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Abstract. Wind turbines are often sited together in wind farms as it is economically advantageous. Control-
ling the flow within wind farms to reduce the fatigue loads, maximize energy production and provide ancillary
services is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this
paper, we present a control-oriented dynamical wind farm model called the WindFarmSimulator (WFSim) that
can be used in closed-loop wind farm control algorithms. The three-dimensional Navier–Stokes equations were
the starting point for deriving the control-oriented dynamic wind farm model. Then, in order to reduce computa-
tional complexity, terms involving the vertical dimension were either neglected or estimated in order to partially
compensate for neglecting the vertical dimension. Sparsity of and structure in the system matrices make this
model relatively computationally inexpensive. We showed that by taking the vertical dimension partially into
account, the estimation of flow data generated with a high-fidelity wind farm model is improved relative to when
the vertical dimension is completely neglected in WFSim. Moreover, we showed that, for the study cases con-
sidered in this work, WFSim is potentially fast enough to be used in an online closed-loop control framework
including model parameter updates. Finally we showed that the proposed wind farm model is able to estimate
flow and power signals generated by two different 3-D high-fidelity wind farm models.

1 Introduction

Optimizing the control of wind turbines in a farm is chal-
lenging due to the aerodynamic interactions among tur-
bines. These interactions come from the fact that down-
wind turbines are often operating in the wakes of upwind
ones (Barthelmie et al., 2009). Two important wake charac-
teristics are (1) a flow velocity deficit and (2) an increase in
turbulence intensity. The former reduces power production
of the farm while the latter leads to a higher dynamic load-
ing on downstream turbines but also induces wake recovery.
Individual turbine control variables can influence the wake’s
flow velocity, turbulence intensity and also location. Hence,
by changing the control variables of individual turbines,
power production of and loading on these controlled tur-
bines and the downwind turbines can be manipulated. Wind
farm control aims to find control variables under changing

atmospheric conditions such that demanded power produc-
tion and/or a minimization of the loading can be guaranteed,
improving the cost and quality of wind energy. State-of-the-
art closed-loop dynamic wind farm controllers are based on
computationally expensive wind farm models, which make
these methods suitable for analysis though unsuitable for on-
line control. The latter is important because it allows for
model adaptation to the time-varying atmospheric conditions
using supervisory control and data acquisition (SCADA)
measurements. As a consequence, more reliable control set-
tings can be evaluated. A survey on wind farm control can
be found in Knudsen et al. (2015) and Boersma et al. (2017),
for example. In the latter, a clear distinction is made between
model-based and model-free control algorithms. This paper
is focussed on the former in which it is assumed that con-
trollers are based on a mathematical model of the system.
Consequently, the controller performance depends highly on
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the model quality. Modelling is therefore a crucial step to-
wards successful implementation of model-based wind farm
control.

Overviews on wind farm models can be found in Cre-
spo et al. (1999), Vermeer et al. (2003), Sanderse (2009),
Sanderse et al. (2011), Annoni et al. (2014), Göçmen at al.
(2016) and Boersma et al. (2017). The spectrum of these
models ranges from low fidelity to high fidelity. The latter
tries to capture relatively precise wind farm flow and tur-
bine dynamics, while the former tries to capture only the
dominant characteristics (dynamic or static) in a wind farm.
Examples of high-fidelity wind farm models are Simulator
fOr Wind Farm Applications (SOWFA) (Churchfield et al.,
2012), UTD Wind Farm (UTDWF) (Martinez-Tossas et al.,
2014), SP-Wind (Meyers and Meneveau, 2010) and PAral-
lelized LES Model (PALM) (Maronga et al., 2015). These
three dimensional (3-D) high-fidelity wind farm models can
easily have 106 or more states. The resulting computation
time can be of the order of days or weeks using distributed
computation for simulation times less than the computation
time. In other words, the computation time needed for large-
eddy simulations (LESs) is in general more than the total
time that is simulated. Clearly, these types of models are
not applicable for online model-based control. Rather, these
models serve as analysis or validation tools.

One way to reduce the high complexity of wake mod-
elling is by using two-dimensional (2-D) heuristic models
that only capture specific wake and turbine characteristics
in a wind farm in the horizontal plane at hub height. These
types of models are found on the low-fidelity side of the
spectrum. Most of these wake models exclusively estimate
a steady state situation for given atmospheric conditions. Ex-
amples of static models are the Frandsen model (Frandsen
et al., 2006) and the Jensen–Park model (Jensen, 1983; Katic
et al., 1986). One extension of the Jensen model resulted
in the parametric model called FLOw Redirection and In-
duction in Steady-state (FLORIS) (Gebraad et al., 2014b).
Two examples of low-fidelity dynamic models are SimWind-
Farm (Grunnet et al., 2010) and the model used in Shapiro
et al. (2017a), in which relatively simple approximations of
the flow deficit are computed using heuristic expressions.

Medium-fidelity models can be found in the middle of
the spectrum as they trade off the accuracy of high-fidelity
models with the computational complexity of low-fidelity
models. These are in general based on simplified versions
of the Navier–Stokes equations. For example, in the 2-D dy-
namic wake meandering (DWM) model (Larsen et al., 2007),
assumptions are made regarding the thin shear layer such
that the Navier–Stokes equations can be approximated us-
ing less computational effort. The authors in Trabucchi et al.
(2016) present a model, which is also based on the thin shear
layer approximation, but according to the authors it is ap-
plicable for non-axisymmetric wind turbine wakes. Wake-
Farm (also referred to as FarmFlow) simulates the wind
turbine wakes by solving the steady parabolized Navier–

Stokes equations in three dimensions (Crespo et al., 1988;
Özdemir et al., 2013). Other wind farm models based on
the 3-D Reynolds-averaged Navier–Stokes (RANS) equa-
tions are Avila et al. (2013) and van der Laan et al. (2015).
In Annoni and Seiler (2015), time averaging is applied to the
Navier–Stokes equations, resulting in the 2-D RANS equa-
tions. The number of states is then reduced by employing
a state reduction technique.

Also considered as medium-fidelity models are the ones
presented in Boersma et al. (2016b) and Soleimanzadeh et
al. (2014). These wind farm models are based on the dis-
cretized 2-D Navier–Stokes equations. However, these mod-
els do not contain a turbulence model that allows for wake
recovery. In addition, these 2-D models do not take any ne-
glected 3-D effects into account and no yaw actuation of the
individual turbines is included.

In this paper, a model will be presented that can be consid-
ered as a building block for the closed-loop control frame-
work as illustrated in Fig. 1.

In current practice, signals such as power can be measured
from a wind farm, but current research is also focussing on
estimating wake characteristics using a lidar device (Raach
et al., 2017). These and other wind farm measurements are
called SCADA data and can be used by an estimator that is
able to adapt the model parameters to current atmospheric
conditions and/or estimate the full state space, e.g. all the
flow velocities at hub height in the farm. The work presented
in Doekemeijer et al. (2016) illustrates the latter and employs
the dynamic wind farm model presented in this paper. Sub-
sequently, the estimation can then be used to compute op-
timal control variables using a model predictive controller.
The work presented in Vali et al. (2016) illustrates the appli-
cation of such a model predictive wind farm controller using
the dynamic model presented in this work.

The online closed-loop control paradigm as depicted in
Fig. 1 demands a control-oriented dynamic wind farm model
that will be presented in this paper. Characteristics of such
control-oriented models are

1. low computational cost such that online model update,
state estimation and control signal evaluation is possi-
ble;

2. their dynamical nature such that they can deal with
varying atmospheric conditions within relatively small
timescales.

The dynamic control-oriented wind farm model presented in
this paper, referred to as WindFarmSimulator (WFSim), is
applicable in the framework discussed above and satisfies the
two points above. It is based on corrected 2-D Navier–Stokes
equations and contains a heuristic turbulence model. The
Navier–Stokes equations are modified in order to partially
correct for the neglected vertical dimension. Each turbine is
modelled using the actuator disk model (ADM) and features
yaw and axial induction actuation. An important model fea-
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Figure 1. General dynamical closed-loop control framework with measurements zk and its estimation ẑk and state estimation q̂k . The signals
rk and wk are reference and control signals, respectively. In this paper we present a dynamic model that is compatible with this framework.

ture is the exploitation of the sparse system matrices, lead-
ing to computational efficiency. WFSim will be compared to
high-fidelity flow data and used in a practical control appli-
cation.

