Magic Crosses: Repeated and Non Repeated Entries

Inder J. Taneja

Abstract

The idea of magic rectangles is well known in the literature [1. 3, 4]. Using this idea we brought for the first time in history a new concept on magic crosses. The work is divided in two groups. One on orders (odd, odd) and another on orders (even, even). Within the orders (odd, odd), the work is on magic crosses of type $(3,2 n+3),(5,2 n+5), \ldots . n=1,2, \ldots$ Within orders orders (even, even) the work is on magic crosses of orders $(4 n, 4 m),(4 n, 2 n+2), 2 \times($ even, odd $)$, etc. In all the case, we used the same number of entries as of magic rectangles to bring magic squares. In case of lower rows and columns of magic crosses the entries are repeated. For non repeated entries we worked with orders $(4,12),(5,15),(6,18),(8,24)$ and $(10,30)$. In this case the, the magic squares are of equal magic sums. The inspiration of this is due to classical magic square of Narānyana [2] done in 14th century (1356AD). This work is the same as done by author [23] in 2017

Contents

1 Historical Notes 1
2 Magic Crosses: Repeated Entries 5
2.1 Magic Crosses of Order (3,2n+3) . 5
2.1.1 Magic Cross of Order (3,5) . 5
2.1.2 Magic Cross of Order (3,7) . 5
2.1.3 Magic Cross of Order (3,9) . 5
2.1.4 Magic Cross of Order $(3,11)$. 6
2.1.5 Magic Cross of Order (3,13). 6
2.1.6 Magic Cross of Order (3,15). 6
2.1.7 Magic Cross of Order (3,17). 7
2.1.8 Magic Cross of Order (3,19). 7
2.2 Magic Crosses of Order $(5,2 n+5)$. 8
2.2.1 Magic Cross of Order (5,7) . 8
2.2.2 Magic Cross of Order (5,9) . 8
2.2.3 Magic Cross of Order (5,11). 9
2.2.4 Magic Cross of Order (5,13). 9
2.2.5 Magic Cross of Order (5,15) . 10
2.2.6 Magic Cross of Order (5,17). 10
2.2.7 Magic Cross of Order (5,19). 10
2.3 Magic Crosses of Order $(\mathbf{7 , 2 n + 7)}$. 11
2.3.1 Magic Cross of Order (7,9) . 11

[^0]2.3.2 Magic Cross of Order $(7,11)$ 11
2.3.3 Magic Cross of Order $(7,13)$ 12
2.3.4 Magic Cross of Order $(7,15)$ 12
2.3.5 Magic Cross of Order $(7,17)$ 13
2.3.6 Magic Cross of Order $(7,19)$ 13
2.4 Magic Crosses of Order $(9,2 n+9)$ 14
2.4.1 Magic Cross of Order $(9,11)$. 14
2.4.2 Magic Cross of Order $(9,13)$ 14
2.4.3 Magic Cross of Order $(9,15)$ 15
2.4.4 Magic Cross of Order $(9,17)$ 15
2.4.5 Magic Cross of Order $(9,19)$ 16
2.5 Magic Cross of Order(11,2n+11) 17
2.5.1 Magic Cross of Order $(11,13)$ 17
2.5.2 Magic Cross of Order $(11,15)$ 17
2.5.3 Magic Cross of Order $(11,17)$ 18
2.5.4 Magic Cross of Order $(11,19)$ 18
2.6 Magic Cross of Order $(13,2 n+13)$ 19
2.6.1 Magic Cross of Order $(13,15)$ 19
2.6.2 Magic Cross of Order $(13,17)$ 20
2.6.3 Magic Cross of Order $(13,19)$ 20
2.7 Magic Cross of Order $(15,2 n+15)$ 21
2.7.1 Magic Cross of Order $(15,17)$ 21
2.7.2 Magic Cross of Order $(15,19)$ 22
2.8 Magic Cross of Order $(17,2 n+17)$ 23
2.8.1 Magic Cross of Order $(17,19)$ 23
2.9 Magic Crosses of Order (4n, 4m) 24
2.9.1 Magic Cross of Order $(4,8)$ 24
2.9.2 Magic Cross of Order $(4,12)$. 25
2.9.3 Magic Cross of Order $(8,12)$ 25
2.9.4 Magic Cross of Order $(12,16)$ 26
2.10 Magic Crosses of Orders $2 \times($ even, odd) 27
2.10.1 Magic Cross of Order $(4,6)$ 27
2.10.2 Magic Cross of Order $(4,10)$ 27
2.10.3 Magic Cross of Order $(6,8)$ 28
2.10.4 Magic Cross of Order $(6,12)$ 28
2.11 Magic Crosses of Order $(4 n+2,4 m+2)$ 29
2.11.1 Magic Cross of Order $(6,10)$ 29
2.11.2 Magic Cross of Order $(6,14)$. 29
2.11.3 Magic Cross of Order $(10,14)$ 29
3 Magic Crosses: Non Repeated Entries 30
3.1 Magic Crosses of Order $(4,12)$ 30
3.2 Magic Crosses of Order $(5,15)$ 30
3.3 Magic Crosses of Order $(6,18)$ 31
3.4 Magic Crosses of Order $(8,24)$ 31
3.5 Magic Crosses of Order $(10,30)$ 32
4 Final Comments 33

1 Historical Notes

The Khajuraho magic square of order 4 is famous in the literature as one of the most most perfect magic square of order $4 i$ It is studied around 10th century. The original plate of this magic square seen at Parshvanath Jain temple in Khajuraho - (Link: Wikipedia - https://goo.gl/nsYn2j):

It is also pan diagonal magic square of order 4 given in example below.
Example 1. Let's rewrite Khajuraho magic square as pan magic square of order 4.

