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Introduction

e Lattice & Computing: suggestions
— Parallel Computing

 Computing elements arranged as a lattice, each
having channels to neighbouring elements

— A representation of particle interaction in
physics in crystal solids

— A spatial discretization for application of finite
element methods

February 5, 2019 ENSE, UH2C 4
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Introduction

e Lattice computing assumes that the basic
computing structure 1s a lattice.

e Alattice (L,v,n) is a Poset (L,<) any two of
whose elements have
— a supremum, denoted by XV Yy

— an infimum, denoted by XA Y

February 5, 2019 ENSE, UH2C 5
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Introduction

e Poset

A partially-
ordered set, briefly poset (P, <), 1s a set P in which
a binary relation < is defined that is a partial order-
ing, 1.e., satisfies the following three properties for all

X, Y.ZeP:
(P1). X < X (reflexive)

(P2).X <YandY < X imply X = Y (antisymmetric)
(P3). X <Y and Y <Z mmply X < Z (transitive)

February 5, 2019 ENSE, UH2C
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Introduction

e Computational paradigm shift (Ritter)

— Traditional Artificial Neural Networks are
defined on the ring (R, +, x)

Tj(X) — Z T;Wi5 — Hj

. =1 .,
— Lattice ANN work on the semi-rings

February 5, 2019 ENSE, UH2C
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Introduction

* Biological justification
(Ritter)

— Dendrites account for 50%
of brain mass

— Dendrite computation 1s
more akin to AND, XOR,
NOT logical operations

February 5, 2019 ENSE, UH2C

Fig. 1. Diagram of a neuron cell showing dendrites, dendritic trees, axon
branches, and terminal branches. Excitatory and inhibitory inputs are indicated,
respectively, by black small disks () and small cireles (o).
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Introduction

* Mathematical morphology for image processing 1s
also a lattice paradigm shift from linear processing
(Maragos)

— Linear translation-invariant (LTI) operators are

uniquely represented by linear convolution with the
impulse response

— Erosion (Dilation) translation invariant (ETI(DTI))
operators are uniquely represented by inf-(sup)
convolution with the impulse response

February 5, 2019 ENSE, UH2C 9
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Introduction

U i1s LTI © Y (F)(x) = (FxH)(x)
=Y F)HGx - )

DTI (F@H)x)2 \/ F(y)* H(x — y)
yeE

ETI (F®'H)x)2 )\ F(y)* H'(x —y)
yeE

February 5, 2019 ENSE, UH2C 10
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Introduction

* Kinds of processes in Artificial Intelligence

— Filtering
y:RY = R"

— Dimension reduction

y:RY = RY:d<<N

— Classification (supervised, unsupervised)

Y RY —Q; £2={a)1,L ,a)c}

February 5, 2019 ENSE, UH2C
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Introduction

e Lattice Computing approaches
— Filtering: Mathematical Morphology

— Classification- recognition
* Fuzzy systems
e Artificial Neural Networks
— Specific processes

e Target Localization in images
 Endmember induction in hyperspectral images

February 5, 2019 ENSE, UH2C 12
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Introduction

e The learning problem

— Gradient descent schemas need to compute
derivatives :

e derivatives of sup, inf functions are not defined.

— Heuristic growing produces overfitting
(category explosion) and there 1s no proof of
convergence.

— Random search algorithms are computationally
expensive.

February 5, 2019 ENSE, UH2C 13
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Some historical landmarks

1979

— R. Cuninghame-Green: Minimax
Algebra

1982

— J. Serra: Image Analysis and
Mathematical Morphology

1991
— Carpenter, Grossberg: Fuzzy-ART

1992

— Simpson: Min-max Neural
Networks

— Pedrycz: Relational System
Learning

1995

— Yang, Maragos: Min-max
Classifiers

ENSE, UH2C

1998

— Ritter, Sussner: Morphological
Associative Memories

— Gader: Shared-weight Morphological
Neural Networks

2000

— Kaburlassos, Petridis: Fuzzy Lattice
Neurocomputing

2003

— Ritter: Dendritic Computing

2005

— Kaburlassos: Towards a unified modeling
and knowledge representation based on
Lattice Therory

— Maragos: Lattice image processing: a
unification of morphological and Fuzzy
algebraic systems

2007

— Kaburlassos, Ritter: Computational

Intelligence based on Lattice Theory
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Lattice Image Processing: A Unification of
Morphological and Fuzzy Algebraic Systems

P. Maragos

Journal of Mathematical Imaging and
Vision 22: 333-353, 2005

February 5, 2019 ENSE, UH2C 16
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Binary dilation.-
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Structuring
element
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Greyscale Mathematical Morphology
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» Grayscale morphology relies on a partial ordering relation between image

pixels.

Dilations

Structuring
element

~ :
v ‘

Erosions

fxy)

Grayscale image

February 5, 2019 ENSE, UH2C

Original image

s

Dilation

3x3 structuring element defines
neighborhood around pixel P

Erosion
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» Excellent filtering properties:

Morphological opening (erosion +

iI'Ia tion) .

Structuring
element

February 5, 2019 ENSE, UH2C 20
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Starting point

* Design of new filters: generalized opening
and closing

e Works on the lattice of functions
S — VE F.:E—>YV

F<G& Fx)<Gkx) Vx e E Inherited partial order

(\/ )(x) \/F(X), xe€E

ieJ ieJ Inherited supremum
(/\ F,:)(x) £ /\ F(x), x€E and infimum
ieJ ieJ

February 5, 2019 ENSE, UH2C 21
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Increasing operators

§ is dilation iff §(\/,_; X;) = /., 6(X))

¢ is erosion iff £(/\;_; Xi) = A\..; X))

i€l
& 1s opening iff & is increasing, idempotent &
anti-extensive
B is closing iff B is increasing, idempotent
& extensive

February 5, 2019 ENSE, UH2C 22
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Adjunction
e The operator pair (£, 0) is an adjunction if
X)<Ye X<el) VX, YeL

* An adjunction defines a pair of
morphological filters

O& is an opening, and €9 is a closing.