The remainder of this paper is organized as follows. In
Sect. 2, the mathematical background of the medium-fidelity
wind farm model will be explained including a discussion
on the rotor and turbulence model. This section ends with
an analysis regarding the wind farm model’s computation
time. In Sect. 3, WFSim will be validated in two cases us-
ing flow velocities in the longitudinal and lateral directions
at hub height and turbine power signals computed with two
different LES-based wind farm models. The first case consid-
ered is a two-turbine wind farm with turbines modelled using
the ADM. The second case is a nine-turbine wind farm with
turbines modelled employing Fatigue, Aerodynamics, Struc-
tures and Turbulence (FAST) (Jonkman and Buhl, 2005).
This paper is concluded in Sect. 4.

2 Formulation of a dynamic control-oriented wind
farm model

In the current section, a simplified wind farm model is for-
mulated that is sufficiently fast for online control but retains
some of the elemental features of three-dimensional turbu-
lent flows. In order for the model to be fast, we envisage a 2-
D-like model, but adapted to account for three-dimensional
flow relaxation. We will dub the resulting model WFSim
(WindFarmSimulator).

As a starting point we use the standard incompressible
three-dimensional filtered Navier–Stokes equations, as used
in LES, i.e.

∂ ṽ

∂t
+ (̃v · ∇ )̃v+∇ · τM+

1
ρ
∇p̃−f = 0,

momentum equation,

∇ · ṽ = 0,
continuity equation.

(1)

The velocity field ṽ = (̃v1, ṽ2, ṽ3)T and pressure field p̃ rep-
resent filtered variables; ∇ = (∂/∂x,∂/∂y,∂/∂z)T ; the air
density ρ, which is assumed to be constant; and τM rep-
resents the subgrid-scale model, which will be defined in
Sect. 2.1. As is common in LESs of high-Reynolds-number
atmospheric simulations with grid resolutions in the metre
range, direct effects of viscous stresses on the filtered fields
are negligible, so that these terms are left out. Finally, the
term f represents the effect of turbines on the flow, as fur-
ther detailed in Sect. 2.2.

Although LES filters are usually implicitly tied to the LES
grid and filter length scale in the subgrid-scale model, we
presume here that ṽ corresponds to a top-hat filtered velocity
field, with filter width D, where D is the turbine diameter.
Thus,

ṽ(x,y,z)=
1
D3

z+D/2∫
z−D/2

y+D/2∫
y−D/2

x+D/2∫
x−D/2

v(x′,y′,z′) dx′dy′dz′. (2)

From a wind farm simulation perspective, we are mainly
interested in the flow velocity field at hub height zh, i.e.
ṽ(x,y,zh). Moreover, to evaluate turbine forces and power,
it suffices to know the velocity at turbine locations tn =
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(xn,yn)T (with n= 1· · ·ℵ and ℵ the number of turbines in
the farm) since ṽ(xn,yn,zh) is a reasonable representation of
the turbine disk-averaged velocity.

Therefore, we focus on formulating a 2-D-like set of equa-
tions for ṽ(x,y,zh). To this end, we define

u=
(̃
v1(x,y,zh) ṽ2(x,y,zh)

)T
, (3)

=
(
u v
)T
, (4)

and w = ṽ3(x,y,zh) and p = p̃(x,y,zh)/ρ. Moreover, we
assume thatw ≈ 0, so that the LES equations given in Eq. (1)
can be reformulated in terms of u as

∂u

∂t
+ (u · ∇H)u+∇H · τH+∇Hp−f

=−
∂(uw+ τM,13)

∂z
e1−

∂(vw+ τM,23)
∂z

e2, (5)

∇H ·u=−
∂w

∂z
, (6)

with ∇H = (∂/∂x,∂/∂y)T , τH a 2-D tensor containing the
horizontal components of the subgrid stresses τM, and e1 and
e2 the unit vectors in the x and y directions, respectively.

Finally, we further simplify the equations above using two
additional assumptions. First of all, we presume ∂w/∂z≈
∂v/∂y. When centred at the turbine axis, this is one of the
conditions required for axial symmetry, though axial sym-
metry also requires further conditions on ∂v/∂z and ∂w/∂y,
which are not imposed. In general, ∂w/∂z≈ ∂v/∂y implies
equal divergence–convergence of streamlines in y and z di-
rections. Although this is a very simple condition, we pre-
sume it to be good enough to resolve the lack of relaxation of
purely 2-D models. If necessary, a more general form (w ≈ 0
and ∂w/∂z≈ c · ∂v/∂y), with c a tuning parameter (e.g. ob-
tained through state estimation) could be considered, but re-
sults in the current work indicate that this may not be nec-
essary. Secondly, we simply neglect the right-hand side of
Eq. (5). Though this is a rather crude assumption, the ratio-
nale is that the modelling term τH will suffice in the con-
text of a control model, where model coefficients can be up-
dated online based on feedback (see also the discussion in
Sect. 2.1). Hence our final 2-D-like model corresponds to

∂u

∂t
+ (u · ∇H)u+∇H · τH+∇Hp−f = 0, (7)

∇H ·u=−
∂v

∂y
. (8)

We emphasize here that the model above is not a classical
2-D model due to the difference in formulation of the con-
tinuity equation. In contrast to a standard 2-D model, this
allows for flow relaxation in the third direction when, for
example, encountering slow down by a wind turbine. This
can be seen in Fig. 2, in which simulation results obtained
with the model above, a standard 2-D dynamic wind farm
model and LES are shown. The simulation case itself will
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Figure 2. Results of two-turbine simulations. Normalized time-
averaged wake deficit at hub height 5D downwind from the down-
wind turbine using standard 2-D Navier–Stokes equations (red
crossed), our model with the adapted continuity equation (blue), and
LES data (black dashed).

be discussed in more detail in Sect. 3.2.1. Here we depict
the normalized flow deficit in the wake at 5D downstream
of the turbine along the cross-stream axis. The figure illus-
trates that the standard 2-D Navier–Stokes equations lead to
a significant speed up at the wake edges. This is a result from
conservation of mass in two dimensions and the flow decel-
eration in front of the turbine, pushing part of the air around
the turbine. In the WFSim model, this speed up is smaller,
as mass can also flow around the turbine in the third dimen-
sion. In Fig. 2 it can be seen that LES data are better esti-
mated when imposing flow relaxation in the third dimension.
Finally, note that partially modelling the missing vertical di-
mension as proposed above is novel with respect to the work
presented in Boersma et al. (2016a).

This section is further organized as follows. First, in
Sect. 2.1, the subgrid-scale model will be introduced. Then,
in Sect. 2.2, the turbine model will be explained. The dis-
cretization of the equations is presented in Sect. 2.4, and
boundary and initial conditions are discussed in Sect. 2.5.

2.1 Turbulence model

In the literature, many subgrid-scale models are documented,
and to date, model accuracy remains a challenge in LES re-
search (see e.g. Sagaut, 2006). However, in the current pa-
per, an important factor in the selection of a model is sim-
plicity and computational efficiency, rather than accuracy.
In fact, in contrast to conventional modelling, in a control-
oriented model completeness of the turbulence model is not
a major issue since unknown model coefficients can be cal-
ibrated online using measurements and feedback (Shapiro
et al., 2017b), thus also controlling the overall error. There-
fore, in this work we fall back to one of the simplest and first
known turbulence models, Prandtl’s mixing length model.
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Figure 3. Schematic illustration of the mixing length.

We formulate the stress tensor τH using an eddy-viscosity
assumption, i.e.

τH =−νtS, (9)

with S = 1
2 (∇Hu+ (∇Hu)T ) the 2-D rate-of-strain tensor,

and νt the eddy viscosity. The latter is further modelled as
in Prandtl (1925):

νt = lu(x,y)2
∣∣∣∣∂u∂y

∣∣∣∣ , (10)

where lu(x,y) is the mixing length. It could be interesting to
define the mixing length for each position in the wind farm
separately, but this will lead to too many tuning variables.
Moreover, in Iungo et al. (2015), the authors illustrate that in
a turbine’s near wake the mixing length is roughly invariant
for different downstream locations, but in the far wake, the
mixing length increases linearly with downstream distance.
We use this to formulate a simple heuristic parametrization
for the mixing length model so that the number of decision
variables will be reduced drastically. From now on we as-
sume that the wind is coming from the east, but can have
a direction defined by ϕ. Then, the wind farm will be divided
in segments as illustrated in Fig. 3.