		34	34	34	34
	7	12	1	14	34
34	2	13	8	11	34
34	16	3	10	5	34
34	9	6	15	4	34
	34	34	34	34	34

Below are some properties in colors resulting magic square sums for each color:

7	12	1	14					
2	13	8	11					
16	3	10	5					
9	6	15	4		7	12	1	14
:---:	:---:	:---:	:---:					
2	13	8	11					
16	3	10	5					
9	6	15	4					

7	12	1	14					
2	13	8	11					
16	3	10	5					
9	6	15	4	\quad	7	12	1	14
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
2	13	8	11					
16	3	10	5					
9	6	15	4		7	12	1	14
:---:	:---:	:---:	:---:					
2	13	8	11					
16	3	10	5					
9	6	15	4					

7	12	1	14
2	13	8	11
16	3	10	5
9	6	15	4

7	12	1	14
2	13	8	11
16	3	10	5
9	6	15	4

7	12	1	14
2	13	8	11
16	3	10	5
9	6	15	4

During 14th centaury (1356AD)[2] Nārānyana constructed a magic square of 32 numbers instead of 16. See below:

Vajra or Diamond
Making 45° rotation on left, the above magic square can be written as

The real construction is based on two magic squares of order 4. Let's see how it constructed.
Example 2. Let's consider modified version of Khajuraho's magic square of Example 1 given by

		34	34	34	34
	1	8	13	12	34
34	14	11	2	7	34
34	4	5	16	9	34
34	15	10	3	6	34
	34	34	34	34	34

Let's divide the numbers 1 to 32 in two equal parts as:

1	4	5	8	9	12	13	16	17	20	21	24	25	28	29	32	264
2	3	6	7	10	11	14	15	18	19	22	23	26	27	30	31	264

For each row let's calculate a magic square of order 4 according to Example 2
Example 3. Let's consider modified version of Khajuraho's magic square of Example 1 given by

		66	66	66	66
	1	16	25	24	66
66	28	21	4	13	66
66	8	9	32	17	66
66	29	20	5	12	66
	66	66	66	66	66

		66	66	66	66
	2	15	26	23	66
66	27	22	3	14	66
66	7	10	31	18	66
66	30	19	6	11	66
	66	66	66	66	66

Combining two magic squares of order 4 given in Example 3 we get a magic rectangle of order $(4,8)$.
Example 4. The magic rectangle of order (4,8) based on Example 3 for the numbers 1 to 32 is given by

1	16	25	24	2	15	26	23	132
28	21	4	13	27	22	3	14	132
8	9	32	17	7	10	31	18	132
29	20	5	12	30	19	6	11	132
66	66	66	66	66	66	66	66	

According to Datta and Shing [2], there are 32 blocks of 8 elements giving the sums 132 . See below these 32 blocks.

1	16	25	24	2	15	26	23
28	21	4	13	27	22	3	14
8	9	32	17	7	10	31	18
29	20	5	12	30	19	6	11

1	16	25	24	2	15	26	23
28	21	4	13	27	22	3	14
8	9	32	17	7	10	31	18
29	20	5	12	30	19	6	11

1	16	25	24	2	15	26	23
28	21	4	13	27	22	3	14
8	9	32	17	7	10	31	18
29	20	5	12	30	19	6	11

1	16	25	24	2	15	26	23
28	21	4	13	27	22	3	14
8	9	32	17	7	10	31	18
29	20	5	12	30	19	6	11

1	16	25	24	2	15	26	23
28	21	4	13	27	22	3	14
8	9	32	17	7	10	31	18
29	20	5	12	30	19	6	11

1	16	25	24	30	19	6	11
28	21	4	13	2	15	26	23
8	9	32	17	27	22	3	14
29	20	5	12	7	10	31	18

1	16	25	24	7	10	31	18
28	21	4	13	30	19	6	11
8	9	32	17	2	15	26	23
29	20	5	12	27	22	3	14

1	16	25	24	27	22	3	14
28	21	4	13	7	10	31	18
8	9	32	17	30	19	6	11
29	20	5	12	2	15	26	23

There are much more combinations of 8 numbers giving the sum 132, but we have written only obvious ones.

Thus, we observe that the magic rectangle given in Example 3 is fundamental in construction of Nārānyana's magic square with 32 numbers instead of 16 . We can write this magic rectangle in a symmetric way as magic cross. Below are two different ways of writing magic cross:

Example 5. The two magic crosses of order $(4,8)$ are given by

The aim of this paper is to work with magic crosses of different types, such as of orders (odd, odd) and of orders (even, even). Within the orders (odd, odd), the work is on magic crosses of orders $(3,2 n+3)$, $(5,2 n+5) \ldots \quad n=1,2, \ldots$ Within the orders (even, odd), the work is on magic crosses of orders $(4 n, 4 m)$, $(4 n, 2 n+2), 2 \times($ even, odd $)$, etc. In all the case, the same number of entries are the same as of magic rectangles. Moreover, in small rows and columns the entried are repeated. For non repeated entries, we worked with orders $(4,12),(5,15),(6,18),(8,24)$ and $(10,30)$. In this case the, the magic squares are of equal magic sums.

