyscale Mathematical Morphology 
•   Grayscale morphology relies on a partial ordering relation between image 
pixels. 

(x,y) f 
Grayscale image 

Dilations 
Structuring  

B

element 

Erosions 
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K 

Structuring 
element 

Morphological opening (erosion + 
dilation) 

•  Opening and closing: shape-preserving operators. 

•  Excellent filtering properties: 
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Starting point	

• Design of new filters: generalized opening 
and closing	

• Works on the lattice of functions	

Inherited partial order	

Inherited supremum 
and infimum	
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Increasing operators	
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Adjunction 	

•  The operator pair           is an adjunction if	

• An adjunction defines a pair of 
morphological filters	
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Signal processing	

• Algebraic structure of the scalars:	

•  Complete lattice-ordered double monoid	
– Addition 	
– Dual addition	
– Multiplication	
– Dual multiplication	
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Signal processing	

•  The space of signals is a function lattice	

•  It inherits the clodum structure of the 
scalars, with appropriate natural definitions 
of addition and multiplication	
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Parallelism to linear processing	

•  Representation of a signal as a supremum 
(infimum) of translated impulses	
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•  Linear superposition principle	

• Nonlinear superposition principle	
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•  Translation invariant operator: commutes 
with all translations	

• Nonlinear convolutions define the effect of 
Erosion and Dilation translation invariant 
systems	



February 5, 2019	 ENSE, UH2C	 29	

DTI	

ETI	
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Generalized convolution 
adjunctions	

•  using scalar adjunctions	
•  It is possible to obtain the adjoint operator	

• Which looks like  a correlation 	
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Lattice operators using fuzzy 
norms	

•  Fuzzy intersection norm --> scalar dilation	



February 5, 2019	 ENSE, UH2C	 32	

•  Fuzzy union norm --> scalar erosion	
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•  Translations under the fuzzy framework	



February 5, 2019	 ENSE, UH2C	 34	

•  Signal representation with fuzzy translations	
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•  Translation invariant signal fuzzy dilations 
and erosions with sup-T and inf-U 
convolutions	
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•  Fuzzy dilation adjoint	
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Example norms	

Fuzzy intersection norm	 Adjoint norm	



February 5, 2019	 ENSE, UH2C	 38	

Results	
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Random Projection Depth for 
MultivariateMathematical Morphology	

Santiago Velasco-Forero, and Jesús Angulo	
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL 

PROCESSING, VOL. 6, NO. 7, NOVEMBER 2012	
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• Multivariate signal (image) orders	
– Marginal: each channel separately 	
– Conditional: lexicographic total order	
– Reduced: induced by a map into scalar	
– P-order: induced by partitioning of the vector 

sample into groups	
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•  Depth functions assign to each point its degree of 
centrality with respect to a data cloud or a probability 
distribution: center-outward ordering of point	
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•  Projection Depth Function	

– MED: median; MAD median absolute deviation	

February 5, 2019	 ENSE, UH2C	 44	

Stochastic finite 
approximation	



•  h-ordering	
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h-opening & 
h-closing	
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erosion	

dilation	

Opening and closing	
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Fuzzy ART	

Carpenter, Grossberg	
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Starting point	

•  It is an extensión of binary input Adaptive 
Resonance Theory (ART) to continuous 
variables in [0,1]:	
– Logical AND, intersection --> inf operator 	

•  Coding: 	
– appending the complementary (1-xi) to each 

input variable xi.	
•  Category == Cluster	
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Algorithm Elements	

•  Category selection based on  Tj	
– It is a measure of inclusion of the input in the 

category	
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•  Resonance: Vigilance parameter ρ	
– Decision about the creation of a new category	
– Measure of category compactness: inclusion of 

the weight wJ in the input I	

Input accepted in the 
winning category	
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•  Learning	
– Enlarging the category enclosing the new data	

After presentation 
of a  (β=1)- - ->	
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Fuzzy-ART properties	

•  Forms hyper-rectangular categories 
covering the data	

• Hyper-rectangles grow monotonically in all 
dimensions during training	

•  The size of a category equals	
•  It is bounded by 	
•  If 0≤ρ<1 the number of categories is 

bounded (but most times grows big!)	€ 

R j = M − w j

€ 

R j < M 1− ρ( )
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Supervised learning	 ARTMAP	

•  Encodes and categorizes both input and 
output	
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Fuzzy-ARTMAP applications	

•  Control	
•  Classification and pattern recognition	
• Data mining	
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Yang, Maragos 1995	

Min-Max classifiers	
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Starting point	

•  Boolean functions in DNF 	

• Min-max functions are obtained replacing 
Boolean literals by real-valued variables	
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•  For classification a thresholding step is 
added	
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Learning	

• Minimization of the Mean Square Error 
(MSE)	

• Gradient descent on the function parameters	

•  Instantaneous error	
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•  Trick	
– Assume no input variable is complemented	
– Extend the input space to 2d including the 

complements … Fuzzy-ART?	
•  Problems	

– Define parameters to allow differentiability	
– Approximate gradient of min, max, threshold	
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Functional form	

clause	

expression	

Decision through threshold	
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• How to model continuosly the conjunctive 
expression structure: Ij ?	
– Continuous variables mij such that	

– The parameters to be learnt	
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• Derivative with respect to the threshold	

• Where β is the width of a pulse 
approximating the derivative of the step 
function	
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• Derivative with respect to the structure 
parameters	

•  Implies the derivative of maximum and 
minimum functions.	
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Derivative of maximum	

•  Implicit formulation of maximum	
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•  Leads to the following expression 	



February 5, 2019	 ENSE, UH2C	 72	

Results on handwritten digit 
recognition	
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Modelling and Knowledge 
representation based in Lattice 