Each segments has its own (x′n,y
′
n) coordinate system lo-

cated in the global (x,y) coordinate system. Now we propose
the following mixing length parametrization:

lu(x,y)=
{
G(x′n,y

′
n) ∗ lnu(x′n,y

′
n), if x ∈ X and y ∈ Y.

0, otherwise,
(11)

with G(x,y) a (smoothing) pillbox filter with radius 3, ∗
the 2-D spatial convolution operator, X = {x : x′n ≤ x ≤
x′n+cos(ϕ)d}, Y = {y : y′n− D

2 + sin(ϕ)x′n ≤ y ≤ y
′
n+

D
2 +

sin(ϕ)x′n} and ϕ defined as the mean wind direction (see
Fig. 3), which we bound by |ϕ| ≤ 45◦ in this work. In addi-
tion we constraint d by cos(ϕ)d ≤ |xq−xn|, with xn a turbine
x coordinate and xq its downwind turbines x coordinate. We
can see lnu(x′n,y

′
n) as the local mixing length that belongs to

turbine n and denote it as

lnu(x′n,y
′
n)=

{
(x′n− d

′)ls, if x′n ∈ X ′n and y′n ∈ Y ′n.
0, otherwise.

(12)

with X ′n = {x′n : d ′ ≤ x′n ≤ d} and Y ′n = {y′n : |y′n| ≤D}
and tuning parameter ls that defines the slope of the (lin-
early increasing) local mixing length parameter. In fact, this
parameter could be related to turbulence intensity, i.e., the
amount of wake recovery. In this work we will not investigate
this relation further. With the formulation above, the num-
ber of tuning variables that belong to the turbulence model
(ls,d,d ′) is reduced to 3ℵ. Additionally, we assume that ls ,
d and d ′ are equal for each turbine in the farm, which re-
duces the number of tuning variables that belong to the tur-
bulence model to three, a quantity that could be dealt with
by an online estimator. However, in order to have only three
tuning variables, the included turbulence model is defined as
a simplified mixing length model found heuristically using
and adapting information from Iungo et al. (2015).

2.2 Turbine model

Turbines are modelled using a classical non-rotating actua-
tor disk model (ADM). In this method, each wind turbine
is represented by a uniformly distributed force acting on the
grid points where the rotor disk is located. Figure 4 depicts
a schematic top-view representation of a turbine with yaw
angle γ .

Using such an approach, the force exerted by the turbines
can be expressed as

f =

ℵ∑
n=1

f n, with

f n =
cf

2
C′Tn [Un cos(γn)]2

(
cos(γn+ϕ)
sin(γn+ϕ)

)
×H

[
D

2
− ||s− tn||2

]
δ
[
(s− tn) · e⊥,n

]
, (13)
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Figure 4. Schematic representation of a turbine with yaw angle γn
and flow velocity U = ([u(xn,yn)]2+ [v(xn,yn)]2)1/2 at the rotor.
Figure adapted from Jiménez et al. (2010).

with s = (x,y)T , H[·] the Heaviside function and δ[·] the
Dirac delta function, e⊥,n the unit vector perpendicular to
the nth rotor disk with position tn. Furthermore, we have
C′Tn the disk-based thrust coefficient following Meyers and
Meneveau (2010), which can be expressed in terms of the
classical thrust coefficient CTn using the following relation:
C′Tn = CTn/(1−an)2, with an the axial induction factor of the
nth turbine. Interestingly, the coefficient C′Tn can be directly
related to the turbine set point in terms of blade pitch angle
and rotational speed (see, e.g. Appendix A in Goit and Mey-
ers, 2015). In the WFSim model, C′Tn and yaw angle γn are
considered as the control variables and can thus be used to
regulate the wakes and hence wind farm performance. Fur-
thermore, the scalar cf in Eq. (13) can be regarded as a tun-
ing variable and will in this work be set equal for all turbines
in the farm.

2.3 Power

From the resolved flow velocity components, the power gen-
erated by the farm is computed as

P =

ℵ∑
n=1

1
2
ρA CPn [Un cos(γn)]3. (14)

It is stated in Goit and Meyers (2015) (Appendix A) that
when there is no drag and swirl is added to the wake, C′Tn =
CPn . Since this is an idealized situation, a loss factor will be
introduced such that CPn = cpC

′

Tn
. The scalar cp can be seen

as a tuning variable and will be set equal for all turbines in
the farm. In the power expression above, we have the fac-
tor cos(γn)3 with exponent 3. In literature such as Gebraad
et al. (2014a) and Medici (2005, p. 37), for example, numeri-
cal values for the exponent were given according to LES and
wind tunnel data, respectively. However, to date, the exact
value for it is still under research and since this is outside the
scope of this study, the value of the exponent will be 3.

This concludes the formulation of the WFSim model. In
order to resolve for flow velocity components and wind farm

Figure 5. One cell for the x momentum equation (grey, ui,J ), one
for the y momentum equation (yellow, vI,j ) and one for the conti-
nuity equation (pink, pI,J ). All three cells have equal dimensions
and overlap.

power, the governing equations given in Eqs. (7) and (8) need
to be discretized, a topic that will be discussed in the follow-
ing section.

2.4 Discretization

The set of equations are spatially discretized over a stag-
gered grid following Versteeg and Malalasekera (2007). This
is carried out by employing the finite volume method and the
hybrid differencing scheme. Temporal discretization is per-
formed using the implicit method that is unconditionally sta-
ble (Versteeg and Malalasekera, 2007). This comes down to
deriving the integrals:∫
1t

∫
1V

[
∂u

∂t
+ (u · ∇H)u+∇H · τH+∇Hp−f

]
dV dt = 0,

∫
1t

∫
1V

[
∇H ·u+

∂v

∂y

]
dV dt = 0, (15)

with1V the volume of one cell (see Fig. 5) and1t the sam-
ple period. One obtains, for each cell, the following fully dis-
cretized Navier–Stokes equations (for detailed derivation we
refer to Appendix A):

– x momentum equation for the (i,J )th cell (black in
Fig. 5):

a
px
i,Jui,J =

(
anxi,J asxi,J awxi,J aexi,J

)
×
(
ui,J+1 ui,J−1 ui−1,J ui+1,J

)T
− δyj,j+1

(
pI,J −pI−1,J

)
+ f xi,J + . . .
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. . .+
(
anwxi,J aswxi,J anexi,J asexi,J

)
×
(
vI−1,j+1 vI−1,j vI,j+1 vI,J

)T (16)

– y momentum equation for the (I,j )th cell (yellow in
Fig. 5):

a
py
I,jvI,j =

(
a
ny
I,j a

sy
I,j a

wy
I,j a

ey
I,j

)
×
(
vI,j+1 vI,j−1 vI−1,j vI+1,j

)T
− δxi,i+1

(
pI,J −pI,J−1

)
+ f

y
I,j + . . .

. . .+
(
a
nwy
i,J a

swy
i,J a

ney
i,J a

sey
i,J

)
×
(
ui,J ui,J−1 ui+1,J ui+1,J−1

)T (17)

– continuity equation for the (I,J )th cell (pink in Fig. 5):

0= δyj,j+1
(
ui+1,J − ui,J

)
+ 2δxi,i+1

(
vI,j+1− vI,j

)
. (18)

The states u•,•,v•,•,p•,• are defined for the time k+1 while
the coefficients a••,• and the forcing terms f ••,• depend on the
state at time k. Detailed definitions of these coefficients are
given in Appendix A, Table A1. Note the appearance of the
previously explained factor 2 (see Eq. 8) in Eq. (18).

Next, the state vectors uk,vk , and pk and control variable
vectors νk and γk at time step k will be defined:

uk =



u3,2
...

u3,Ny−1
u4,2
...

u4,Ny−1
...

uNx−1,2
...

uNx−1,Ny−1


, vk =



v2,3
...

v2,Ny−1
v3,3
...

v3,Ny−1
...

vNx−1,3
...

vNx−1,Ny−1


,

pk =



p2,2
...

p2,Ny−1
p3,2
...

p3,Ny−1
...

pNx−1,3
...

pNx−1,Ny−2


, νk =


C′T1
C′T2
...
C′Tℵ

 , γk =


γ1
γ2
...
γℵ

, (19)

withNx andNy the number of cells in the x and y directions,
respectively, and ℵ the number of turbines in the wind farm.