2 Magic Crosses: Repeated Entries

2.1 Magic Crosses of Order $(3,2 n+3)$

The magic crosses constructed in this section are of orders $(3,2 n+3), n=1,2,3,4,5,6,7$ and 8 , i.e, from orders $(3,5)$ to $(3,19)$.

2.1.1 Magic Cross of $\operatorname{Order}(3,5)$

Example 6. A magic cross of order $(3,5)$ is constructed based on magic rectangle of order $(3,5)$ for the consecutive numbers 1 to 15. The bigger and smaller rows and columns are of sums 40 and 24 respectively. It is given by

2.1.2 Magic Cross of Order $(3,7)$

Example 7. A magic cross of order $(3,7)$ is constructed based on magic rectangle of order $(3,7)$ for the consecutive numbers 1 to 21. The bigger and smaller rows and columns are of sums 77 and 33 respectively. It is given by

2.1.3 Magic Cross of $\operatorname{Order}(3,9)$

Example 8. A magic cross of order $(3,9)$ is constructed based on magic rectangle of order $(3,9)$ for the consecutive numbers 1 to 27 . The bigger and smaller rows and columns are of sums 126 and 42 respectively. It is given by

									42	
			23	110						
			9	7	24				42	
4	18	20		13	27	2	22	9	11	126
21	5	16	3	14	25	12	23	7	126	
17	19	6	26	1	15	8	10	24	26	
			4	21	17				42	
			18	5	19				42	
			20	16	6				42	
42	42	42	126	126	126	42	42	42		

2.1.4 Magic Cross of $\operatorname{Order}(3,11)$

Example 9. A magic cross of order $(3,11)$ is constructed based on magic rectangle of order $(3,11)$ for the consecutive numbers 1 to 33. The bigger and smaller rows and columns are of sums 187 and 51 respectively. It is given by

					1	22					51	
				$\frac{28}{2}$	20	29						
				18	30	3						
				7	23	21						
22	29	3	7		24	9	26	13	16	32	6	187
1	20	30	23	19	17	15	11	4	14	33	187	
28	2	18	21	8	25	10	27	31	5	12	187	
				27	11	13					51	
				16	4	31					51	
				32	14	5					51	
				6	33	12					51	
51	51	51		187	187	187	51	51	51	51		

2.1.5 Magic Cross of $\operatorname{Order}(3,13)$

Example 10. A magic cross of order $(3,13)$ is constructed based on magic rectangle of order $(3,13)$ for the consecutive numbers 1 to 39. The bigger and smaller rows and columns are of sums 260 and 60 respectively. It is given by

$\begin{array}{lllllllllllll}60 & 60 & 60 & 60 & 60 & 260 & 260 & 260 & 60 & 60 & 60 & 60 & 60\end{array}$

2.1.6 Magic Cross of Order $(3,15)$

Example 11. A magic cross of order $(3,15)$ is constructed based on magic rectangle of order $(3,15)$ for the consecutive numbers 1 to 45 . The bigger and smaller rows and columns are of sums 345 and 69 respectively. It is given by

						36	14								
															69
						17	15	37							69
						22	5	42							69
						43	6	20							69
						44	7	18							69
						16	8	45							69
1	28	26	4	9	27	25	12	35	36	17	22	43	44	16	345
38	39	40	41	31	32	33	23	13	14	15	5	6	7	8	345
30	2	3	24	29	10	11	34	21	19	37	42	20	18	4	345
						30	38	1							69
						2	39	28							69
						26	40	3							69
						4	41	24							69
						9	31	29							69
						27	32	10							69

$\begin{array}{lllllllllllllll}69 & 69 & 69 & 69 & 69 & 69 & 345 & 345 & 345 & 69 & 69 & 69 & 69 & 69 & 69\end{array}$

2.1.7 Magic Cross of Order $(3,17)$

Example 12. A magic cross of order $(3,17)$ is constructed based on magic rectangle of order $(3,17)$ for the consecutive numbers 1 to 51. The bigger and smaller rows and columns are of sums 442 and 78 respectively. It is given by

								22									
							42	16	20								78
							18	17	43								78
							48	5	25								78
							23	6	49								
							50	7	21								78
							51	8	19								78
1	31	29	4	9	32	11	28	39	40	15	42	18	25	49	50	1	442
44	45	46	47	35	36	30	38	26	14	22	16	17	5	6	7	8	44
33	2	3	27	34	10	37	12	13	24	41	20	43	48	23	21	5	
							1	44	33								
							31	45	2								78
							29	46	3								78
							4	47	27								78
							9	35	34								78
							32	36	10								78
							11	30	37								78
78	78	78	78	78	78	78	442	442	42	78	78	78	78	78	78		