February 5, 2019 ENSE, UH2C 23



Signal processing

* Algebraic structure of the scalars:
(V, V, A, %, *)
e Complete lattice-ordered double monoid
— Addition
— Dual addition /\
— Multiplication *

e /
— Dual multiplication %

February 5, 2019 ENSE, UH2C

aaaaaaaaaaaaa

24



-
UPV EHU ﬁE
()

Signal processing

* The space of signals 1s a function lattice
S = Fun(E,V)

It inherits the clodum structure of the
scalars, with appropriate natural definitions
of addition and multiplication

February 5, 2019 ENSE, UH2C 25
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Parallelism to linear processing

e Representation of a signal as a supremum
(infimum) of translated impulses

F)=\/ FO) xqy(x) = [\ FO) * g{(x)

yeE yeE

February 5, 2019 ENSE, UH2C 26



aaaaaaaaaaaaa

e Linear superposition principle

w(zaf - Fi) =Y _ai -y (F)

ieJ ieJ

* Nonlinear superposition principle

0 \/Ci*Fi = \/Ci * 0(F}),

ieJ ieJ

February 5, 2019 ENSE, UH2C 27
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e Translation invariant operator: commutes
with all translations

TeT, e vT =TY.

e Nonlinear convolutions define the effect of
Erosion and Dilation translation invariant
systems

February 5, 2019 ENSE, UH2C 28
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Vv is LTI © ¥ (F)(x) = (FxH)(x)
=) F(y)H(x—y)

DTI (F@QH)(x)& \/ F(y)* H(x — y)
yekE

ETI (F®'H')(x)= /\ F(y)*x H'(x — y)

yeE

February 5, 2019 ENSE, UH2C 20
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Generalized convolution
adjunctions
* using scalar adjunctions (}»;(x_y), AH(x—y))

e It is possible to obtain the adjoint operator

Ap(F)x) = \/ FO) « Hx =) = \/ *ra—y(F()

yelE yelE

e Which looks like a correlation
En(G)x)= \ Gy)*[H(y — x)I*

yeE

February 5, 2019 ENSE, UH2C
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Lattice operators using fuzzy
norms
* Fuzzy intersection norm --> scalar dilation
T:[0,11> — [0, 1]
Fl. T(a,1) = a and T(a,0) = 0
F2. T(a,T(b,c)) =T(T(a,b), c) (associativity).

F3. T(a,b) = T (b, a) (commutativity).
F4. b < ¢ = T(a,b) < T(a, c) (increasing).

F5. T is a continuous function.

February 5, 2019 ENSE, UH2C 31
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* Fuzzy union norm --> scalar erosion

U:[0, 11> = [0, 1]

FI'.U(a,0)=aand U(a, 1) = 1.

February 5, 2019 ENSE, UH2C 32
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* Translations under the fuzzy framework

S = FUH(E, [O~ 1])

Thno()X) =T(f(x —y),v)
Th o (X)) =U(f(x —y),v)
(h,v) e Ex]O0, 1]

February 5, 2019 ENSE, UH2C 33
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e Signal representation with fuzzy translations

f@)=\/Tlgx = y). fF()]

— /\ Ulg'(x —y), f())]

ol Ol

q(x)é{

SR
oL oL

ol

( >A{0‘
X )=
I 1,

X
X

RN

L,
0,

February 5, 2019 ENSE, UH2C 34
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e Translation invariant signal fuzzy dilations
and erosions with sup-7 and inf-U
convolutions

(f Or ©)x) = \/ Tlgx — ). fO)].

||>

(f Oy ©x) & N\ Ulgx =), f()]

February 5, 2019 ENSE, UH2C 35
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e Fuzzy dilation adjoint Anr(F)(x) = (F Or H)(x)

Ena(G)M) 2 )\ QIHx — y), G(x)]
xelE

where Q[ H(x — y), G(x)] is actually the adjoint
of the fuzzy T-norm:

T@av)<wEv<Qa,w)
Q(a,w) =sup{v € [0,1]: T(a,v) < w}

February 5, 2019 ENSE, UH2C 36
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Example norms

Fuzzy intersection norm Adjoint norm
w, w<da
Min : Ty(a, v) = min(a, v) Qia, w) = {1‘ w>a
Product : T»(a,v)=a-v Da. w) — {fl“in(w/“~ D, a> 8
’ a =
Yager: T3(a,v) =1 — (1 A[(1 —v)P L[ —w) — (1 — ay]/e.
+(1—a)p]l/p), p > 0. @ w) = | w=a
I, w>a

February 5, 2019 ENSE, UH2C 37
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Results
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Figure 1. Comparison of 1D basic morphological and lattice-fuzzy signal operators. Rows 1 and 2, left to right: flat, minimum, product, Yager.
Row 1: original signal (solid line), dilation (dashed line), erosion (dotted line). Row 2: closing (dashed line), opening (dotted line). Courtesy of
[27].
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(f) (&) (h) (i)

Figure 2. (a)Original image F.(b) Morphological flat dilation F & B. (c) Morphological flat erosion F S B. (d) Fuzzy dilation 5(F )- (c) Fuzzy
erosion £(F). (f) Morphological gradient F & B — F & B. (g) (S(F) — E(F). (h) Fuzzy min gradient min[a(F), 1 — E(F)]. (1) Fuzzy max
gradient max[(S(F), 1 — E(F)]. Courtesy of [27].