Each component in uk , vk and pk represents a flow velocity
and pressure at a point in the field defined by the subscript.
For clarity reasons, an example of a staggered grid is depicted
in Fig. 6.

2.5 Boundary and initial conditions

All the components that are not contained in the vector, uk,vk
and pk , but do appear in the staggered grid need to be de-
fined. For the flow velocity components, first-order condi-
tions on the west side of the grid are prescribed assuming the
wind is coming from the east. These Dirichlet inflow bound-
ary conditions are related to the ambient inflow defined as ub
and vb and can vary over time. Zero stress (also referred to as
Neumann) boundary conditions are prescribed on the other
boundaries. Therefore, for the flow velocity components on
the boundaries we define

u2,J = ub for J = 1,2, . . .,Ny,
ui,Ny = ui,Ny−1 for i = 3,4, . . .,Nx,
ui,1 = ui,2 for i = 3,4, . . .,Nx,
uNx ,J = uNx−1,J for J = 2,3, . . .,Nx − 1,

v1,j = vb for j = 2,3, . . .,Ny,
vI,Ny = vI,Ny−1 for I = 2,3, . . .,Nx,
vI,2 = vI,3 for I = 2,3, . . .,Nx,
vNx ,j = vNx−1,j for j = 3,4, . . .,Ny − 1.

For the initial conditions, we define all longitudinal and
latitudinal flow velocity components in the field as ub and
vb, respectively, which are the boundary velocity values. The
initial pressure field is set to zero. Note that by defining the
boundary conditions as given above, the assumption is that
the wind is coming from the east in Fig. 6, which coincides
with the definition of the mixing length (see Sect. 2.1). Fi-
nally, the equations given in Eqs. (7) and (8) can be trans-
formed to the difference algebraic equation1:Ax(uk,vk) Axy(uk) B1
Ayx(uk) Ay(uk,vk) B2
BT1 2BT2 0


︸ ︷︷ ︸

E(qk)

uk+1
vk+1
pk+1


︸ ︷︷ ︸
qk+1

=

A11 0 0
0 A22 0
0 0 0


︸ ︷︷ ︸

A

ukvk
pk


︸ ︷︷ ︸
qk

+

b1(uk,vk,νk,γk)
b2(uk,vk,νk,γk)

b3


︸ ︷︷ ︸

b(qk,wk)

, (20)

with nq = nu+ nv + np and uk ∈Rnu ,vk ∈Rnv ,pk ∈Rnp
containing all flow velocities in the longitudinal and lateral

1This type of system can also be referred to as a quasi-linear
parameter varying model or descriptor model.
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Figure 6. Example of a staggered grid with cells each having volume 1V . In WFSim, the grid is quadrilateral.

Table 1. Mean computation time per simulation time step 1tcpu vs. number of states nq for the WFSim representation as given in Eq. (21).
Computations are performed on a regular notebook with one core.

nq 1tcpu (s) nq 1tcpu (s) nq 1tcpu (s) nq 1tcpu (s)

3× 103 0.02 27× 103 0.22 115× 103 1.19 239× 103 3.1
6× 103 0.04 43× 103 0.37 147× 103 1.66 258× 103 3.5
9× 103 0.06 64× 103 0.60 182× 103 2.12 268× 103 3.7
14× 103 0.10 88× 103 0.88 221× 103 2.50 276× 103 3.8

direction and the pressure vector at time k and control vari-
able wk =

(
νTk γ Tk

)T
∈R2ℵ. The non-singular square de-

scriptor matrix E(qk) contains the coefficients a••,•, appear-
ing in Eqs. (16) and (17), that depend on the state at time k.
The square constant matrix A solely depends on grid spac-
ing and sample period1t . Note that the state vector contains
three states for every cell; hence an increase in grid resolu-
tion results in an increase in matrix dimensions. However,
the system matrices that occur in Eq. (20) are sparse and
efficient numerical solvers are available for these types of
problems. This will be demonstrated in Sect. 2.6. The vector
b(qk,wk) contains the forcing terms (turbines) and boundary
conditions.

By defining Nx,Ny,1xI,I+1,1yJ,J+1, and the turbine
positions, a wind farm topology is determined. Next, ambient
flow conditions ub and vb, tuning parameters cf ,cp,d,d ′, ls

and the control variable wk need to be specified. The system
given in Eq. (20) is then fully defined and can be solved.

2.6 Computation time

When discretizing partial differential equations, a trade-off
has to be made between the computation time and grid reso-
lution. Typically, a higher resolution results in more precise
computation of the variables but also increasing computa-
tion time. In WFSim, computational cost is reduced by ex-
ploiting sparsity and by applying the reverse Cuthill–McKee
algorithm (George and Liu, 1981).2 The latter is applicable
due to the fact that the matrix structure is fixed. The inter-

2The sparse toolbox and reverse Cuthill–McKee algorithm are
both utilized in MATLAB.
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Table 2. Summary of the WFSim simulation set-up.

Domain size Lx ×Ly 2× 0.63 (km2) Turbine rotor diameter D 126.4 (m)
Grid size Nx ×Ny 50× 25 Turbine arrangement 2× 1
Cell size 1x×1y 40× 23 (m2) Turbine spacing 5D
Times 1t = 1,1tcpu

= 0.02 (s) Atmospheric conditions ub = 8, vb = 0 (m s−1), ρ = 1.2 (kgm−3)
Force and power factor cf = 1.7, cp = 0.95 Turbulence model d = 530, d ′ = 122 (m) ls = 0.06

1 2 3 4 5 6 7 8 9
× 104

0.2

0.4

0.6

0.8

1

Figure 7. Mean computation time per simulation time step 1tcpu

vs. number of states nq . The red dashed line is WFSim as presented
in Eq. (20) and blue is WFSim as presented in Eq. (21). Note that
the number of cells is approximately nq/3 with nq the number of
states.

ested reader is referred to Doekemeijer et al. (2016) for more
information on the Cuthill–McKee algorithm in WFSim.

In this section, the mean computation time needed for one
time step 1tcpu will be analysed. The presented results are
obtained on a regular notebook with an Intel Core i7-4600U
2.7 GHz processor employing one core and MATLAB. Since
the objective is to do online control, i.e., it is desired to reduce
computational complexity, this section introduces a second
WFSim representation. The first representation was given in
Eq. (20) while the second is defined asAx(uk,vk) 0 B1

0 Ay(uk,vk) B2
BT1 2BT2 0


︸ ︷︷ ︸

E(qk)

uk+1
vk+1
pk+1


︸ ︷︷ ︸
qk+1

=

A11 0 0
0 A22 0
0 0 0


︸ ︷︷ ︸

A

ukvk
pk


︸ ︷︷ ︸
qk

+

b1(uk,vk,νk,γk)
b2(uk,vk,νk,γk)

b3


︸ ︷︷ ︸

b(qk,wk)

. (21)

The difference can be found in the descriptor matrix. In the
representation above, the elements Axy(uk),Ayx(uk) that oc-
cur in Eq. (20) are set to zero. This can be justified by the
fact that their contribution is negligible since these matrices
contain elements that, for our case studies, are of the order
of O(1) while the elements in Ax(uk,vk) and Ay(uk,vk) are

of the order of O(3). Consequently, no significant change in
the computed flow field has been observed, but a decrease
in 1tcpu has (see Fig. 7). Therefore, the remainder of this
paper will continue with the WFSim representation given in
Eq. (21). Table 1 depicts more numerical values of 1tcpu for
this WFSim representation.

From Table 1 we can conclude that 1tcpu increases be-
tween quadratic and linear with respect to the number of
states nq for nq < 221× 103. It depends on the computer
properties how much you can increase the number of states
until the CPU is out of memory.

3 Simulation results

In this section, WFSim flow and power data will be compared
with LES data and it is organized as follows. In Sect. 3.1,
quality measures are introduced. In Sect. 3.2.1, WFSim data
are compared with PALM data, and in Sect. 3.2.2 WFSim is
validated against SOWFA data. In both simulation cases, the
thrust coefficients C′T are varied while the yaw angles are set
to zero.