2.1.8 Magic Cross of Order $(3,19)$

Example 13. A magic cross of order $(3,19)$ is constructed based on magic rectangle of order $(3,19)$ for the consecutive numbers 1 to 57. The bigger and smaller rows and columns are of sums 551 and 87 respectively. It is given by

								25	17	45									87
								46	18	23									87
								21	19	47									87
								28	6	53									87
								54	7	26									87
								55	8	24									87
								9	22	56									87
								20	57	10									87
38	49	3	32	5	11	35	13	42	15	44	25	46	21	28	54	24	56		551
1	36	50	51	52	39	40	41	31	29	27	17	18	19	6	7	8	22		551
48	2	34	4	30	37	12	33	14	43	16	45	23	47	53	26	55	9		51
								38	1	48									87
								49	36	2									87
								3	50	34									87
								32	51	4									S7
								5	52	30									87
								11	39	37									87
								35	40	12									87
								33	41	13									87
87	87	87	s7	87	87	s7	87	551	551	551	87	87	$s 7$	87	87	s7	87		

2.2 Magic Crosses of $\operatorname{Order}(5,2 n+5)$

The magic crosses constructed in this section are of order $(3,2 n+5)$, and are magic crosses. See below some examples.

2.2.1 Magic Cross of Order $(5,7)$

Example 14. A magic cross of order $(5,7)$ constructed based on a magic rectangle of order $(5,7)$ for the consecutive numbers 1 to 35. The bigger and smaller rows and columns are of sums 126 and 90 respectively. It is given by

	15	1	28	32	14	
15	26	13	6	20	24	22
1	33	27	11	31	19	4
28	2	29	18	7	34	8
32	17	5	25	9	3	35
14	12	16	30	23	10	21
	21	35	8	4	22	

2.2.2 Magic Cross of Order $(5,9)$

Example 15. A magic cross of order $(5,9)$ constructed based on a magic rectangle of order $(5,9)$ for the consecutive numbers 1 to 45. The bigger and smaller rows and columns are of sums 207 and 115 respectively. It is given by

2.2.3 Magic Cross of Order $(5,11)$

Example 16. A magic cross of order $(5,11)$ constructed based on a magic rectangle of order $(5,11)$ for the consecutive numbers 1 to 55. The bigger and smaller rows and columns are of sums 308 and 140 respectively. It is given by

$\begin{array}{lllllllllll}140 & 140 & 140 & 308 & 308 & 308 & 308 & 308 & 140 & 140 & 140\end{array}$

2.2.4 Magic Cross of Order $(5,13)$

Example 17. A magic cross of order $(5,13)$ constructed based on a magic rectangle of order $(5,13)$ for the consecutive numbers 1 to 65. The bigger and smaller rows and columns are of sums 429 and 165 respectively. It is given by

				1	25	51	60	28					165165165165
				30	61	49	2	23					
				62	32	47	21	3					
				52	27	53	7	26					
1	30	62	52	54	9	10	11	16	40	63	43	38	429
25	61	32	27	8	22	20	18	42	59	45	64	6	429
51	49	47	53	29	31	33	35	37	13	19	17	15	429
60	2	21	7	24	48	46	44	58	39	34	5	41	429
28	23	3	26	50	55	56	57	12	14	4	36	65	429
				14	39	13	59	40					165
				4	34	19	45	63					165
				36	5	17	64	43					165
				65	41	15	6	38					165

$\begin{array}{llllllllllllll}165 & 165 & 165 & 165 & 429 & 429 & 429 & 429 & 429 & 165 & 165 & 165 & 165\end{array}$

2.2.5 Magic Cross of Order $(5,15)$

Example 18. A magic cross of order $(5,15)$ constructed based on a magic rectangle of order $(5,15)$ for the consecutive numbers 1 to 75 . The bigger and smaller rows and columns are of sums 570 and 190 respectively. It is given by

					31	30	60	68	1						$\begin{aligned} & 190 \\ & 190 \\ & 190 \\ & 190 \\ & 190 \end{aligned}$
					33	28	58	69	2						
					3	70	56	26	35						
					71	37	54	4	24						
					61	32	59	9	29						
31	33	3	71	61	27	11	12	13	19	47	52	41	74	75	570
30	28	70	37	32	34	25	23	21	66	67	72	50	7	8	570
60	58	56	54	59	62	36	38	40	14	17	22	20	18	16	70
68	69	26	4	9	10	55	53	51	42	44	39	6	48	46	570
1	2	35	24	29	57	63	64	65	49	15	5	73	43	45	570
					15	44	17	67	47						190
					5	39	22	72	52						190
					73	6	20	50	41						190
					43	48	18	7	74						190
					45	46	16	8	75						190

$\begin{array}{lllllllllllllll}190 & 190 & 190 & 190 & 190 & 570 & 570 & 570 & 570 & 570 & 190 & 190 & 190 & 190 & 190\end{array}$

2.2.6 Magic Cross of Order $(5,17)$

Example 19. A magic cross of order $(5,17)$ constructed based on a magic rectangle of order $(5,17)$ for the consecutive numbers 1 to 85 . The bigger and smaller rows and columns are of sums 731 and 215 respectively. It is given by