February 5, 2019 ENSE, UH2C 40
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Random Projection Depth for
MultivariateMathematical Morphology

Santiago Velasco-Forero, and Jesus Angulo

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL
PROCESSING, VOL. 6, NO. 7, NOVEMBER 2012

February 5, 2019 ENSE, UH2C 11



‘oman ta zabal zazu

e Multivariate signal (image) orders
— Marginal: each channel separately
— Conditional: lexicographic total order
— Reduced: induced by a map into scalar

— P-order: induced by partitioning of the vector
sample into groups

February 5, 2019 ENSE, UH2C 42
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e Depth functions assign to each point its degree of
centrality with respect to a data cloud or a probability
distribution: center-outward ordering of point

Blue Channel

B 50 100 50
Green Channel
(a) (b) (c)

Red Channel 250 200

Fig. 1. The proposed ordering for a given multivariate image (a) is based on the information contained in its spectral representation (b). Projection depth function
(c) detects the intrinsic dichotomy background and foreground of the original image. Total ordering for morphological transformations is defined as follows:

x1 < X2 © PD(xy;I) < PD(x2;1).

February 5, 2019 ENSE, UH2C 43
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e Projection Depth Function

Definition 2: [18] The projection depth function for a vector
x according with a data cloud X = [x1,...,X,] as follows,

PD(x: X} — luTx — MED(uTX)|
(i X)= sup A DWTX)

(2)

— MED: median; MAD median absolute deviation

u’x — MED(u” X)) Stochastic finite

PD(x; k, X) = max —— o x) 3) . .
approximation
where U = {u;, us, ..., u } withu; € $¢-1. Clearly, if £ —

oo then PD(x;k,X) — PD(x;X).

February 5, 2019 ENSE, UH2C 44
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* h-ordering
let h : R — L be a surjective mapping.
r =, ' & h(r) = h(r') Vr,r’.
refer by <;, the h-ordering

r<pr’ & h(I)<h(), VvVrr'eR

h— : L — R semi-inverse of A.
hh—(r) = r,forr € L.

February 5, 2019 ENSE, UH2C 45



‘the pair (e, ¢) is called an h-adjunction.
g,0 :R—=R
6(r) <pr' &r<e(rf), vr,r'eR

Moreover. let (¢, )

be h- -increasing mappings on R, and let e " g, 0 ~|—>" 5.
Then (e, 6) is an h-adjunction on R if and only if (&, §) is an
adjunction on the lattice £. Therefore a mapping 6 (resp. €) on
R is called h-dilation (resp. h-erosion) if 6 (resp. €) is a dila-
tion (resp. erosion) on L.

v = b <pid <y, p = €6. h-opening &
h-closing

February 5, 2019 ENSE, UH2C 46



Given a multivariate vector image I € F(E,F), its h-depth
mapping 1s defined as

hi(x) = PD(x; Xy) (12)

ese,hy (I)(2) = { () : I(y) = /\ I(z)], z € SE, } »  €rosion

Osg h L(x) = {I(y \/[I z)|,z € SEl, }, dilation

Opening and closmg
YSE,hy (I) = 5sz,h1 (€sn,h1 (I))a ¢sn,h; (I) — €SE,hI(5SE,hI(I))

February 5, 2019 ENSE, UH2C 47
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(® (h)

(n) (p) (q)

Fig. 2. Erosions by a disk of size 10 in the fam.lly of orders proposed by Barnet [6] and recent approaches from [9] and [30]. C-ordering uses the priority
red > green > blue. Proposed P-ordenng is illustrated in (e)—(k)—(q) with & = 1000 random pro_;ecnons Supervised ordering from [30] is calculated by
SVM with background/foreground sets given by green/red triangles in (e)(k)(q) respectively. Erosion in the ordering induced by the proposed P-ordering follows
the physical meaning of the transformation. i.e., diminution in the size of the objects is produced. The ordering does not require a training set as supervised or-
dering (f)—(1)—(r). However, this intrinsic ordering is based on dichotomy background and foreground (See text for more details). (a) Original; (b) M-ordering;
(c) C-ordering [9]: (d) P-ordering: (e) Training set: (f) supervised ordering [30]: (g) original: (h) M-ordering: (i) C-ordering [9]: (j) P-ordering: (k) Training set;
(1) supervised ordering [30]; (m) original: (n) M-ordering: (o) C-ordering [9]: (p) P-ordering; (q) Training set; (r) supervised ordering [30].

February 5, 2019 ENSE, UH2C 48
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(d) (e) (f)

Fig. 6. h-depth gradient and segmentation by using watershed transformation (in red), where markers are calculated by selecting the minima of strong dynamics

in h-depth gradient, with ¢t = .5. (a) An(I): (b) An(I): (c) An(I): (d) WS(L, t): () WS(L, ¢): (f) WS(L,¢t).

February 5, 2019 ENSE, UH2C 49



ﬁ{ aaaaaaaaaaaaa .
{ig U;}:u ﬁ;@

O,

Contents

e Introductory ideas and history
e Filtering
— Fuzzy Mathematical Morphology
— Multivariate Mathematical Morphology

e (lassification

— Fuzzy ART
— Max-min classifiers
— Fuzzy Lattice Neurocomputing

e Associative Morphological Memories
e Conclusions and the future

February 5, 2019 ENSE, UH2C 50



February 5, 2019

Fuzzy ART

Carpenter, Grossberg

ENSE, UH2C
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Starting point

e Itis an extension of binary input Adaptive
Resonance Theory (ART) to continuous
variables 1n [0,1]:

— Logical AND, intersection --> inf operator

e Coding:

— appending the complementary (/-x;) to each
input variable x;.

e Category == Cluster

February 5, 2019 ENSE, UH2C 52



 ART1 FUZZY ART o
(BINARY) (ANALOG)
CATEGORY CHOICE
7= T
MATCH CRITERION
Eﬁ]ﬂ > p IIAIW > p
FAST LEARNING
W) ST AW W) A (0
A = logical AND A = fuzzy AND
intersection minimum

