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Abstract. Wind farm control research typically relies on computationally inexpensive,
surrogate models for real-time optimization. However, due to the large time delays involved,
changing atmospheric conditions and tough-to-model flow and turbine dynamics, these surrogate
models need constant calibration. In this paper, a novel real-time (joint state-parameter)
estimation solution for a medium-fidelity dynamical wind farm model is presented. In this
work, we demonstrate the estimation of the freestream wind speed, local turbulence, and local
wind field in a two-turbine wind farm using exclusively turbine power measurements. The
estimator employs an Ensemble Kalman filter with a low computational cost of approximately
1.0 s per timestep on a dual-core notebook CPU. This work presents an essential building block
for real-time wind farm control using computationally efficient dynamical wind farm models.

1. Introduction
With the expected growth in our population from 7 billion in 2017 to over 9 billion by 2040, a
rapid urbanization that “adds a city the size of Shanghai to the world’s urban population every
four months” [1], and a global economy with an average growth rate of 3− 4% per year [2], the
rising demand for energy is not foreseen to slow down any time soon. With the global awakening
on climate change, there is a shift from fossil fuel reserves towards renewable energy sources,
among which wind energy plays an important role. Though, in many areas of the world, fossil
fuels continue to be less expensive than renewable energy sources, slowing down this necessary
change in our choice of energy sources.

To make wind energy more financially competitive with non-renewable alternatives, wind
turbines are being placed together in wind farms to reduce installation and maintenance costs [3].
However, challenges arise due to the formation of wakes. Wakes are slower, more turbulent
regions of air flow, formed downwind of the turbine rotor due to the extraction of energy. In
the Lillgrund offshore wind farm, turbines operating in the wake of another experience losses in
power capture of up to 23% compared to individually placed turbines, thereby limiting potential
cost reductions in wind farms [4]. The area of wind farm control aims to reduce the levelized cost
of wind energy1 through coordinated operation of the turbines inside a wind farm, accounting
for these wake effects.

Currently, wind turbines inside a farm are operated in a locally greedy fashion. Doing so,
the turbine rotor is yawed perpendicular to the mean wind direction, while the generator torque
1 The levelized cost of energy is a measure to compare the economical expenses of different energy sources.



and blade pitch angles are regulated to optimize power extraction and to mitigate fatigue loads.
However, high-fidelity simulations [5–7], wind tunnel experiments [7–9], and field tests [10] have
shown serious potential in purposely misaligning the rotor plane with the wind direction in
order to laterally deflect the wake away from downstream-standing turbines. This so-called
“wake redirection control” has situationally shown to increase the wind farm’s power production
by 10 − 15%. Further, purposely derating turbines inside a farm has shown potential for wind
farms to meet a demanded power reference signal provided by, e.g., a transmission system
operator [11–13]. This so-called “active power control” may make wind farms viable for providing
ancillary grid services, a topic that will become increasingly important as the share of renewable
energies in the electricity supply increases.

Wind farm control research typically relies on computationally efficient, surrogate models
that accurately predict the flow and turbine dynamics inside the wind farm.2 However, no such
model exists according to the best of the authors’ knowledge, due to the lack of knowledge about
the environment, the complex dynamics of wind on a range of temporal and spatial scales, and
the variability of atmospheric conditions (see [3] for an overview of the state-of-the-art control
and control-oriented modeling for wind farms). Furthermore, accurate dynamical models such as
large-eddy simulation (LES) models are nonlinear and computationally expensive, making them
intractable for controller synthesis. On the other hand, computationally inexpensive models
are often steady-state, only accurate for a limited set of atmospheric conditions, and therefore
require real-time calibration. Therefore, the wind farm control problem calls for a closed-loop
control solution, as visualized in Fig. 1.
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Figure 1: Closed-loop wind farm control framework. Measurements z (e.g., from SCADA or
lidar systems) are fed into the controller. First, parameters in the surrogate wind farm model
x̂ and ϕ̂ are adapted to the actual conditions inside the farm. Using the calibrated model, an
optimization algorithm determines the control policy q for all turbines (e.g., yaw angles, blade
pitch angles). This may be a set of constant operating points, but can also be time-varying,
depending on whether the surrogate model is time-varying, and the optimization method used.

