
Abstract-A multilayer neural network has been 
developed that consists of slabs of single neuron models. 
Each slab is composed of a single type of neurons, 
which differs between the slabs. The network was 
trained using a biologically inspired, Hebbian-like, 
learning rule on EMG data and good training/testing 
classification performance was obtained. It was shown 
that the biologically inspired network, the novel 
architecture of which is derived from the functionally 
distinct hypercolumns of neurons in the brain, can be 
successfully applied on difficult classification tasks.   
 
Keywords:  neural networks, dissimilar neuron models, 
Hebbian learning rule. 
 

I. INTRODUCTION 

Neural tissue has the ability to learn and memorize a 
vast amount of information over very short time scales 
with little exposure to the learning data. The mechanisms 
underlying learning and memory processes in the brain are 
only partially identified to this date. Biophysical and 
computational studies indicate that information is learned 
through a process of structural modifications that take 
place in synaptic terminals between neurons, in response to 
the frequency of activation [1-3]. This process is believed 
to be guided by locally available signals at synaptic sites 
(Hebbian learning rules) while it could also be partially 
stochastic and partially regulated by backpropagating 
messages sent from the cell body to the modifiable sites [4-
6]. Previous computational work has shown that such a 
mechanism could significantly boost the memory capacity 
of biological neurons [7-9].  In this work, a supervised 
Hebbian-Stochastic learning rule is implemented in a novel 
neural network model and the performance is compared to 
existing rules. The architecture of the proposed model is 
also inspired from the morphological and biophysical 
properties of neurons in the brain. Specifically, the model 
is composed of three layers where the neurons in the 
hidden layer are divided in two distinct categories (slabs). 
Each slab is made of identical single neuron models but 
neurons between the slabs are different. This differentiation 
in the neuronal processing properties, which in the neural 
network case is depicted by using different single neuron 
models, has been observed in the primary visual cortex  
(V1). In the 1960’s, Hubel and Wiesel described cells in 
V1 which responded to the image of oriented bars and 

edges [10, 11]. The most basic cell type, which they 
described, responded to a stationary, spatially localized 
oriented contour and this cell was dubbed the simple cell. 
Hubel and Wiesel also reported a striking regularity in the 
organization of the cells in V1 based upon cortical columns 
(or hypercolumns) running tangentially to the cortical 
surface. They showed that neurons selective to a 
continuous range of different orientations were grouped 
together in one hypercolumn [11, 12]. This functional 
differentiation has been suggested to enhance learning by 
promoting decorrelation of the information learned by 
different parts of the physical network. Based on this 
evidence, the present work investigates the classification 
performance of a novel neural network architecture, where 
the hidden layer of a three-layer network is divided into 
sets of different single neuron models. 

 

 
 

Figure 1. 
 
The proposed neural network is composed of three layers: an input layer, 
two hidden slabs with dissimilar neurons and an output layer. The size of 
the network in the present study is 24 input neurons, 10 hidden neurons (5 
per slab) and three output neurons.     
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II. METHODOLOGY 
 

Previous work has shown that a multi-slab architecture 
similar to the one shown in figure 1., can yield high 
classification scores on a variety of application [13]. Based 
on these earlier models, we develop a three layer 
feedforward neural network which consists of: (1) an input 
layer where input features are pre-processed with the use of 
adaptable Gaussian activation functions (Receptive Fields), 
(2) two slabs of hidden neurons where single neuron 
models within each slab are the same but differ between 
slabs and (3) an output neuron where the outputs for each 
slab are linearly combined before passed through an 
adaptable Logistic Activation Function (LAF).  The 
Receptive Field (RF) equation for each distinct input 
feature k is given by: 
 
 

fk(xk) = ak⋅exp(-sk ⋅ (xk-Hk)n
k )                       (1) 