Fig. 2. Comparison of ART 1 and fuzzy ART.
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Algorithm Elements

* Category selection based on T;

— It 1s a measure of inclusion of the input in the
category

TJ = max {T; ] =1]-- N} (p A q); = min (p;, ¢)

A w;| u
a+|wJ|’ IPI5§|I%’|

T;(I) =

February 5, 2019 ENSE, UH2C 54



aaaaaaaaaaaaa

 Resonance: Vigilance parameter p
— Decision about the creation of a new category

— Measure of category compactness: inclusion of
the weight w; in the input 1

1 Awy| Input accepted in the
Z P winni
| Il winning category

February 5, 2019 ENSE, UH2C 55
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e [earning

— Enlarging the category enclosing the new data

: 1
vj RJ ' aVVJ
After presentation m @ag
. _ fyod
0 1 0 1

@)

February 5, 2019 ENSE, UH2C 56



-
UPV EHU ﬁE
()

Fuzzy-ART properties

* Forms hyper-rectangular categories
covering the data

 Hyper-rectangles grow monotonically in all
dimensions during training
* The size of a category equals ‘Rj‘ =M - ‘Wj‘

e It is bounded by R;|<M(1-p)

e If O<p<1 the number of categories 1s
bounded (but most times grows big!)

February 5, 2019 ENSE, UH2C 57
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Supervised learning  ARTMAP

* Encodes and categorizes both input and

- ab
Output - map field F
! )* X*
R AR
N = match
LR tracking
FS

.....

February 5, 2019 ENSE, UH2C 58
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17 7 o1l /\ 3\ 1|

A, Vi a

(a) (b) (c)
pr = 0.6 py = 0.75 pp = 0.9

Fig. 12. Incremental approximation of a sinusoidal function for ART; vigilance parameters, with p; equal to (a) 0.6, (b) 0.75, and (c) 0.9. In each
simulation the fuzzy ARTMAP system was trained on 1000 randomly chosen points @ € [0,1]. Each graph shows the test set confidence intervals
R, selected by the test set points. The maximum lengths of these intervals are (a) 0.4, (b) 0.25, and (c) 0.1. Graph (c), with p, = 0.9, is close to
the asymptotic state of the three graphs in Fig. 11. See Table III

February 5, 2019 ENSE, UH2C 59
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Fuzzy-ARTMAP applications

e Control
e (Classification and pattern recognition

e Data mining

February 5, 2019 ENSE, UH2C
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Yang, Maragos 1995

Min-Max classifiers

ENSE, UH2C
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Starting point

e Boolean functions in DNF
B(b), b =(by,....b)e{0,1}* bef0,1)

e Min-max functions are obtained replacing
Boolean literals by real-valued variables
£:70,17¢510,1] x;€[0,1]

Lf(xl,xz,...,xd)—_— V /\ ll'? [,-E{)CL-,I _xi}
J iel;

February 5, 2019 ENSE, UH2C 62
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* For classification a thresholding step 1s
added

Be[0,1]

L af f(X) >0,

0 otherwise.

h(X)=PLf(X)z0]= {

February 5, 2019 ENSE, UH2C 63
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Learning

 Minimization of the Mean Square Error
(MSE)
¢ (1) = E[(z(t) — d(1))*].

e Gradient descent on the function parameters

pt+ 1)=p(t) — uVz&1).
e Instantaneous error
pt+1)=p()— 2u(z(t) — d(t)) uVzz(1)

February 5, 2019 ENSE, UH2C 64
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e Trick
— Assume no input variable i1s complemented

— Extend the input space to 2d including the
complements ... Fuzzy-ART?

* Problems
— Define parameters to allow differentiability
— Approximate gradient of min, max, threshold

February 5, 2019 ENSE, UH2C
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hj:ie%b.

k

J=1

1 y>86,
Zz =

0 y<6.

February 5, 2019

expression

Decision through threshold

ENSE, UH2C

clause
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 How to model continuosly the conjunctive
expression structure: /;?

— Continuous variables m;; such that

e x;isincluded in I;1f m;; >0,

e Xx;is excluded from 7; if m;; < (.

— The parameters to be learnt
F(t) — (B(I)a 1y (t)n R mdl(r)'; Le. a}ndk(t))'

February 5, 2019 ENSE, UH2C
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a0 0 otherwise.

* Where £ 1s the width of a pulse

approximating the derivative of the step
function

February 5, 2019 ENSE, UH2C 68
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e Derivative with respect to the structure

parameters
6z 0z 3y Oh;

-~

Om,-j

3y oh; omy,

* Implies the derivative of maximum and
minimum functions.

February 5, 2019 ENSE, UH2C 69



Derivative of maximum

e Implicit formulation of maximum

aaaaaaaaaaaaa

k
G,
Gy, hys oo ) = Z {Us(}’_h;‘)—l}‘i‘?:o
j=1
1 1if x>0,
Us(x) = % if x=0,
0 if x<O.

February 5, 2019 ENSE, UH2C
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e | eads to the following expression
1
0y { Nopax
ch, (0 otherwise.

A
N yax = number of h;’s such that y — h; < B

= ¥ Vs~ (y— k)

February 5, 2019 ENSE, UH2C
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Results on handwritten digit
recognition

Table 1. Results for 01 classification problem employing both shape-size histograms and Fourier descriptors

Distinguishing 0’s and 1’s
Normalized radial size histograms and Fourier descriptors

Min-max Neural network
No. of %, error %, error 9% error 9%, errox
minima (train) (test) Network (train) (test)
1 0.083 0.25 1.1 0.083 0
3 0.083 0.25 3,1 0.083 0
5 0.1 0.25 5.1 0.083 0
7 0.083 0.25 7.1 0.083 0
Normalized shape-size histograms with 2 x 2 square and Fourier descriptors

1 3.867 2.6 1,1 0.633 1.2
3 1.9 2.8 3.1 0.633 0.85
5 1.083 3 5.1 0.567 0.8
7 1.733 3 7.1 0.533 0.55

The top two tables are generated using normalized radial histograms and Fourier descriptors, while the lower two using
normalized shape-size histogram with 2 x 2 square and Fourier descriptors.
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Fig. 4. Sample data from the handwritten database. (a) A collection of 0's. (b) A collection of 1's. (c) A
collection of 6's. (d) A collection of 8's.
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Modelling and Knowledge
representation based in Lattice

Theory
V. G. Kaburlasos
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Starting point

* Generalizes the Fuzzy-ART and Fuzzy-
ARTMAP architectures

 The Fuzzy Lattice Neurocomputing

— Proposes an abstract representation (FIN) based
on generalized interval (GI).