3.1 Quality measures

Suppose we have at time k a measurement of one quantity
zk ∈RN and its estimation ẑk ∈RN . Define the prediction
error ek = ẑk − zk . The quality measure RMSE is, for time
step k, defined as

RMSE(zk, ẑk)=

√
1
N
eTk ek. (22)

This measure is used to compare the flow centreline veloc-
ity U ck (x) and power signals from LES and WFSim data for
different model parameters. The flow centreline is, for one
time step, defined as the laterally averaged longitudinal flow
velocity throughout the simulation domain across the rotor
diameter. Mathematically this can, for LES data at time step
k at longitudinal position xi , be defined as

U ck (xi)=
1
Ny

Ny∑
s=1

uk(xi,ys), (23)

with ys the y coordinate of one cell across the line y ⊂ y,
which contains Ny number of cells and has a length equal to
the rotor diameter. From WFSim data, the flow velocity com-
ponent at the rotor centre will be taken across the position x.
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Figure 8. Excitation signals for the two-turbine simulation case. The yaw angles are set to zero.
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Figure 9. Mean flow centreline at four time instances through the
farm. The vertical red dashed lines indicate the positions of the tur-
bines.

In this work we compare lateral and longitudinal flow ve-
locity components at hub height and power signals calculated
with LES with lateral and longitudinal flow velocity compo-
nents and power signals calculated with WFSim.3

3.2 Axial induction actuation

Studies such as Shapiro et al. (2017a), Munters and Meyers
(2017), Vali et al. (2017) and van Wingerden et al. (2017)
illustrate that axial induction actuation can be used in active
power control where the objective is to provide grid facil-
ities. In order to utilize the WFSim model in active power
control, it is important to first validate it when exciting the
thrust coefficient.

3The LES flow data are mapped onto the grid of WFSim using
bilinear interpolation techniques.

In the following, WFSim is compared with simulation data
from PALM (Maronga et al., 2015) and SOWFA (Church-
field et al., 2012), both high-fidelity wind farm models that
were briefly discussed in Sect. 1. The latter includes the actu-
ator line model (ALM) while the former employs the ADM.4

3.2.1 PArallelized LES Model (PALM) and WFSim

PALM predicts the 3-D flow velocity vectors and turbine
power signals in a wind farm using LES and is based on
the 3-D incompressible Navier–Stokes equations.5 Table 2
gives a summary of the two-turbine wind farm simulated in
WFSim. A summary of the PALM simulation set-up can be
found in Appendix B. The applied control signals are de-
picted in Fig. 8 and are chosen such that different system
dynamics are excited. The final values for the tuning param-
eters are obtained using a grid search. Figures 9 and 10 show
a comparison of the mean flow centreline and the wind farm
power, respectively. A flow field evaluated with both the WF-
Sim model and PALM can be found in Appendix B.

In Fig. 9, the mean flow centrelines through the farms of
WFSim and PALM are relatively similar. The PALM data
exhibit more turbulent fluctuations due to the presence of
a more sophisticated turbulence model, which allows for bet-
ter capturing small-scale dynamics such as turbine-induced
turbulence. However, the WFSim model is capable of esti-
mating wake recovery similar to the PALM model. The re-
covery in the WFSim model is due to the turbulence model
as presented in Sect. 2.1. It is in fact the slope of the local
mixing length parameters that can determine the amount of
wake recovery, or more precisely, the larger this slope, the
higher the wake recovery. It is therefore interesting to link
this tuning variable to the turbulence intensity in the farm.
Furthermore, it can be seen in Fig. 10 that the WFSim model

4PALM also includes the rotating ADM, but in our case study
the ADM is employed.

5In this work we consider PALM as a wind farm model since
PALM is simulated with turbine models. However, PALM is also
applicable for simulating oceanic behaviour.
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Figure 10. Wind farm power from PALM (blue dashed) and WFSim (black).
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Figure 11. Excitation signals for the nine-turbine simulation case. The yaw angels are set to zero.

is capable of estimating the wind farm power. Since both the
WFSim model and PALM employ the ADM, fast fluctuations
in the power signal can be observed. This is due to the lack
of rotor inertia in both simulation cases. The simulation case
presented in this section illustrates that the WFSim model,
in which the third dimension is partially neglected, is able to
estimate wind farm flow and power signals computed with
a 3-D LES wind farm model. In Sect. 3.2.2, a SOWFA case
study will be presented, a LES model that includes turbine
dynamics.

3.2.2 Simulator fOr Wind Farm Applications (SOWFA)
and WFSim

SOWFA predicts the 3-D flow velocity vectors in a wind
farm using LES and is based on the 3-D incompressible
Navier–Stokes equations. For turbine modelling it employs
the ALM, which is a more sophisticated model than the
ADM (Sanderse et al., 2011). In addition, the FAST model
from the National Renewable Energy Laboratory (NREL)
is implemented (Jonkman and Buhl, 2005). This model cal-
culates turbine power production, blade forces on the flow
and structural loading on the turbine. In the SOWFA sim-

ulation presented, the NREL 5 MW wind turbine is simu-
lated (Jonkman et al., 2009).

The SOWFA data set used in this work for validation is
equivalent to the set used in van Wingerden et al. (2017).
The thrust coefficient C′T is not a control variable in SOWFA
due to the employment of the ALM and therefore has to be
estimated. This will be discussed in the following paragraph.

Turbine operating settings

For estimating the control signals C′Tn , the turbine’s fore-aft
bending moment Msowfa

k calculated with FAST is exploited.
Using the relationMsowfa

k = F sowfa
k zh with zh the hub height,

the (indirect) measured thrust force F sowfa
k can be derived.

An estimation from SOWFA data of the rotor flow veloc-
ity U sowfa

k is obtained by averaging the flow velocity com-
ponents across the rotor. Using the standard ADM yields for
each turbine

F sowfa
k =

1
2
AρC′T

[
U sowfa
k

]2
(

cos(γk +ϕk)
sin(γk +ϕk)

)
. (24)

Since F sowfa
k ,U sowfa

k and ρ can be obtained from SOWFA
data and the yaw angles are given, all the variables in Eq. (24)
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Table 3. Summary of the WFSim simulation set-up.

Domain size Lx ×Ly 2.5× 1.5 (km2) Turbine rotor diameter D 126.4 (m)
Grid size Nx ×Ny 100× 42 Turbine arrangement 3× 3
Cell size 1x×1y 25× 15 (m2) Turbine spacing 5D× 3D
Times 1t = 1,1tcpu

= 0.1 (s) Atmospheric conditions ub = 12,vb = 0 (m s−1), ρ = 1.2 (kgm−3)
Force and power factor cf =

5
2 ,cp = 1.1 Turbulence model d = 635,d ′ = 76.2 (m) ls = 0.17
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Figure 12. Topology simulated wind farm (a) and mean flow centreline at four time instances through the first row (b).

are known; hence the control variable C′T can be estimated
from SOWFA data for each turbine.6 It will be used, together
with the yaw angle, as an input to the WFSim model.

In the following, flow data at hub height from a nine-
turbine SOWFA simulation case will be compared with WF-
Sim data. See Fig. 12a for the simulated wind farm topol-
ogy. The turbines are excited with thrust coefficients as de-
picted in Fig. 11. These excitation signals are estimated from
SOWFA data using the relation defined in Eq. (24). Table 3
presents the WFSim parameters used during simulations.
The tuning variables of the WFSim model are found using
a grid search and the inflow conditions ub,vb are estimated
from SOWFA data.

Figures 12b and 13 depict a mean flow centreline
(see Eq. 23) comparison for each row at four time instances.
It can be concluded that the mean flow centreline derived
from WFSim data approximates the mean flow centreline de-
rived from SOWFA data. In Fig. 14, time series of the power
signals from SOWFA and WFSim are depicted. The signals
from the latter are more oscillating than the power signals
from SOWFA. This is due to the fact that the power expres-
sion in WFSim is a non-linear static map depending on the
C′T . Thus, no turbine dynamics are taken into account, which
is contrary to SOWFA in which the FAST turbine model is
simulated. However, important characteristics can be cap-

6The estimated C′
T

from SOWFA data is relatively noisy and
hence filtered.

tured with WFSim. A flow field evaluated with both the WF-
Sim model and SOWFA can be found in Appendix C.

WFSim is capable of estimating dominant wake dynamics,
the objective of the control-oriented model WFSim. Smaller-
scale and stochastic effects can be measured by sensors and
incorporated using an estimator based on WFSim, as has
been shown in Doekemeijer et al. (2016, 2017).