2.2.7 Magic Cross of $\operatorname{Order}(5,19)$

Example 20. A magic cross of order $(5,19)$ constructed based on a magic rectangle of order $(5,19)$ for the consecutive numbers 1 to 95. The bigger and smaller rows and columns are of sums 912 and 240 respectively. It is given by

							18	54	23	61	84								0
							85	59	21	56	19								240
							91	66	28	49	6								240
							7	51	26	64	92								240
							93	8	24	62	53								240
							60	94	22	55	9								240
							95	58	20	10	57								240
39	87	43	4	90	77	12	13	31	15	27	25	18	85	91	7	93	60	95	912
86	41	34	32	47	40	35	33	46	29	82	17	54	59	66	51	8	94	58	912
76	74	72	70	68	75	73	44	80	48	16	52	23	21	28	26	24	22	20	912
38	2	88	45	30	37	42	79	14	67	50	63	61	56	49	64	62	55	10	912
1	36	3	89	5	11	78	71	69	81	65	83	84	19	6	92	53	9	57	12
							1	38	76	86	39								24
							36	2	74	41	87								240
							3	88	72	34	43								240
							89	45	70	32	4								240
							5	30	68	47	90								240
							11	37	75	40	77								240
							78	42	73	35	12								240
240	240	240	240	240	240	240	912	912	912	912	912	240	240	240	240	240	240	24	

2.3 Magic Crosses of $\operatorname{Order}(7,2 n+7)$

2.3.1 Magic Cross of $\operatorname{Order}(7,9)$

Example 21. A magic cross of order $(7,9)$ constructed based on a magic rectangle of order $(7,9)$ for the consecutive numbers 1 to 63. The bigger and smaller rows and columns are of sums 288 and 224 respectively. It is given by

2.3.2 Magic Cross of Order $(7,11)$

Example 22. A magic cross of order $(7,11)$ constructed based on a magic rectangle of order $(7,11)$ for the consecutive numbers 1 to 77 . The bigger and smaller rows and columns are of sums 429 and 273 respectively. It is given by

		71	18	54	36	27	62	5			273
		69	64	28	55	34	20	3			
75	73	4	67	10	17	2	33	8	71	69	
58	16	52	22	57	6	65	12	59	18	64	
44	51	25	29	46	31	48	35	38	54	28	
23	42	63	1	41	39	37	77	15	36	55	
50	24	40	43	30	47	32	49	53	27	34	
14	60	19	66	13	72	21	56	26	62	20	
9	7	70	45	76	61	68	11	74	5	3	
		9	58	50	23	44	14	75			
		7	16	24	42	51	60	73			273

$\begin{array}{lllllllllll}273 & 273 & 429 & 429 & 429 & 429 & 429 & 429 & 429 & 273 & 273\end{array}$

2.3.3 Magic Cross of Order $(7,13)$

Example 23. A magic cross of order $(7,13)$ constructed based on a magic rectangle of order $(7,13)$ for the consecutive numbers 1 to 91. The bigger and smaller rows and columns are of sums 598 and 322 respectively. It is given by

$\begin{array}{lllllllllllll}322 & 322 & 322 & 598 & 598 & 598 & 598 & 598 & 598 & 598 & 322 & 322 & 322\end{array}$

2.3.4 Magic Cross of Order $(7,15)$

Example 24. A magic cross of order $(7,15)$ constructed based on a magic rectangle of order $(7,15)$ for the consecutive numbers 1 to 105 . The bigger and smaller rows and columns are of sums 795 and 371 respectively. It is given by

2.3.5 Magic Cross of Order $(7,17)$

Example 25. A magic cross of order $(7,17)$ constructed based on a magic rectangle of order $(7,17)$ for the consecutive numbers 1 to 119 The bigger and smaller rows and columns are of sums 1020 and 420 respectively. It is given by

$420 \begin{array}{llllllllllllllll}420 & 420 & 420 & 420 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 420 & 420 & 420 & 420 & 420\end{array}$

2.3.6 Magic Cross of Order $(7,19)$

Example 26. A magic cross of order $(7,19)$ constructed based on a magic rectangle of order $(7,19)$ for the consecutive numbers 1 to 133. The bigger and smaller rows and columns are of sums 1273 and 469 respectively. It is given by

2.4 Magic Crosses of $\operatorname{Order}(9,2 n+9)$

2.4.1 Magic Cross of $\operatorname{Order}(\mathbf{9}, 11)$

Example 27. A magic cross of order $(9,11)$ constructed based on a magic rectangle of order $(9,11)$ for the consecutive numbers 1 to 99. The bigger and smaller rows and columns are of sums 550 and 450 respectively. It is given by

	99	78	45	72	66	44	23	12	11		
99	3	95	2	96	17	92	10	38	9	89	
78	64	16	87	15	6	19	79	18	80	88	
45	73	49	29	41	31	37	35	75	58	77	
72	47	40	43	48	39	70	33	26	76	56	
66	86	7	46	68	50	32	54	93	14	34	
44	24	74	67	30	61	52	57	60	53	28	
23	42	25	65	63	69	59	71	51	27	55	
12	20	82	21	81	94	85	13	84	36	22	
11	91	62	90	8	83	4	98	5	97	1	
	1	22	55	28	34	56	77	88	89		