— Is defined based on inclusion measures and
distances on the FINs
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1 . {c)

|The first input A; e1(L) is memorized.
¥
> ?
“Set’ all the leamed classes c1.....om
Receive the next input (interval) Aet(L).
¥
3 B
Calculate the fuzzy membership value
m, (A) for all “set” classes ¢x.
4 v
Competition: Select the winner class ¢;=| Jwy; such that 1
J¥ss Inclusion measure
m ()= max me, (&) . Let L=argmax {c(A<wy;)}.
i

: G(A<wy;)

Replace wr by Avwy.
Calculate the new —>§?

quotient Q({wy:}).

Vigilance parameter

8 D crit-

All classes are Memorize A:
‘reset’ o1 =A .
learning
N
9 v
Assign labels to classes by majority voting. A VWL .

Fig.7-1 Flowchart of algorithm c-FLN for leaming (training).
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Advantages of o-FLN

e Deals with data uncertainty
e Different positive valuation functions
* Deals with disparate (lattice) data types

e Missing and don’t care values are treated
naturally: least and greatest lattice elements.

e Learning in one step, presentation order
dependent
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Intervals 1n the unit hypercube

e Lattice interval corresponds to a hyperbox
A= [a,b]= [(01,. . .,ON),(bl,. . .,bN)]: [al,bl,. . .,aN,bN],
e Positive valuation function v
vw)= wO@)+vig)= N+2 (q; = p;)
i=l1

e [.attice j01n

o)

Avw= [ay,by,...,ax,bNIV[P1,G1,- . .. PN.GN]F

ainp1, bings,....anvpn, bavgxl.
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* Degree of inclusion

N
N + i(qi) — Vi (P;
v(6(p)) +v(q) 2.0:@) =i (p)

v(B(av p)+v(bv q) N

G(ASwW)=

N .
N+Z[vi(bi v q;)—v;i(a; A p;)l
i=1
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Algorithm 1 firART Clustering

1: Assume a set C C 231!V; K = |C]|; a user-defined vigilance
parameter p € [0, 1];

2:fori=1toi =ndo Category Layer F»
3:  Consider the next input datum X; € JV; (Competition: Wimner takes &l
4 S=C;
) 1 2 3 K
5: J = argmax{c(X; € W;)};
Jell,...,ISI}
W;es
6: while (S # {}).and.(6 (W; C X;) < p) do
: S=S\{Wys}
8: J = argmax{c(X; € W;)} reset
Jell,..,IS1}
W;es p>
9: end while Inout Laver F
. nput Layer F,
10: if S = {} then Buffering & Matching
11: C=CU{X;}) .
12: K=K+1; X
13:  else
. - .- Fig. 2. firART neural architecture for clustering, where an input pattern X
14: W" - WJ U x" is in the lattice (J{V, Q) of intervals.
15:  end if
16: end for
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MAP field F*’

ab

A % Fy
Module reset Db reset  Module
o-FLN, o-FLN,

Y
F a FP
Dy D,
I Q=/(P)

Fig.7-4 The c-FLNMAP neural network for inducing a function £ t(L)—>7t(K),
where both L and K are mathematical lattices.
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Generalization

e Positive Valuation function on a lattice (L ,<)
satisfies
v(x)+v(y)=v(xay)+v(xvy)
X<Yy= V(X) < V(y)

e A positive valuation 1n a lattice (L,<)
induces a metric (distance) d:LxL—R;

d(x,y) = v(x Vv y) - v(x A y)
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e An inclusion measure is a functiono :LxL —[0,1]

satistying - vy, o(x,x)=1LVxEL
(IM2) xAy<x=0(x,y)<]

(IM3) usw= G(x,u) <O x,w)

e If vis a positive valuation in lattice (L,<) then
both expressions are inclusion measures

v(xAu)
v(x)
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Fuzzy Interval Numbers (FIN)

e AFIN is a function F:(0,1]—= M such that
(1) F(h) eM”

(2) either F(h)EMil or F(h)EM_h
(3) hy<hy={x:F(h)=0} 2{x:F(h,)=0}

e where M" denotes the set of generalized
intervals of heigh A. It 1s a lattice ordered
linear space.
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 FINs can be models of
— Real numbers
— Intervals
— Fuzzy numbers
— Probability distributions

e FINSs inherit valuation, inclusion, metric

functions from the set of generalized
intervals
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Probability distribution FIN

20

| | histogmm: | | I CDF ! |
L] N N o S S S 1t---t .
| | I I
| b i | b
10f---r- -| fr---1---1 | ' L
: L 0.5F---F----- -~ P =7 ==
5____:__ _:____:____ : ] | |
: 1 : : 1 1 |
1 I i 4
3.3 3.43.484 3.7 3.8 39 33 34 3559 3.7 38 39
(@) ®)
i i FIN
S S S S S

{ 0.5¢(x), x<3.559
m(x) =

1-0.5¢(x), x>3.559

0 1 1
33 34 3559 37 38 39
(©)
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Operations on FINs

CCr 6,5

oo [
ANEVAN

(a)