This paper presents a time-efficient joint state-parameter estimation (“model calibration”)
algorithm for the medium-fidelity dynamical model “WindFarmSimulator” (WFSim) [14]. This
calibration solution allows wind farm control algorithms relying on WFSim (e.g., [15]) to
deal with time-varying atmospheric conditions and model discrepancies, while maintaining
2 Model-free methods exist, but they typically go paired with slow convergence rates, and their applicability in
practice remains uncertain [3]. The remainder of this paper is limited to model-based wind farm control methods.



computational efficiency. This paper builds on previous work [16,17] by including the estimation
of inflow (freestream) conditions and adaptation of the turbulence model to the present
conditions, which vary in time due to atmospheric fluctuations and changes in turbine operation.
Fundamentally, we move from state-only estimation to joint state-parameter estimation.

The structure of this paper is as follows. Firstly, the WFSim model is described in Section 2.
Secondly, the adaptation algorithm is discussed in Section 3. Thirdly, a case study is presented
demonstrating the potential of this algorithm in Section 4. The paper is concluded in Section 5.

2. WindFarmSimulator
WFSim is a dynamical wind farm model developed at the Delft University of Technology for
the purpose of real-time wind farm control. A summary of WFSim is given here, and the
interested reader is referred to [14]. The model is derived from the three-dimensional unsteady
Navier-Stokes equations, simplified to 2D (at hub height) under some modifications to the
continuity equation, to better represent the flow of three-dimensional LES. Furthermore, turbines
are modeled using actuator disk theory, and an adjusted version of Prandtl’s mixing length
turbulence model is implemented. Within this turbulence model, the mixing length parameter
has been made a linearly increasing function of the downstream distance, as suggested by [18].
The equations are solved after temporal and spatial discretization. A snapshot of the flow field
from a two-turbine simulation in WFSim is shown in Figure 2.
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Figure 2: A two-turbine simulation in the WFSim model, with inflow from the left. The
wireframe indicates the spatial grid upon which the flow and pressure fields are resolved.

Mathematically, the WFSim model can be represented by the following dynamical system:

xk+1 = f(xk, qk,ϕk),

zk = g(xk, qk),
(1)

where xk ∈ RN is the model state vector at time instant k, containing the longitudinal wind
speed, lateral wind speed, and pressure term at every point of the spatial grid. The control
inputs qk ∈ R2NT are the yaw angles γ and thrust coefficients CT of each turbine, with NT the
number of turbines. The yaw angle has a direct physical relationship to the turbine, while the
latter is a non-dimensionalized value of the axial force exerted by the turbine on the flow [19].
Depending on the design of the local turbine controller, one may require a mapping from CT to
the physical turbine settings such as the generator torque and blade pitch angle. This mapping
would require the aerofoil tables of the rotor, and possibly higher-fidelity turbine simulations
(e.g., using a blade-element-momentum simulation code like FAST [20]) to find the mappings
of interest under certain turbine control strategies. Furthermore, the set of (possibly time-
varying) model parameters, ϕk ∈ RH , includes the boundary conditions (inflow conditions) and
turbulence model properties. The model output is zk ∈ RM , which typically includes (a subset



of) the states zk ⊂ xk, and the power production of each turbine inside the farm. Finally, f
and g are the nonlinear state forward propagation and output equation, respectively.

WFSim is on the edge of high accuracy and computational tractability for control
applications. N typically ranges between 103 − 104 for smaller wind farms, resulting in a
computational cost of approximately 0.1 s per timestep on a single-core desktop CPU. While
this computational load is low compared to LES models, it is very high for controller synthesis.
Moreover, the nonlinear nature of WFSim complicates controller synthesis, as many synthesis
tools are limited to linear models. On the other hand, this nonlinearity significantly adds to
the accuracy of WFSim, and the model attempts to bridge the gap between accuracy and
applicability in control.