2.4.2 Magic Cross of Order $(9,13)$

Example 28. A magic cross of order $(9,13)$ constructed based on a magic rectangle of order $(9,13)$ for the consecutive numbers 1 to 117. The bigger and smaller rows and columns are of sums 767 and 531
respectively. It is given by

		12	93	27	51	77	86	54	15	116	531531		
		108	75	56	87	23	28	49	101	4			
12	108	8	105	11	109	20	113	3	117	45	114	2	
93	75	97	26	94	22	7	18	102	14	99	17	103	
27	56	88	78	80	35	36	37	42	66	89	69	64	
51	87	58	53	34	48	46	44	68	85	71	90	32	
77	23	112	79	55	57	59	61	63	39	6	95	41	
86	28	47	33	50	74	72	70	84	65	60	31	67	
54	49	29	52	76	81	82	83	38	40	30	62	91	
15	101	19	104	16	100	111	96	24	92	21	43	25	
116	4	73	1	115	5	98	9	107	13	110	10	106	
		10	43	62	31	95	90	69	17	114			
		106	25	91	67	41	32	64	103	2			531

2.4.3 Magic Cross of Order $(9,15)$

Example 29. A magic cross of order $(9,15)$ constructed based on a magic rectangle of order $(9,15)$ for the consecutive numbers 1 to 135. The bigger and smaller rows and columns are of sums 1020 and 612 respectively. It is given by

$\begin{array}{lllllllllllllll}612 & 612 & 612 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 1020 & 612 & 612 & 612\end{array}$

2.4.4 Magic Cross of Order $(9,17)$

Example 30. A magic cross of order $(9,17)$ constructed based on a magic rectangle of order $(9,17)$ for the consecutive numbers 1 to 153. The bigger and smaller rows and columns are of sums 1309 and 693 respectively. It is given by

2.4.5 Magic Cross of Order $(9,19)$

Example 31. A magic cross of order $(9,19)$ constructed based on a magic rectangle of order $(9,19)$ for the consecutive numbers 1 to 171. The bigger and smaller rows and columns are of sums 1634 and 774 respectively. It is given by

					171	134	77	124	114	76	39	20	19						774
					3	112	125	79	150	40	74	36	155						774
					167	24	81	72	15	126	41	138	110						774
					7	146	42	70	108	83	127	32	159						774
					163	28	128	85	106	68	43	142	11						774
171	3	167	7	163	2	168	6	164	29	160	14	156	18	161	13	62	17	153	163
134	112	24	146	28	151	23	147	27	10	31	139	35	135	30	140	34	136	152	
77	125	81	42	128	115	50	51	69	53	65	63	56	123	129	45	131	98	133	
124	79	72	70	85	78	73	71	84	67	120	55	92	97	104	89	46	132	96	1634
114	150	15	108	106	113	111	82	118	86	54	90	61	59	66	64	157	22	58	103
76	40	126	83	68	75	80	117	52	105	88	101	99	94	87	102	100	93	48	
39	74	41	127	43	49	116	109	107	119	103	121	122	57	44	130	91	47	95	
20	36	138	32	142	37	137	33	141	162	145	25	149	21	144	26	148	60	38	1037
19	155	110	159	11	154	16	158	12	143	8	166	4	170	9	165	5	169	1	
					9	144	44	87	66	104	129	30	161						774
					165	26	130	102	64	89	45	140	13						774
					5	148	91	100	157	46	131	34	62						774
					169	60	47	93	22	132	98	136	17						774
					1	38	95	48	58	96	133	152	153						774

2.5 Magic Cross of $\operatorname{Order}(11,2 n+11)$

2.5.1 Magic Cross of $\operatorname{Order}(11,13)$

Example 32. A magic cross of order $(11,13)$ constructed based on a magic rectangle of order $(11,13)$ for the consecutive numbers 1 to 143. The bigger and smaller rows and columns are of sums 936 and 782 respectively. It is given by

2.5.2 Magic Cross of Order $(11,15)$

Example 33. A magic cross of order $(11,15)$ constructed based on a magic rectangle of order $(11,15)$ for the consecutive numbers 1 to 165. The bigger and smaller rows and columns are of sums 1245 and 913 respectively. It is given by

		157	24	127	54	104	67	78	114	37	144	7		
		154	147	124	117	76	68	105	57	34	27	4		
162	159	6	161	15	152	13	23	3	74	1	155	10	157	154
139	22	145	20	91	29	138	8	148	17	150	26	141	24	147
132	129	36	131	45	122	43	53	33	134	31	65	40	127	124
109	52	100	50	106	59	108	38	118	47	120	56	111	54	117
61	88	86	64	69	87	85	72	95	96	77	82	103	104	76
98	99	115	41	136	2	93	83	73	164	30	125	51	67	68
90	62	63	84	89	70	71	94	81	79	97	102	80	78	105
49	112	55	110	46	119	48	128	58	107	60	116	66	114	57
42	39	126	101	135	32	133	113	123	44	121	35	130	37	34
19	142	25	140	16	149	18	158	28	137	75	146	21	144	27
12	9	156	11	165	92	163	143	153	14	151	5	160	7	4
		12	19	42	49	90	98	61	109	132	139	162		
		9	142	39	112	62	99	88	52	129	22	159		
913	913	1245	1245	1245	1245	1245	124						13	