0

V&

Fig. 1. Demonstrating the lattice join (Y) operation between trivial Type-2
\ INs. (a) Trivial Type-2 INs [C,C;] = Cy, [C2,C2] = C,, and
2\

[C3, C3] = C3. (b) Type-2 IN C; Y Cq =[C| AC2, Cy Y (7] is shown in its
membership-function representation. (c) Type-2 INC; YCy =[C; AC2,C1 Y
(b) % (C,] is shown again, this time in its (equivalent) interval representation for
L = 32 different levels spaced uniformly over the interval [0, 1] on the vertical

=

1 QE\'% axis. (d) Type-2 IN C2 Y C3 =[Cyr AC3,C, YC3]=1[0,Cy Y C3].
o647t j
o =G~ G =i
o 2 4 6 8 10 12 14 16 18
(©)
1 -
o N

o] 2 4 6 8 10 12 14 16 18 2

(d)
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Applications

e (Classification and clustering
— Benchmark problems
— Epidural surgery planification
— Orthopedics bone drilling
— Ambient ozone estimation

— Prediction of industrial sugar production

February 5, 2019 ENSE, UH2C
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Lattice Computing Extensmn of the FAM NeuralClassifier for Human

Facial Expression Recognition
Vassilis G. Kaburlasos, Stelios E. Papadakis, and George A. Papakostas
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.
24,NO. 10, OCTOBER 2013

® (€3}
Fig. 4. Seven different facial expressions from the JAFFE benchmark dataset, ::fm hfn ik E;éhs::tdlgec:ﬁl;n °“2:;‘°:nal CXE’;’S ons ﬁ°m||'h°(c$ADBOUD
im):luding' (a) neutral, (b) angry, (c) disgusted, (d) fear, (c) happy, (f) sad, and (d) fear, (¢) happy, () houtral @ sa o () arprise,
g) surprise.
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e Features:

— 16- dimensional feature vector moments

e Zernike, Pseudo—Zernike, Fourier—Mellin,
Legendre, Tchebichef, or Krawtchouk moments

— 6x16 dimensional feature vectors with all the
moment features

February 5, 2019 ENSE, UH2C 90
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Sk

MOMS_PZ MOMS_FM MOMS_L MOMS_T MOMS_K  CLASS

MOMS_Z

ANGRY

DISGUSTED

FEAR

HAPPY

NEUTRAL

SURPRISE

0.0 T X 0.0 - X X .
0.0 05 10 0.0 05 1.0 0.0 05 10 0.0 05 10 0.0 05 1.0 00 05 1.0

Fig. 6. A row of the 7 x 7 Table above (excluding the header) displays one
6-dimensional Type-2 IN induced for each of the seven human facial expres-
sions (classes) of the JAFFE benchmark dataset. One Type-2 IN corresponds
to one kind of moment. At the end of a row, the corresponding class name is
shown.
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TABLE 1 TABLE 11
GENERALIZATION RATE (%) STATISTICS REGARDING THE JAFFE GENERALIZATION RATE (%) STATISTICS REGARDING THE RADBOUD
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS
USING SEVERAL CLASSIFIERS AND SI1X DIFFERENT USING SEVERAL CLASSIFIERS AND SIX DIFFERENT
KINDS OF MOMENTS, CONCATENATED KINDS OF MOMENTS, CONCATENATED
Classifier Name Min Max Ave Std Classifier Name Min Max Ave Std
kKNN (k= 1) 4091 94.74 67.68 15.82 kNN (k=1) 22,22 4630 35.74 7.51
Naive Bayes 18.18 52.63 36.80 10.03 Naive Bayes 35.19 57.41 48.15 7.04
Classification tree 31.82 4737 40.02 5.67 Classification tree 2778 40.74 34.07 4.20
Neural network (50) 18.18 59.09 37.27 13.52 Neural network (50) 11.11  64.81 4574 15.81
FAM 50.00 90.00 68.87 13.49 FAM 2777 4444 3740  6.03
firFAM 50.00 8636 69.54 12.31 firFAM 35.18 50.00 43.14  4.86
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Contents

e Introductory ideas and history
e Filtering
— Fuzzy Mathematical Morphology
— Multivariate Mathematical Morphology

e (lassification

— Fuzzy ART
— Max-min classifiers
— Fuzzy Lattice Neurocomputing

e Associative Morphological Memories
e Conclusions and the future
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Associative Morphological
Memories

Ritter, Sussner
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Starting point

e [ inear neuron

I2

ri(t+1) = a;(t) wi;  at+1) = fr(t+1) —6)
J=1

e Matrix notation

T(t+1)=W -a(t)
a(t) = (ay(t), . a,(t)),
Tt + 1) = (r(t +1),---,a(t+1)Y,

February 5, 2019 ENSE, UH2C 95
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 Morphological dilative neuron:

n

Tzﬁ(t + 1) = \/ (J,j(t) + w;;
j=1
e Matrix notation: max product 7(t+1) =W Ma(?)
C=ANMDB

P
Cij = \/ Wik + by = (@ir +b17) V(@2 +baj) V - -+ V (@i + by ).
k=1

February 5, 2019 ENSE, UH2C 926
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 Morphological erosive neuron:

(2

T‘i(t + 1) = /\ @ (f) + Wy

J=1

e Matrix notation: min-product 7(t+1) =W & a(?)
C=ABB

/\ aig + brg = (ain + b)) A (a4 bog) Ao Alag, + byj).
k=1
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Morphological associative
mMemories

* Hopfield associative memory: given an
input X recalls response y as
y =W- X.
* To store k vector pairs
(xt,yb), -, (xF, y¥), where x* € R™ and y* € R™
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* The Hopfield associative memory provides
perfect recall if the input patterns are
orthogonal

e If they are not orthogonal, the recall 1s
corrupted by crosstalk noise.