4 Conclusions

Current literature on wind farm control can be categorized
into model-free and model-based methods. This paper fo-
cused on the latter category. Here, a distinction can be made
between type of model employed, a steady-state or dynamic
wind farm model. In order to use the closed-loop control
paradigm, and account for model uncertainties, we think it
is important to utilize a dynamic wind farm model for con-
troller design and possible online wind farm control. In this
paper, such a control-oriented dynamic wind farm model,
referred to as WFSim, has been presented.7 It is a wind
farm model that can predict flow fields and power production
and includes turbines that are modelled using actuator disk
theory and is based on modified two-dimensional Navier–
Stokes equations. Completely neglecting the third (vertical)
dimension is a too crude assumption to describe the flow in

7The WFSim repository can be found in WFSim (2015).
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Figure 13. Mean flow centreline at four time instances through the second row (a) and third row (b) of turbines. The vertical red dashed
lines indicate the positions of the turbines.
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Figure 14. Wind farm power from SOWFA (blue dashed) and WF-
Sim (black).

a wind farm accurately enough for control purposes. In this
paper, we included a correction term in the continuity equa-
tion. It has been illustrated that the inclusion of this factor
reduces the effect of neglecting the third (vertical) dimen-
sion. More precisely, it has been shown that the speed-up
effect of the flow on the right and left downwind of a tur-
bine will be reduced when solving for the corrected Navier–
Stokes equations compared to the standard two-dimensional
Navier–Stokes equations. It has been shown that this resulted
in a better approximation of LES data.

In addition, a turbulence model was included, taking into
account the desired wake recovery. The heuristically found
turbulence model is based on Prandtl’s mixing length hy-
potheses, where the mixing length parameter is made de-

pendent on the downstream distance from the turbine rotors
and also dependent on the mean wind direction. After theo-
retically formulating the WFSim model, this paper followed
by illustrating that the computed flow velocities and power
signals from the 2-D-like WFSim model can estimate flow
velocity data and power signals from the 3-D high-fidelity
wind farm models PALM and SOWFA. The necessary com-
putation time of the WFSim model is a fraction of what is
needed to perform LES, making it suitable for online control.
This work focussed on axial induction actuation, but future
work will also include the validation of yaw actuation and
wind direction changes. For the simulation cases presented,
no grid convergence studies have been performed, but future
work should entail this. In addition, future work will entail
the online update of the tuning variables cf ,cp,d,d ′, ls by
an observer and the employment of the presented dynamic
wind farm model in an online closed-loop control scheme.

Data availability. The MATLAB implementation of the pre-
sented WFSim model can be found at https://github.com/
TUDelft-DataDrivenControl/WFSim. All presented simulations
can be repeated with the available online implementation.
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Appendix A: Discretizing the Navier–Stokes
equations

This section will present the necessary derivations to go from
Eqs. (15) to (20), i.e. it will elaborate on the discretization of
the NS equations. In the following subsections, all terms in
the NS equations will subsequently be dealt with.

A1 Discretizing the convection (non-linear) terms

The non-linear term that occurs in the momentum equations
can be spatially discretized by deriving∫
1V

ρ(u · ∇)u dV =
∫
1V

ρ

(
∂u2

∂x
+
∂uv
∂y

∂vu
∂x
+
∂v2

∂y

)
dV.

x momentum equation

Deriving the term in the x momentum equation (first element
in the vector above) yields∫
1V

ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV

= ρ
[(
u2δy

)
e
−

(
u2δy

)
w
+ (uv1x)n− (uv1x)s

]
,

where (u2δy)e, (u2δy)w are the quantities u2 at the east and
west sides of the cell with surface δye,δyw, respectively.
Similarly, (uv1x)n, (uv1x)s are the quantities uv at the
north and south sides of the cell with surface 1xn,1xs ,
respectively. Assuming δy = δye = δyw and 1x =1xn =

1xs , the above can be written as∫
1V

ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV

= ρ
[(
u2
)
e
δy−

(
u2
)
w
δy+ (uv)n1x− (uv)s1x

]
.

F ex = ρueδy,F
wx
= ρuwδy,F

nx
= ρvn1x, and

F sx = ρvs1x. In Versteeg and Malalasekera (2007)
this is referred to as a convective mass flux approximation.
The above can then be written as∫
1V

ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV

= F exue−F
wxuw +F

nxun−F
sxus .

In Fig. 5 we observe that ue,uw,un,us,vn,vs are not de-
fined for the black cell. Applying central differencing ap-
proximates the terms as follows:

ue =
ui+1,J + ui,J

2
, uw =

ui−1,J + ui,J

2
,

un =
ui,J+1+ ui,J

2
, us =

ui,J−1+ ui,J

2
,

vn =
vI−1,j+1+ vI,j+1

2
, vs =

vI−1,j + vI,j

2
. (A1)

We can now write∫
1V

ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV

= F exi,Jui+1,J −F
wx
i,J ui−1,J +F

nx
i,Jui,J+1−F

sx
i,Jui,J−1

+
(
F exi,J −F

wx
i,J +F

nx
i,J −F

sx
i,J

)
ui,J .

In Eq. (A1), central differencing is applied. A disadvantage
of this method is that it does not use prior knowledge on the
flow direction. The upwind differencing scheme, however,
employs this prior knowledge as explained in Versteeg and
Malalasekera (2007). A combination of the central and up-
wind differencing scheme is the hybrid differencing scheme.
When applying this, the above can be written as∫
1V

ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV

= cexi,Jui+1,J − c
wx
i,J ui−1,J + c

nx
i,Jui,J+1

− csxi,Jui,J−1+ c
px
i,Jui,J , (A2)

with cexi,J =max[−F exi,J ,0],c
wx
i,J =max[Fwxi,J ,0],c

nx
i,J =

max[−F nxi,J ,0],c
sx
i,J =max[F sxi,J ,0] and c

px
i,J = c

ex
i,J + c

wx
i,J +

cnxi,J + c
sx
i,J +F

ex
i,J −F

wx
i,J +F

nx
i,J −F

sx
i,J . In WFSim, the

coefficients c•i,J and F •i,J are evaluated for time k while the
other flow velocity components are computed for time k+1.

y momentum equation

Deriving the non-linear term in the y momentum equation
yields∫
1V

ρ

[
∂v2

∂y
+
∂vu

∂x

]
dV

= F
ey
I,jvI+1,j −F

wy
I,j vI−1,j +F

ny
I,jvI,j+1−F

sy
I,jvI,j−1

+

(
F
ey
I,j −F

wy
I,j +F

ny
I,j −F

sy
I,j

)
vI,j ,

with F
ey
I,j = ρue1y,F

wy
I,j = ρuw1y,F

ny
I,j = ρvnδx,F

sy
I,j =

ρvsδx and

ve =
vI+1,j + vI,j

2
, vw =

vI−1,j + vI,j

2
,

vn =
vI,j+1+ vI,j

2
, vs =

vI,j−1+ vI,j

2
,

ue =
ui+1,J + ui+1,J−1

2
, uw =

ui,J + ui,J−1

2
.

The intermediate steps are omitted here since they are simi-
lar to the steps presented when handling the non-linear term
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in the x momentum equation. Note, however, that the dis-
cretization is evaluated using the yellow cell (see Fig. 5).
When applying the hybrid differencing scheme, the above
can be written as∫
1V

ρ

[
∂v2

∂y
+
∂vu

∂x

]
dV

= c
ey
I,jvI+1,j − c

wy
I,jvI−1,j + c

ny
I,jvI,j+1

− c
sy
I,jvI,j−1+ c

py
I,jvI,j , (A3)

with c
ey
I,j =max[−F eyI,j ,0],c

wy
I,j =max[FwyI,j ,0],c

ny
I,j =

max[−F nyI,j ,0],c
sy
I,j =max[F syI,j ,0] and cpyI,j = c

ey
I,j + c

wy
I,j +

c
ny
I,j +c

sy
I,j +F

ey
I,j −F

wy
I,j +F

ny
I,j −F

sy
I,j . Similar as before, the

coefficients c•I,j and F •I,j are evaluated for time k while the
other flow velocity components are computed for time k+1.

A2 Discretizing the pressure gradient

For the pressure gradient we evaluate∫
1V

(
∂p
∂x
∂p
∂y

)
dV =

((
pI,J −pI−1,J

)
δy(

pI,J −pI,J−1
)
δx

)
.