Theory	
V. G. Kaburlasos	
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Starting point	

• Generalizes the Fuzzy-ART and Fuzzy-
ARTMAP architectures	

•  The Fuzzy Lattice Neurocomputing	
– Proposes an abstract representation (FIN) based 

on generalized interval (GI).	
– Is defined based on inclusion measures and 

distances on the FINs	
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Inclusion measure	

Vigilance parameter	

learning	
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Advantages of σ-FLN	

• Deals with data uncertainty	
• Different positive valuation functions	
• Deals with disparate (lattice) data types	
• Missing and don’t care values are treated 

naturally: least and greatest lattice elements.	
•  Learning in one step, presentation order 

dependent	
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Intervals in the unit hypercube	

•  Lattice interval corresponds to a hyperbox	

•  Positive valuation function	

•  Lattice join	
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• Degree of inclusion	
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Generalization	

•  Positive Valuation function on a lattice (L,≤) 
satisfies	

• A positive valuation in a lattice (L,≤) 
induces a metric (distance)	
€ 

v x( ) + v y( ) = v x∧ y( ) + v x∨ y( )

€ 

x < y⇒ v x( ) < v y( )

€ 

d x, y( ) = v x∨ y( ) − v x∧ y( )

€ 

d : L × L→ R0
+
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• An inclusion measure is a function 
satisfying	

•  If v is a positive valuation in lattice (L,≤) then 
both expressions are inclusion measures	

€ 

σ : L × L→ 0,1[ ]

€ 

(IM1)  σ x, x( ) = 1,∀x ∈ L

(IM2)  x∧ y < x⇒σ x, y( ) < 1

(IM3)  u ≤ w⇒σ x,u( ) ≤σ x,w( )

€ 

(a)   k x,u( ) =
v u( )

v x∨ u( )
     (b)   k x,u( ) =

v x∧ u( )
v x( )
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Fuzzy Interval Numbers (FIN)	

• A FIN is a function                       such that	

• where Mh denotes the set of generalized 
intervals of heigh h.  It is a lattice ordered 
linear space. 	

€ 

F : 0,1( ] → M

€ 

(1)  F h( ) ∈ M h

(2)  either  F h( ) ∈ M +
h   or  F h( ) ∈ M−

h

(3)  h1 ≤ h2 ⇒ x :F h1( ) ≠ 0{ } ⊇ x :F h2( ) ≠ 0{ }
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•  FINs can be models of	
– Real numbers	
– Intervals 	
– Fuzzy numbers	
– Probability distributions	

•  FINs inherit valuation, inclusion, metric 
functions from the set of generalized 
intervals	



February 5, 2019	 ENSE, UH2C	 86	

Probability distribution FIN	



Operations on FINs	
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Applications	

•  Classification and clustering	
– Benchmark problems	
– Epidural surgery planification	
– Orthopedics bone drilling	
– Ambient ozone estimation	
– Prediction of industrial sugar production	



Lattice Computing Extension of the FAM NeuralClassifier for Human 
Facial Expression Recognition �

Vassilis G. Kaburlasos, Stelios E. Papadakis, and George A. Papakostas �
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 

24, NO. 10, OCTOBER 2013	
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•  Features:	
– 16- dimensional feature vector moments 	

•   Zernike, Pseudo–Zernike, Fourier–Mellin, 
Legendre, Tchebichef, or Krawtchouk moments	

– 6x16 dimensional feature vectors with all the 
moment features	
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Associative Morphological 
Memories	
Ritter, Sussner	
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Starting point	

•  Linear neuron	

• Matrix notation	
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• Morphological dilative neuron:	

• Matrix notation: max product	
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• Morphological erosive neuron:	

• Matrix notation: min-product	
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Morphological associative 
memories	

• Hopfield associative memory: given an 
input x recalls response y as	

•  To store k vector pairs	
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•  The Hopfield associative memory provides 
perfect recall if the input patterns are 
orthogonal	

•  If they are not orthogonal, the recall is 
corrupted by crosstalk noise.	
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• Morphological Associative Memories	
•  Construction with a single pair:	

•  Recall (perfect):	
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• Given a set of input-output patterns	

• Define:	

•  Two natural  morphological memories	
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•  Basic recall property:	
–  the erosive and dilative memory recalls bound 

the exact response	
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•  Conditions for perfect recall	
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Autoassociative memories	

• When X=Y, memories WXX and MXX are 
called autoassociative.	

•  They have perfect recall and unlimited 
capacity	

•  Recalling converges in one step	
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Noise	

• Memory WXX is robust to erosive noise and 
sensitive to dilative noise	

• Memory MXX is robust to dilative noise and 
sensitive to erosive noise	

Erosive noise	

Dilative noise	
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Approaches to solve the noise 
problem	

• Definition of kernels	
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Application to hyperspectral 
images	
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Conclusions 	
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Conclusions	

•  Lattice computing defined as computing on 
the lattice algebra                  has been 
maintaining its appeal in the last fifteen 
years.	

€ 

R,∧,∨,+( )
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Conclusions	

•  Application of lattice theory leads to new 
computational paradigms arising from	
– Fusion of established paradigms	

•  Mathematical morphology and fuzzy systems	
•  Neural networks and fuzzy systems	

– Generalization of approaches	
•  Fuzzy Lattice Neurocomputing	

– Direct innovative applications	
•  Feature extraction based on linear unmixing based on the 

identification of endmembers in the data set.	
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Future	

•  Lattice Computing may benefit from 	
– Advances in random search	
– Sparsity approaches.	

• A wide open field for mathematical research	
• Need of open source libraries for 

dissemination 	
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Thank you for your attention	