February 5, 2019 ENSE, UH2C 99
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* Morphological Associative Memories

e Construction with a single pair:

W=yM(-x)":

e Recall (pertect):
WMx=y

February 5, 2019 ENSE, UH2C
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* G1ven a set of input-output patterns

e Define: (X,Y).

"Y:(Xla"'ﬁ-xk) Y = (yl*wyk)
 Two natural morphological memories
k k
Wxy = AIy* x (=x°)] and  Myy = \/[y* x (—x%)].

February 5, 2019 ENSE, UH2C 101
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e Basic recall property:

— the erosive and dilative memory recalls bound
the exact response

Hr\) S y"S X (—Xé), S M XY

[ Wiy M x’f <Y ¢ < M~y A XE ]

Wyxy M X < Y < M~y A X.
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e Conditions for perfect recall

Theorem 2: Wy 1s [M-perfect for (X', Y) if and only if for
each¢ =1, .-+, k, each row of the matrix [y¢ x (—x*)|-Wxy
contains a zero entry. Similarly M xy 1s [A-perfect for (X, Y)
if and only if for each £ = 1.-.., &k, each row of the matrix
Myy — [y* x (=x%)'] contains a zero entry.

February 5, 2019 ENSE, UH2C 103



Autoassociative memories

* When X=Y, memories W, and M, are
called autoassociative.

* They have perfect recall and unlimited
capacity

WxxMX=Xand Mxx A X = X.

-

e Recalling converges in one step

February 5, 2019 ENSE, UH2C
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Noise

* Memory W,, 1s robust to erosive noise and
sensitive to dilative noise

* Memory M, 1s robust to dilative noise and
sensitive to erosive noise

X < x" Erosive noise

X7 > X7  Dilative noise

February 5, 2019 ENSE, UH2C 106



Fig. 4. The top row shows the corrupted input patterns and the bottom rox
the corresponding output patterns of the morphological memory Wy x .
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¢ X
X X

Fig. 5. The top row shows the corrupted input patterns and the bottom row
the corresponding output patterns of the morphological memory M x x .
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Appr()aches to solve the noise
problem

e Definition of kernels

Definition 2: Let Z = (z*,2?,---,2") be an n x k matrix.

We say that Z is a kernel for (X, Y) if and only if the
following two conditions are satisfied:

1. M 77 ANX =2 .
2. I’VZ Y MZ =Y.
It follows that if Z is a kernel for (X,Y), then

Woy MMz, A X)=Wzy MZ =Y.

February 5, 2019 ENSE, UH2C 109
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Fig. 6. An example of kemel images. The kernel image corresponding toa
particular letter image 1s the image directly below the letter image.

2
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Fig. 7. An example of the behavior of the memory {input —
Myzyz — Wgyy — output}. The memory was trained using the ten
exemplars shown in Fig. 2. Presenting the memory with the corrupted
patterns of the letters A, B, and X resulted in perfect recall (lower row). Each
letter was corrupted by randomly reversing each bit with a probability of 0.15.

February 5, 2019 ENSE, UH2C
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Application to hyperspectral
images

Hyperspectral image definition

40y

Mixed pixel 5 & |
(soil + rocks) 3
.

Reflectance

Pure pixel £
(water) —>§% |
@

, 8 e
Mixed pixel _ S5,
(vegetation + soil) $..

.

30 800 900 1200 1500 1800 2100 2400
Wavelength (nm)

February 5,2019 ENSE, UH2C 112



‘oman ta zabal zazu

=2 e

Spectral mixing

Linear Mixture Two-Layers: Canopies + Ground Intimate Mixture

oy ap a3 y=Z am+ L; ajm;© my y=1(8) Media Parameters
i i=f

s . -

Single Scattering Double Scattering

(@) (b) ()
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Linear mixing model
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o The linear mixing model

p
x(i,j)zZek-Cbk(i,j)—l—w:E-<D—I—W
k=1
with Y0 _; ®x(i.j) =1 and & > 0; E is the set of
endmembers.
ml y = Ma
mg C = conv{M}
= 2-simplex
February 5, 2019 ENSE, UH2C

(1)

114



UPV EHU @

Linear Unmixing

The statement of the problem

. 2 . ) T _
min |Y — MAJ|£ subject to: A > 0,1, A=1,,

February 5, 2019 ENSE, UH2C 115
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Endmember induction Algorithm

Definition
Endmember Induction algorithms (EIA): extracting a set of
endmembers E from the data X

o Types of EIA

o Geometric: searching for simplex covering
o Algebraic (PCA, ICA, NNMF)

o Lattice computing: equivalence between lattice independence
and affine independence
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Ritter's EIA

Algorithm 2 Endmember Threshold Selection Algorithm (ETSA) based on [27,28]

(1) Given a set of vectors X = {xl, o, xF } C R™ compute the min and max auto-

associative memories Wy x My x from the data. Their column vector sets W
and M will be the candidate endmembers.

(2) Register W and M relative to the data set adding the maximum and minimum
values of the data dimensions (bands in the hyperspectral image). Obtain W
and M as follows:

(a) Compute u; = \/7_; a:f and v; = A¢_, t
(b) Compute m* = m"' + v; and W' = w' + u;

(3) Remove lattice dependent vectors from the joint set W (J M.

(4) Compute the standard deviation along each dimension of the candidate end-
member vectors, denoted by the vector o = {o1,...,00}.

(5) Assume the first vector in the set v; € W J M as the first endmember, F =
{vi} o

(6) Iterate for the remaining vectors v € W {J M
(a) If ||v — e|| < 4@ for any e € E then discard v otherwise include v in £
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Algorithm 3 Endmember Induction Heuristic Algorithm (ETHA)

(1) Shift the data sample to zero mean
(£ (i) = £ (i) — H;i=1,.,n}.