 
 

where xk is the kth input feature of training pattern x. Thus, 
the number of RFs in the input layer is equal to the number 
of input features in the learning set. The parameters for 
each RF (ak, sk,, Hk,, nk) as well as the LAF parameters (Bj, 
Cj) shown in equation 6 are modified during learning by 
±10% random changes in their magnitude. Changes are 
only kept if they lead to lower MSE. Receptive Fields in 
the network are similar to spatial receptive fields of 
neurons in the LGN or the retina, where visual information 
is first processed in the brain [10, 14]. The receptive fields 
of these neurons have been shown to have a Gaussian-like 
(center-surround) shape where stimuli that lie in the center 
of the receptive field (RF) excite the cell while stimuli in 
the periphery of the RF do not cause neuron firing. The 
idea behind this adaptable design is to allow each input 
neuron to focus on a specific subset of the input data thus 
promoting the decorrelation of patterns learned by different 
parts of the network, a method that has been shown to 
enhance information learning in the brain [15, 16]. The 
hidden layer of the network consists of dissimilar single 
neuron models divided in two slabs, where neurons within 
each slab are identical.  The two types of single neuron 
models are given by the equations: 
 
 

              α1(p)  =  0       if     p ≤ 0                   (3) 
                α1(p)  =  1       if     p > 0 
 
for the first slab and 
 

α2(p) =  p 10                                                  (4) 
 
      
for the second slab. p is the weighted sum of the post-
processed input pattern f = [f1(x1) f2(x2) … fN(xN)]: 

                 p(f) = ∑ wk,i
L⋅ fk(xk)                                              (5) 

 
 

where wk,i
L is the weight between Receptive Field k and 

neuron i in slab L = 1,2.   A power of ten was selected for 
neurons in slab 2 based on the results of an earlier work 
where morphologically realistic neurons were used on 
classification tasks [9]. The use of dissimilar neuron 
models is another means of promoting the decorrelation of 
information learned by the two slabs of the network. The 
outputs of both slabs were linearly combined and fed to the 
third layer of the network. The activation functions for the j 
= 1, … J neurons in the output layer are given by: 
              
 

             yj(Aj) = B/(1+exp(-Cj⋅Aj))                               (6) 
 
 
with A = [A1 A2 … AN] the matrix of the combined slab 
output:  
 

 A  = [Wi
1
j Wi

2
j ] ⋅ [α1 α2]T                                 (7) 

 
 
and Wi

1
j, Wi

2
j equal to the weights between the hidden 

layers and the output layer of the network. 
 
Hebbian Annealing Rule (HAR): A biologically inspired 
learning rule was developed which is compared to a 
random modifications rule used in previous studies [17]. 
Learning in the proposed network proceeds as follows: (1) 
weights and activation function variables are initialized at 
random (2) at each step, a neuron (in each slab and output 
layer) is selected at random and three weights from the 
weight matrix associated with this neuron are randomly 
selected. A score is calculated for each weight as shown by 
the equation: 
 
 

Sw = cor ( Min(I), Mout(I) )        (8) 
 
 
where the function cor(a,b) calculates the correlation 
coefficient between vectors a and b, Min is the row of the 
input matrix corresponding to the selected weight w (or 
W), Mout is the corresponding row of the output matrix for 
the selected neuron, and I is an index used to identify all 
misclassified patterns. Thus, Min(I) and Mout(I) indicate 
that the correlation is measured only over the patterns that 
were misclassified in the specific run. This method was 
previously shown to lead in faster convergence of the 
algorithm [9]. The score for each weight in the selected 
pool is calculated and the weight with the smaller score is 
targeted for modification. The modification is a ±10% 
change in its magnitude and the change is kept or rejected 
based on a Boltzman equation: 
 
 
        R = 1/(1 + exp((E_new-E_old)/T))            (9) 



A change is kept if E_new < E_old or a random number a 
∈  [0,1] is smaller than the result of equation (9). A 
temperature variable (T) is lowered by a scaling factor (Tf) 
over the course of learning such than fewer bad changes 
are accepted as the algorithm converges to a minimum. To 
avoid local minima, an additional criterion was 
incorporated in the learning rule. If the error rate was 
unchanged for 300 consecutive iterations, T was increased 
by a factor of sqrt(Tf). For the experiments reported here, 
the initial Temperature T=20 and the temperature reduction 
factor Tf = 0.95. Learning was terminated after a maximum 
number of iterations (20,000) or when no further 
improvement in the MSE was observed after 1000 
consecutive iterations. 