The pressure components are evaluated for time k+ 1.

A3 Discretizing the stress term

Evaluate∫
1V

τ∇ dV

=

∫
1V



∂
∂x

[
lu(x,y)2

∣∣∣ ∂u∂y ∣∣∣ ∂u∂x ]
+

∂
∂y

1
2

[
lu(x,y)2

∣∣∣ ∂u∂y ∣∣∣( ∂u∂y + ∂v
∂x

)]
∂
∂y

[
lu(x,y)2

∣∣∣ ∂u∂y ∣∣∣ ∂v∂y ]
+

∂
∂x

1
2

[
lu(x,y)2

∣∣∣ ∂u∂y ∣∣∣( ∂u∂y + ∂v
∂x

)]


dV. (A4)

x momentum equation

Considering the x momentum equation we have to evaluate
multiple terms. The first term evaluates as∫
1V

∂

∂x

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂x

]
dV

=

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂x

]
e

δy−

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂x

]
w

δy.

Here we have

∂u

∂y

∣∣∣∣
e

=
ui,J+1− ui,J

1yJ,J+1
,

∂u

∂x

∣∣∣∣
e

=
ui+1,J − ui,J

δxi,i+1
,

∂u

∂y

∣∣∣∣
w

=
ui,J − ui,J−1

1yJ−1,J
,

∂u

∂x

∣∣∣∣
w

=
ui,J − ui−1,J

δxi−1,i
,

and δy = δyj,j+1. Substituting these expressions yields∫
1V

∂

∂x

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂x

]
dV

= lu(xI−1,yJ )2
∣∣∣∣ (ui,J+1− ui,J )δyj,j+1

1yJ,J+1δxi,i+1

∣∣∣∣︸ ︷︷ ︸
T exi,J

(ui+1,J − ui,J ). . .

−lu(xI ,yJ )2
∣∣∣∣ (ui,J − ui,J−1)δyj,j+1

1yJ−1,J δxi−1,i

∣∣∣∣︸ ︷︷ ︸
T wxi,J

(ui,J − ui−1,J ). (A5)

The second term evaluates as∫
1V

∂

∂y

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
dV

=
1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
n

1x

−
1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
s

1x.

Here we have

∂u

∂y

∣∣∣∣
n

=
ui,J+1− ui,J

1yJ,J+1
,

∂v

∂x

∣∣∣∣
n

=
vI,j+1− vI−1,j+1

1xI−1,I
,

∂u

∂y

∣∣∣∣
s

=
ui,J − ui,J−1

1yJ−1,J
,

∂v

∂x

∣∣∣∣
s

=
vI,j − vI−1,j

1xI−1,I
,

and 1x =1xI−1,I . Substituting yields∫
1V

∂

∂y

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
dV

=
1
2

[
lu(xi,yj+1)2

∣∣∣∣ui,J+1− ui,J

1yJ,J+1

∣∣∣∣
×

(
ui,J+1− ui,J

1yJ,J+1
+
vI,j+1− vI−1,j+1

1xI−1,I

)]
1xI−1,I . . .

−
1
2

[
lu(xi,yj )2

∣∣∣∣ui,J − ui,J−1

1yJ−1,J

∣∣∣∣
×

(
ui,J − ui,J−1

1yJ−1,J
+
vI,j − vI−1,j

1xI−1,I

)]
1xI−1,I ,

which can be rearranged to∫
1V

∂

∂y

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
dV

=
1
2
lu(xi,yj+1)2

∣∣∣∣∣ (ui,J+1− ui,J )1xI−1,I

1y2
J,J+1

∣∣∣∣∣︸ ︷︷ ︸
T nxi,J

(ui,J+1− ui,J ). . .
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+
1
2
lu(xi,yj+1)2

∣∣∣∣ (ui,J+1− ui,J )
1yJ,J+1

∣∣∣∣︸ ︷︷ ︸
T newxi,J

(vI,j+1− vI−1,j+1). . .

−
1
2
lu(xi,yj )2

∣∣∣∣∣ (ui,J − ui,J−1)1xI−1,I

1y2
J−1,J

∣∣∣∣∣︸ ︷︷ ︸
T sxi,J

(ui,J − ui,J−1). . .

−
1
2
lu(xi,yj )2

∣∣∣∣ (ui,J − ui,J−1)
1yJ−1,J

∣∣∣∣︸ ︷︷ ︸
T sewxi,J

(vI,j − vI−1,j ). (A6)

Summarizing the above,

∂

∂x

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂x

]
+
∂

∂y

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
= T exi,Jui+1,J + T

wx
i,J ui−1,J + T

nx
i,J ui,J+1+ T

sx
i,Jui,J−1

+ T
px
i,J ui,J + T

newx
i,J (vI,j+1− vI−1,j+1)

+ T sewxi,J (vI−1,j − vI,j ),

with T pxi,J = T
ex
i,J+T

wx
i,J +T

nx
i,J+T

sx
i,J . The coefficients T •i,J will

be computed for time k while the flow components will be
evaluated for time k+ 1.

y momentum equation

Considering the y momentum equation, the first term evalu-
ates as∫
1V

∂

∂y

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
dV

=

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
n

1x−

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
s

1x.

Here we have

∂u

∂y

∣∣∣∣
n

=
ui+1,J − ui+1,J−1

1yJ−1,J
,

∂v

∂y

∣∣∣∣
n

=
vI,j+1− vI,j

δyj,j+1
,

∂u

∂y

∣∣∣∣
s

=
ui,J − ui,J−1

1yJ−1,J
,

∂v

∂y

∣∣∣∣
s

=
vI,j − vI,j−1

δyj−1,j
,

and 1x = δxi,i+1. Substituting these expressions yields∫
1V

∂

∂y

[
lu(x,y)2

∣∣∣∣ ∂u∂y
∣∣∣∣ ∂v∂y

]
dV

= lu(xI ,yJ )2
∣∣∣∣ (ui+1,J − ui+1,J−1)δxi,i+1

1yJ−1,J δyj,j+1

∣∣∣∣︸ ︷︷ ︸
T
ny
I,j

×(vI,j+1− vI,j ). . .

−lu(xI ,yJ−1)2
∣∣∣∣ (ui,J − ui,J−1)δxi,i+1

1yJ−1,J δyj−1,j

∣∣∣∣︸ ︷︷ ︸
T
sy
I,j

(vI,j − vI,j−1). (A7)

The second term evaluates as∫
1V

∂

∂x

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
dV

=
1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
e

1y

−
1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
w

1y.

Here we have

∂u

∂y

∣∣∣∣
e

=
ui+1,J − ui+1,J−1

1yJ−1,J
,

∂v

∂x

∣∣∣∣
e

=
vI+1,j − vI,j

1xI,I+1
,

∂u

∂y

∣∣∣∣
w

=
ui,J − ui,J−1

1yJ−1,J
,

∂v

∂x

∣∣∣∣
w

=
vI,j − vI−1,j

1xI−1,I
,

and 1y =1yJ−1,J . Substituting these expressions yields∫
1V

∂

∂x

1
2

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣(∂u∂y + ∂v∂x

)]
dV

=
1
2
lu(xi,yj )2

∣∣∣∣ui+1,J − ui+1,J−1

1yJ−1,J

∣∣∣∣︸ ︷︷ ︸
T
ensy
I,J

(ui+1,J − ui+1,J−1). . .

+
1
2
lu(xi,yj )2

∣∣∣∣ui+1,J − ui+1,J−1

1xI,I+1

∣∣∣∣︸ ︷︷ ︸
T
ey
I,J

(vI+1,j − vI,j ). . .

−
1
2
lu(xi+1,yj )2

∣∣∣∣ui,J − ui,J−1

1yJ−1,J

∣∣∣∣︸ ︷︷ ︸
T
wnsy
I,J

(ui,J − ui,J−1). . .