(2) Initialize the set of vertices £ = {ei} with a randomly picked sample.
Initialize the set of lattice independent binary signatures X = {x;} =
{(et > 0;k=1,.,d)}

(3) Construct the AMM’s based on the lattice independent binary signatures:
M XX and WX X-

(4) For each pixel £ (i)

(a) compute the noise corrections sign vectorsf* (i) = (£ (i) + a@ > 0)
and £~ (i) = (f° (i) —a@ > 0)

(b) compute y* = Myx @ £ (i)

(c) computey™ = Wxx @£~ ()

(@ ify" ¢ X ory™ ¢ X then f° (i) is a new vertex to be added to E, execute
once 3 with the new E and resume the exploration of the data sample.

(e) ify* € X and f°(i) > e,+ the pixel spectral signature is more extreme
than the stored vertex, then substitute e,+ with f° ().

(f) ify~ € X and f° (i) < e,- the new data point is more extreme than the
stored vertex, then substitute e,— with ¢ () .

(5) The final set of endmembers is the set of original data vectors f (¢) correspond-
ing to the sign vectors selected as members of F.

«O» «F>»

February 5, 2019 ENSE, UH2C
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wavelength (um)

(a) (b)

Figure : (a) patch of washington dc image, (c) EIHA endmembers

Figure : LSU estimated abundances from Washington DC patch
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Multivariate ordering

Definition
A h-ordering is defined by a surjective map of the original partially
ordered set onto a complete lattice h: X — L,

o The order in L induces a total order in X,
r<pr’' < h(r)<h(r) (3)

Definition
Supervised h-ordering the mapping is built by supervised
classification

o satisfying h(b) =L, Vbe B, and h(f) =T, Vf € F,
o for background and foreground B,F C X , BN F = (),
o L and T are the bottom and top elements of IL

February 5,2019 ENSE, UH2C 121
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Supervised erosion and dilation

Definition
The supervised h-erosion by structural object S is

ohs (D)(6) = /() 5.1 (a) = A1 (2)i= € 5p)

Definition
The supervised h-dilation by structural object S is

ins (1) (p) = 1) s2-1(a) = VU ()i €5)

where A, and \/, are the infimum and supremum defined by the
reduced ordering <,

=] - = = DAy
O = ] = v Q¥
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LAAM h-function

Definition

Given c € R" and X = {x,-}lel, xj € R" ; the LAAM based

hx-function is

hx (c) = ¢ (x*.¢). (4)
o x# € R" is a LAAM recall result
x* = M, A c
or
x# — Wix M c

o (¢ (a,b) is the Chebyshev distance ¢ (a,b) =\/; |ai — bil.
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One-side ordering

Definition

one-side LAAM-supervised ordering:

Vx,y € R", x <x y <= hx (x) < hx (y). (5)

o hx : R" — Lx , where Lx = (]R+,<), 1x=0
o the Background set B s.t. hy (b) =Lx=0
o is the set of fixed points of the LAAM B = F (X)

B/F ordering

Definition

The relative background /foreground supervised LAAM h-function:

hr (c) = hr (c) = hg (c), (6)

Given training sets B and F

Definition

relative LAAM-supervised ordering denoted <, :

Vx,y € R" x <, y <= h,(x) < h,(y) (7)

February 5, 2019 ENSE, UH2C 124



aaaaaaaaaaaaa

UPV EHU

Hyperspectral image spectral-spatial classification

i©

o Independent SVM spectral classification per pixel

o Multivariate mathematical morphology provide the spatial
information

o Watershed regions from morphological gradient

o assume homogeneous class inside each region

o Spatial correction of SVM results
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(a)

Figure : (a) Pavia image, (b) ground truth, (c) pixelwise SVM
classification
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lient

Supervised morphological grac

Definition

The h-supervised morphological gradient:

ghs () =h(ons (1)) —h(ens (1)),

where £p 5 (/) and 6, s (/) are the h-supervised erosion and dilation
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Unsupervised selection of LAAM training data

o An EIA induces a set of endmembers E = {e;}}_,. Compute
= [di ]} =1, where djj = |e;, ej|

o One-5|de h-supervised ordering
o X = {ex~ € E} such that k* = arg miny { L T 2 izk dik }p :
i=1

o Background/Foreground h-supervised orderings

o F ={ej~ € E} and B = {ej« € E} such that
(i",J") = arg max; ; {(dj) }
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Morphological gradient results

LAAMx LAAM,

Radiance

50
Bands

Figure : Endmembers found in the hyperspectral image

Figure : Morphological gradients with increasing structural element size
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Classification results
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Method OA AA K
Pixel-wise SVM 88.97 | 91.60 | 0.8565
SVM + NWHED CW 03.41 | 94.39 | 0.9135
LAAMx | 93.65 | 94.72 | 0.9167
LAAM, | 92.61 | 93.84 | 0.9034
SVM+WHED CW 05.46 | 95.86 | 0.9403
LAAMy | 95.27 | 96.11 | 0.9378
LAAM, | 94.91 | 95.71 | 0.9332

Table : Classification results of the Pavia University hyperspectral image:
OA, AA, and Kappa (k) values. Morphological structural element disc
shaped of radius r = 5.
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Conclusions
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Conclusions

e Lattice computing defined as computing on
the lattice algebra (R.A,v,+) has been
maintaining its appeal in the last fifteen
years.
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Conclusions

* Application of lattice theory leads to new
computational paradigms arising from
— Fusion of established paradigms

e Mathematical morphology and fuzzy systems

* Neural networks and fuzzy systems

— Generalization of approaches

* Fuzzy Lattice Neurocomputing

— Direct innovative applications

» Feature extraction based on linear unmixing based on the
identification of endmembers in the data set.
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Future

e Lattice Computing may benefit from
— Advances in random search

— Sparsity approaches.

* A wide open field for mathematical research

* Need of open source libraries for
dissemination
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Thank you for your attention
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