2.5.3 Magic Cross of Order $(11,17)$

Example 34. A magic cross of order $(11,17)$ constructed based on a magic rectangle of order $(11,17)$ for the consecutive numbers 1 to 187. The bigger and smaller rows and columns are of sums 1598 and 1034 respectively. It is given by

2.5.4 Magic Cross of $\operatorname{Order}(11,19)$

Example 35. A magic cross of order $(11,19)$ constructed based on a magic rectangle of order $(11,19)$ for the consecutive numbers 1 to 209. The bigger and smaller rows and columns are of sums 1995 and 1155 respectively. It is given by

				197	32	83	70	130	159	102	146	45	184	7					$\begin{aligned} & 1155 \\ & 1155 \\ & 1155 \\ & 1155 \end{aligned}$
				12	179	50	141	100	65	131	84	164	27	202					
				199	30	161	68	132	98	85	144	47	182	9					
				195	186	157	148	86	133	96	72	43	34	5					
205	201	8	203	6	191	18	193	16	29	4	207	2	95	14	197	12	199	195	1995
176	28	183	26	128	38	173	36	175	10	187	22	189	20	177	32	179	30	186	1995
167	163	46	165	44	153	56	155	54	67	42	169	40	171	52	83	50	161	157	1995
138	66	126	64	147	76	135	74	137	48	149	60	151	58	139	70	141	68	148	1995
114	125	79	108	81	87	111	89	118	91	120	101	122	97	104	130	100	132	86	1995
77	112	145	51	185	1	116	117	107	105	103	93	94	209	25	159	65	98	133	1995
124	78	110	80	106	113	88	109	90	119	92	121	99	123	129	102	131	85	96	1995
62	142	69	140	71	152	59	150	61	162	73	136	75	134	63	146	84	144	72	1995
53	49	160	127	158	39	170	41	168	143	156	55	154	57	166	45	164	47	43	1995
24	180	31	178	33	190	21	188	23	200	35	174	37	172	82	184	27	182	34	1995
15	11	198	13	196	115	208	3	206	181	194	17	192	19	204	7	202	9	5	1995
				15	24	53	62	124	77	114	138	167	176	205					1155
				11	180	49	142	78	112	125	66	163	28	201					1155
				198	31	160	69	110	145	79	126	46	183	8					1155
				13	178	127	140	80	51	108	64	165	26	203					1155

$\begin{array}{lllllllllllllllllllll}1155 & 1155 & 1155 & 1155 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1995 & 1155 & 1155 & 1155 & 1155\end{array}$

2.6 Magic Cross of Order $(13,2 n+13)$

2.6.1 Magic Cross of Order $(13,15)$

Example 36. A magic cross of order $(13,15)$ constructed based on a magic rectangle of order $(13,15)$ for the consecutive numbers 1 to 195. The bigger and smaller rows and columns are of sums 1470 and 1274 respectively. It is given by

	195	166	165	136	91	90	120	128	61	46	45	16	15		
195	3	191	7	194	4	190	23	186	12	77	9	185	13	181	
166	178	20	114	17	177	21	8	25	169	29	172	26	168	180	
165	33	161	37	164	34	16	53	156	42	152	39	80	43	151	
136	118	50	144	47	147	51	38	55	139	59	14	56	13	150	
91	93	63	131	121	87	71	72	73	79	107	112	101	134	135	
90	88	130	97	92	94	85	83	81	126	127	132	11	67	68	
120	148	41	174	14	122	96	98	00	74	182	22	155	48	76	
12	129	86	64	69	70	115	113	111	10	104	99	66	108	106	
61	62	95	84	89	117	123	124	125	109	75	65	133	103	05	
46	58	140	54	137	57	141	158	145	49	149	52	146	78	60	
45	153	11	15	44	154	40	143	36	162	32	15	35	16	31	
16	28	170	24	167	27	171	188	175	19	179	82	176	18	30	
15	183	11	187	119	184	10	173	6	192	2	189	5	193	1	
	1	30	31	60	105	106	76	68	135	150	151	180	81		

2.6.2 Magic Cross of Order $(13,17)$

Example 37. A magic cross of order $(13,17)$ constructed based on a magic rectangle of order $(13,17)$ for the consecutive numbers 1 to 221. The bigger and smaller rows and columns are of sums 1887 and 1443 respectively. It is given by

		218	21	184	55	123	152	157	116	75	89	48	191	14			$\begin{aligned} & 1443 \\ & 1443 \end{aligned}$
		2	203	36	169	153	76	87	121	118	67	172	33	206			
16	208	12	212	17	207	13	211	26	215	5	219	86	214	6	218	2	
189	31	193	129	188	32	192	28	9	24	200	20	204	25	199	21	203	
50	174	46	178	51	173	47	177	60	181	39	185	35	180	91	184	36	
155	133	159	61	154	66	158	62	43	58	166	54	170	59	165	55	169	
104	147	71	149	137	78	107	109	81	92	83	84	145	150	74	123	153	
101	106	97	110	10	100	98	140	94	142	90	117	120	127	114	52	76	
13	65	182	27	221	134	79	96	111	126	143	88	1	195	40	157	87	
146	70	108	95	102	105	132	80	128	82	124	122	119	112	125	116	121	
69	99	148	72	77	138	139	130	141	113	115	144	85	73	151	75	118	
53	167	57	163	52	168	56	164	179	160	64	156	68	161	63	89	67	
186	38	131	42	187	37	183	41	162	45	175	49	171	44	176	48	172	
19	201	23	197	18	202	22	198	213	194	30	190	34	93	29	191	33	
220	4	216	8	136	3	217	7	196	11	209	15	205	10	210	14	206	1887
		220	19	186	53	69	146	135	101	104	155	50	189	16			1443
		4	201	38	167	99	70	65	106	147	133	174	31	208			144