−
1
2
lu(xi+1,yj )2

∣∣∣∣ui,J − ui,J−1

1xI−1,I

∣∣∣∣︸ ︷︷ ︸
T
wy
I,J

(vI,j − vI−1,j ). (A8)

Summarizing the above,∫
1V

∂

∂y

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
dV

=

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
n

1x−

[
lu(x,y)2

∣∣∣∣∂u∂y
∣∣∣∣ ∂v∂y

]
s

1x

= T
ey
I,jvI+1,j + T

wy
I,j vI−1,j + T

ny
I,jvI,j+1+ T

sy
I,jvI,j−1

+ T
py
I,j vI,j + T

ensy
I,j (ui+1,J − ui+1,J−1)

+ T
wnsy
i,J (ui,J − ui,J−1),

with T pyI,j = T
ey
I,j + T

wy
I,j + T

ny
I,j + T

sy
I,j . The coefficients T •I,j

will be computed for time k while the flow components will
be evaluated for time k+ 1.
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A4 Discretizing the forcing term

∫
1V

1
2
ρC′T

[
U cos(γ )

]2(cos(γ +ϕ)
sin(γ +ϕ)

)
dV

=
1
2
ρC′T

[
U cos(γ )

]2(cos(γ +ϕ)
sin(γ +ϕ)

)
1V

A5 Discretizing the unsteady term

Evaluate∫
1V

(
∂u
∂t
∂v
∂t

)
dV =

(
∂u
∂t
∂v
∂t

)
1V.

Table A1. Fully discretized Navier–Stokes equations and all their coefficients.

x momentum equation:

a
px
i,J
ui,J =

(
anx
i,J

asx
i,J

awx
i,J

aex
i,J

)(
ui,J+1 ui,J−1 ui−1,J ui+1,J

)T
− δyj,j+1

(
pI,J −pI−1,J

)
+ f x

i,J
+ . . .

+

(
anwx
i,J

aswx
i,J

anex
i,J

asex
i,J

)(
vI−1,j+1 vI−1,j vI,j+1 vI,J

)T
y momentum equation:

a
py
I,j
vI,j =

(
a
ny
I,j

a
sy
I,j

a
wy
I,j

a
ey
I,j

)(
vI,j+1 vI,j−1 vI−1,j vI+1,j

)T
− δxi,i+1

(
pI,J −pI,J−1

)
+ f

y
I,j
+ . . .

+

(
a
nwy
i,J

a
swy
i,J

a
ney
i,J

a
sey
i,J

)(
ui,J ui,J−1 ui+1,J ui+1,J−1

)T
Continuity equation:
0= δyj,j+1

(
ui+1,J − ui,J

)
+ 2δxi,i+1

(
vI,j+1− vI,j

)
,

aex
i,J
=max

[
−F ex

i,J
,0
]
+ T ex

i,J
, awx

i,J
=max

[
Fwx
i,J
,0
]
+ T wx

i,J
, anx

i,J
=max

[
−F nx

i,J
,0
]
+ T nx

i,J
, asx

i,J
=max

[
F sx
i,J
,0
]
+ T sx

i,J
,

a
ey
I,j
=max

[
−F

ey
I,j
,0
]
+ T

ey
I,j
, a

wy
I,j
=max

[
F
wy
I,j
,0
]
+ T

wy
I,j
, a

ny
I,j
=max

[
−F

ny
I,j
,0
]
+ T

ny
I,j
, a

sy
I,j
=max

[
F
sy
I,j
,0
]
+ T

sy
I,j
,

anex
i,J
= T newx

i,J
, anwx

i,J
= T newx

i,J
, asex

i,J
= T sewx

i,J
, aswx

i,J
= T sewx

i,J
,

a
ney
I,j
= T

ensy
I,j

, a
nwy
I,j
= T

wnsy
I,j

, a
sey
I,j
= T

ensy
I,j

, a
swy
I,j
= T

wnsy
I,j

,

a
px
i,J
= anx

i,J
+ aex

i,J
+ asx

i,J
+ awx

i,J
+F nx

i,J
+F ex

i,J
−F sx

i,J
−Fwx

i,J
+ T

px
i,J
+ a

px
0 ,

a
py
I,j
= a

ny
I,j
+ a

ey
I,j
+ a

sy
I,j
+ a

wy
I,j
+F

ny
I,j
+F

ey
I,j
−F

sy
I,j
−F

wy
I,j
+ T

py
I,j
+ a

py
0 ,

in which
F ex
i,J
=

1
2ρ
(
ui+1,J + ui,J

)
δyj,j+1, Fwx

i,J
=

1
2ρ
(
ui,J + ui−1,J

)
δyj,j+1,

F nx
i,J
=

1
2ρ
(
vI,j+1+ vI−1,j+1

)
1xI−1,I , F sx

i,J
=

1
2ρ
(
vI,j + vI−1,j

)
1xI−1,I ,

F
ey
I,j
=

1
2ρ
(
ui+1,J + ui+1,J−1

)
1yJ−1,J , F

wy
I,j
=

1
2ρ
(
ui,J + ui,J−1

)
1yJ−1,J ,

F
ny
i,J
=

1
2ρ
(
vI,j+1+ vI−1,j+1

)
1xI−1,I , F

sy
i,J
=

1
2ρ
(
vI,j + vI−1,j

)
1xI−1,I ,

a
px
0 =

1xI−1,I δyj,j+1
1t , a

py
0 =

1yJ−1,J δxi,i+1
1t ,

1xI−1,I = xI − xI−1, 1yJ−1,J = yJ − yJ−1,

T
px
i,J
= T ex

i,J
+ T wx

i,J
+ T sx

i,J
+ T nx

i,J
, with T •

i,J
given in (A5) and (A6),

T
py
i,J
= T

ey
I,j
+ T

wy
I,j
+ T

sy
I,j
+ T

ny
I,j
, with T •

I,j
given (A7) and (A8),

and

f x
i,J
=

1
2 δyj,j+1ρC

′
T

[
Uk cos(γk)

]2 cos(γk +ϕk), f
y
I,j
=

1
2 δyJ−1,J ρC

′
T

[
Uk cos(γk)

]2 sin(γk +ϕk), Uk =
√
u2
i,J
+ v2

I,j
cos(γk)

Temporal discretization yields uk+1−uk
1t

and vk+1−vk
1t

and we
define

a
px

0 =
1V

1t
and a

py

0 =
1V

1t

A6 Discretizing the Continuity equation

0=
∫
1V

∂u

∂x
+ 2

∂v

∂y
dV

=
(
ui+1,J − ui,J

)
δyj,j+1+ 2

(
vI,j+1− vI,j

)
δxi,i+1.

All the coefficients derived above are given in Table A1.
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Appendix B: PALM case study

In this appendix, a resolved flow field for an arbitrarily cho-
sen time step is depicted for the PALM case study presented
in Sect. 3.2.1. Table B1 gives a summary of the PALM sim-
ulation set-up.

Table B1. Summary of the simulation set-up.

Domain size Lx ×Ly ×Lz 19.2× 2.56× 1.28 (km2) Turbine dimensions D = 126 (m), zh = 90 (m)
Grid size Nx ×Ny ×Nz 1920× 256× 1280 Turbine arrangement 2× 1
Cell size 1x×1y 10× 10× 15 (m2) Turbine spacing 6D
Sample period 1t 1 (s) Atmospheric conditions ub = 8,vb = 0,wb = 0 (m s−1), ρ = 1.2 (kgm−3)
Simulation time t 1750 (s) Inflow Uniform
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Figure B1. Flow field obtained with PALM (below) and WFSim at t = 750 (s). The black lines indicate the turbines.

Appendix C: SOWFA case study

In this appendix, a resolved flow field for an arbitrarily cho-
sen time step is depicted for the SOWFA case study presented
in Sect. 3.2.2. The SOWFA data set presented in van Winger-
den et al. (2017) is utilized.
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Figure C1. Flow field obtained with SOWFA (below) and WFSim at t = 250 (s). The black lines indicate the turbines.

Wind Energ. Sci., 3, 75–95, 2018 www.wind-energ-sci.net/3/75/2018/



S. Boersma et al.: WFSim 93

Appendix D: Nomenclature

Lx ×Ly , domain size wind farm
Nx ×Ny , number of cells
Tn, turbine n
Un, hub-height flow velocity at the rotor
U c, flow centreline velocity
CT ,CP , thrust force and power coefficient
lu, turbulence model parameter
1t , sample period
qk =

(
uTk vTk pTk

)T , state vector with longitudinal and lateral flow velocities and pressure
wk =

(
νTk γ Tk

)T , control variables
D, turbine rotor diameter
1x×1y, cell size
ℵ, number of turbines
ub,vb, inflow conditions
U∞, upstream flow velocity
f , wind turbine force
τH, 2-D stress tensor
k, time index
nq , number of states
zk, measurement vector
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