3. Real-time model calibration
The model calibration solution presented in this work provides estimates of the instantaneous
flow field x̂k and a subset of the model parameters ϕ̂k using the real-time measurements from
the wind turbines. Two steps can be distinguished:
(i) Estimation of the wind-farm-wide freestream wind speed (U∞) and direction (WD) is

done following the example of [21]. In short, WD is estimated by collecting wind vane
measurements of each turbine in the farm, removing outliers, and temporal averaging. For
U∞, firstly, the non-waked turbines are distinguished from the turbines operating inside a
wake using a simplified static wake model [21]. Secondly, the mean power of all upstream
turbines is temporally averaged into P̄ . This average is used to determine U∞ using an
inversion law derived from actuator disk theory,

U∞ =
3

√
2P̄

CPADρ
,

where CP is the dimensionless power coefficient of the turbine, AD is the swept surface area
of the rotor, and ρ is the air density.

An important remark is that this methodology for the estimation of U∞ relies solely on
power measurements, and therefore only works for below-rated conditions. For estimation
of U∞ in above-rated conditions, one may, for example, require the implementation of a
wind speed estimator on each individual turbine, from which the local wind speed in front
of each turbine can be estimated, as demonstrated by [22].

(ii) The flow field and a subset of model parameters are estimated, extending on previous
work [17]. In this work, the extended state vector sk ∈ RN+1 is estimated, where
sTk =

[
xT
k ℓu

]
, with ℓu ⊂ ϕk a scalar quantifying the wake recovery in Prandtl’s mix-

ing length turbulence model [14]. Specifically, ℓu quantifies the slope of the mixing length
distance as a function of the downstream distance. The higher ℓu, the more wake mixing
downstream of each turbine is found in WFSim, and the faster a waked flow recovers to its
freestream properties.

Due to nonlinearities in (1), traditional recursive state estimation algorithms such as the
linear Kalman filter (KF) cannot be used. Rather, in this work, an Ensemble Kalman filter
(EnKF) [23] is opted for, because of its low computational cost and relatively high accuracy
for nonlinear models. The EnKF is typically used for large-scale weather forecasting
models, which have many similarities with wind farm models. To improve accuracy and cut
computational cost, the EnKF has been extended with so-called “covariance localization”
and “covariance inflation” in previous work [17].



An important question in the field of state estimation is the system’s observability. Due
to the nonlinear nature of WFSim, a formal observability analysis is difficult. Specifically,
state observability highly depends on the sensor locations, wind direction, and wind farm
layout. However, note that covariance localization is enforced in the EnKF [17], in which the
covariance between two spatially distant states is forced to zero. Thus, we intentionally limit the
observability by only allowing state updates using spatially nearby sensory information from,
e.g., turbine or flow measurements. This not only reduces possible spurious correlations, it also
significantly reduces the computational cost. Furthermore, note that not all flow information
is equally relevant. In most scenarios, state information in proximity of the turbines is desired,
where typically also most sensory information is available. In future work, the usage of more
sensory information is envisioned such as the turbine’s structural loads and deformations.

4. A case study
To demonstrate the potential of the calibration algorithm, a case study is performed on a wind
farm with two NREL-5MW turbines at 5D spacing, in which the blades are periodically pitched
to excite the flow. The blade pitch excitation signal is a pseudorandom binary sequence with
values of either 0◦ or 4◦. The turbines are initialized at a 30◦ yaw misalignment, but are then
yawed in alignment with the mean wind direction during the first 20 seconds of the simulation.

The plant in Fig. 1 (“reality”) is modelled by the Simulator fOr Wind Farm Applications
(SOWFA), which solves the three-dimensional Navier-Stokes equations accounting for bouyancy
and Coriolis effects using a large-eddy simulation [24]. The rotors are represented using the
actuator line model. In short, the simulation is of a neutral atmospheric boundary layer with
the freestream properties at hub-height being U∞ ≈ 8 m/s and TI∞ ≈ 5%. This high-fidelity
simulation is described in more detail in [25]. For our purposes, it is assumed that the turbine
power signals are the only sensory information available. These measurements are perturbed
with artificial Gaussian noise with a standard deviation of σP = 2·104 W, which is approximately
1.2% and 2.1% of the time-averaged power production for turbine 1 and 2, respectively.