 
 

Figure 2. 
 

Two network architectures were trained with both the Hebbian-Annealing 
(HA) and the Random Modification (RM) rule. The first network 
consisted of identical neurons in both hidden layers (dashed and dashed-
dotted lines: essentially linear neurons with a step activation function 
shown in (3)) and the second network is depicted in figure 1 (solid and 
dotted lines). We show that combination of HA rule and dissimilar neuron 
network results in significantly better performance than the RM rule. 
Moreover, the proposed architecture/learning rule combination has the 
faster convergence than all cases tested. 

III. RESULTS 

The neural network model was used for the classification 
of Electromyography data and its performance was 
compared to a learning rule with random parameter 
modifications (RM) versus the Hebbian Annealing (HA) 
rule.  The RM rule consisted of ±10% random 
modifications at weight, RF and activation function 
parameters, alternatively, and the changes were kept only if 
they resulted in lower MSE rate. The above rule was 
selected for comparison since it was previously shown to 
be superior to both backpropagation and simulated 
annealing rules in a neural network with similar 
architecture [17]. 
 
MATERIAL: Motor unit action potentials (MUAPs) 
recorded during routine electromyographic (EMG) 
examination provide important information for the 
assessment of neuromuscular disorders. In this study we 
use a neural network model to analyse MUAPs using the 
mean and standard deviation of seven time domain 
parameters: duration, spike duration, amplitude, area, spike 
area, number of phases and number of turns [18]. A total of 
480 MUAPs obtained from 24 subjects, 8 NOR (healthy), 8 
MYO (myopathy) and 8 MND (motor neuron disease), 
were used for training the ANN classifiers, whereas a total 
of 200 MUAPs, obtained from 10 subjects, 4 NOR, 3 
MYO and 3 MND were used for evaluation.  

Due to the rather limited amount of the input data and in 
order to verify the correctness of the classification results a 
bootstrapping procedure was used. The system was trained 
and evaluated using five different bootstrap sets where in 
each set 24 different subjects were selected at random for 
training and 10 different subjects for evaluation. A 
representative error curve for both rules is shown in figure 
2. The convergence rate of the biological rule is 
significantly faster than the corresponding random rule as 
shown in the graph. Finally, in addition to the MSE 
minimization advantage, the classification performance of 
the Hebbian Annealing rule is also better. The mean 
percentage and the standard deviation (Std) of the correct 
classifications score, i.e. diagnostic yield, for the five 
bootstrap sets for each rule is shown in Table 1. 

Table 1. 

 
 
Training and Evaluation results for the two learning rules tested using the 
model architecture shown in Figure 1. Both the Training and Evaluation 
performance of the network trained with the Hebbian-Annealing rule are 
significantly better than the corresponding Random Modifications rule. In 
both cases, the model was trained until no further improvement in the 
MSE was observed after 1000 consecutive iterations. 



IV. DISCUSSION 

A novel neural network model was developed, the 
architecture of which combines the integrative properties 
of biological neurons with a neurally inspired learning rule.  
The three layer neural network consisted of two parallel 
hidden units, each composed of a distinct single neuron 
model type. A similar network architecture was first 
implemented by [17] and its benefits have yet to be 
explored fully. The present work has shown that such 
artificial neural networks, which are supported by 
physiological evidence in the visual system, can be 
successfully used on difficult memory/recognition tasks. 
The proposed model was trained with a supervised 
Hebbian-annealing learning rule, and was found to give 
good results on the classification problem tested. It was 
shown that both the model architecture and learning rule 
are responsible for improved performance. The artificial 
neural network was found to perform significantly better 
that a same-sized MLP network trained with either a 
random change rule or the biological rule.  Furthermore, 
the proposed network performed at it’s best when trained 
with the biological learning rule. Thus, it can be concluded 
that learning mechanisms employed by the brain can be 
successfully used in artificial learning tasks and possibly 
even outperform existing algorithms. 
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