This two-turbine wind farm case is implemented in the WFSim model on a domain of
1.9 km × 0.8 km, spatially discretized at 50 × 25 cells, and temporally discretized at ∆t = 1 s.
The initial extended state vector ŝ0 and freestream wind speed are purposely initialized poorly,
to investigate convergence of the estimation algorithm. Specifically, WFSim is initialized with
ℓu0 = 4.0 and a uniform flow field of 5 m/s. Correspondingly, the freestream wind speed is
initialized poorly at U∞0 = 5.0 m/s.

From the turbine power measurements, U∞ and the extended state vector sk are to be
estimated (WD is ignored for simplicity). The EnKF covariance matrices are largely identical
to those in previous work, to simulate the performance for unseen data. Only the measurement
covariance noise has been made to match the measurement noise σP . For more information on
the Kalman filter and its tuning, the reader is referred to [26]. Simulation results are displayed
in Figs. 3 and 4.

Figure 3: Convergence rates of U∞ (blue) and ℓu (red). In dashed lines are the steady-state
values that yield the best fit of WFSim with SOWFA in terms of the flowfields and power signals.
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Figure 4: Wind field estimation for t = 10, 50, 300, and 1900 s. In the left column are the large-
eddy simulation (SOWFA) results. The second column shows the open-loop (OL) estimation
with grid-searched optimal parameters. The third column shows the estimates using power
measurements, initialized with poor values for the wind speed and turbulence. The last two
columns show the error between the SOWFA and the OL/EnKF simulation, respectively.



Firstly, from Fig. 3, one can see that ℓu and U∞ converge to their steady-state optimal values
ℓuopt and U∞opt , respectively. These steady-state optimal values have been found through a
multi-objective minimization of the error in the flow fields and the error in the turbine power
signals of WFSim and SOWFA, thus assuming full state knowledge. Specifically, U∞ converges
to the true wind speed within 400 s, and ℓu converges within 850 s. Important to note is that the
estimated power production of the downstream turbine can both be influenced by changing the
turbulence intensity parameter ℓu, or directly by changing the wind speed states in proximity
of the turbine. Thus, one may question the observability of the system. However, ℓu acts on a
much slower timescale than the instantaneous flow field xk, and therefore convergence can be
achieved.

Secondly, consider Fig. 4. After both parameters have converged (t = 850 s) the error between
SOWFA and WFSim becomes increasingly smaller. At t = 1900 s, the error between SOWFA
and the estimate is nearly negligible. Furthermore, as the estimated power capture of each
turbine is calculated as a function of the rotor-averaged wind speed at the rotor plane, there
is a direct relationship (correlation) between these flow states and the power capture. Thus,
using power measurements, these flow states on the rotor plane undergo the most dominant
corrections, and it can be seen that the turbine power measurements most immediately affect
the wind speed estimates in proximity of the turbines.

In terms of computational cost, each state estimate takes approximately 1.0 s on an Intel
i7-6600U dual-core CPU for one single forward timestep, up to two orders of magnitude faster
than common KF algorithms [16]. In comparison, the open-loop simulations with WFSim take
approximately 0.03 s per timestep on a single core.

5. Conclusion
In this work, we presented an algorithm for real-time joint state-parameter estimation in low- and
medium-fidelity dynamical wind farm models. In a high-fidelity simulation, we demonstrated
that the local flow field, local turbulence, and freestream wind speed can jointly be estimated
for a two-turbine wind farm using exclusively SCADA data, at a low computational cost of
1.0 s per timestep on an Intel i7-6600U dual-core CPU. We used an Ensemble Kalman filter
for its computational efficiency and its ability to deal with nonlinearities. This state and model
parameter information can now be leveraged in algorithms relying on the WFSim model for
robust and accurate wind farm optimization. A future publication will include a comparison of
the EnKF with other nonlinear KF variants, an investigation of the effect of information source
on the estimation quality, and simulations on a nine-turbine wind farm [26]. Furthermore, future
work may include an analysis of the estimation performance under a changing wind direction,
and possibly the incorporation of additional sensory information.
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