$\begin{array}{lllllllllllllllll}1443 & 1443 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1887 & 1443 & 1443\end{array}$

2.6.3 Magic Cross of $\operatorname{Order}(13,19)$

Example 38. A magic cross of order $(13,19)$ constructed based on a magic rectangle of order $(13,19)$ for the consecutive numbers 1 to 247. The bigger and smaller rows and columns are of sums 2356 and 1612 respectively. It is given by

			247	210	209	172	115	162	152	114	77	58	57	20	19				$\begin{aligned} & 1612 \\ & 1612 \\ & 1612 \end{aligned}$
			3	226	41	150	163	117	188	78	112	74	193	36	231				
			243	24	205	62	119	110	53	164	79	176	148	214	15				
247	3	243	7	239	2	244	6	240	29	236	14	232	18	104	13	233	17	229	356
210	226	24	146	28	227	23	223	27	10	31	215	35	211	30	216	34	212	228	
209	41	205	45	201	40	206	44	202	67	198	52	194	56	199	51	100	55	191	2356
172	150	62	184	66	189	61	185	65	48	69	177	73	173	68	178	72	174	190	2356
115	163	119	80	166	153	88	89	107	91	103	101	94	161	167	83	169	136	171	2356
162	117	110	108	123	116	111	109	122	105	158	93	130	135	142	127	84	170	134	2356
152	188	53	222	11	151	149	120	156	124	92	128	99	97	237	26	195	60	96	2356
114	78	164	121	106	113	118	155	90	143	126	139	137	132	125	140	138	131	86	2356
77	112	79	165	81	87	154	147	145	157	141	159	160	95	82	168	129	85	133	2356
58	74	176	70	180	75	175	71	179	200	183	63	187	59	182	64	186	98	76	235
57	193	148	197	49	192	54	196	50	181	46	204	42	208	47	203	43	207	39	2356
20	36	214	32	218	37	213	33	217	238	221	25	225	21	220	102	224	22	38	2356
19	231	15	235	144	230	16	234	12	219	8	242	4	246	9	241	5	245	1	2356
			5	224	43	186	129	138	195	84	169	72	100	34	233				1612
			245	22	207	98	85	131	60	170	136	174	55	212	17				1612
			1	38	39	76	133	86	96	134	171	190	191	228	229				1612

$\begin{array}{llllllllllllllllllll}1612 & 1612 & 1612 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 2356 & 1612 & 1612 & 1612\end{array}$

2.7 Magic Cross of Order $(15,2 n+15)$

2.7.1 Magic Cross of $\operatorname{Order}(15,17)$

Example 39. A magic cross of order $(15,17)$ constructed based on a magic rectangle of order $(15,17)$ for the consecutive numbers 1 to 255. The bigger and smaller rows and columns are of sums 2176 and 1920 respectively. It is given by

	248	25	214	59	180	93	12	16	15	11	78	19	44	2	10		20
246	11	244	13	255	2	253	4	26	14	241	118	239	5	250	7	248	6
27	228	29	226	137	237	20	235	9	22	32	22	34	234	23	232	25	2176
212	45	210	47	22	36	21	38	60	48	207	50	205	107	216	41	214	2176
61	19	148	192	52	203	54	201	43	19	66	18	68	200	57	198	59	
178	79	176	81	187	70	185	72	94	82	173	84	171	73	182	109	180	
146	160	97	158	86	169	88	167	77	15	100	155	102	166	91	164	93	
103	133	131	10	111	13	11	130	14	14	117	14	120	127	15	152	12	
95	18	63	21	18	24	13	14	12	11	12	16	23	39	193	75	161	
135	104	105	129	13	11	13	11	11	12	14	12	14	15	125	123	153	
163	92	165	90	154	10	15	99	17	89	168	87	17	98	15	96	110	
76	147	74	18	85	172	83	17	16	18	7	18	69	17	80	177	78	2176
197	58	199	56	188	67	190	65	21	55	202	53	204	64	108	62	195	2176
42	215	40	149	51	206	49	208	196	218	37	220	35	209	46	211	44	21
231	24	233	22	222	33	224	31	247	21	236	19	119	30	227	28	229	2176
8	249	6	251	17	138	15	242	230	252	3	254	1	243	12	245	10	2176
	8	231	42	197	76	163	135	95	103	146	178	61	212	27	246		1920

2.7.2 Magic Cross of $\operatorname{Order}(15,19)$

Example 40. A magic cross of order $(15,19)$ constructed based on a magic rectangle of order $(15,19)$ for the consecutive numbers 1 to 285. The bigger and smaller rows and columns are of sums 2717 and 2145 respectively. It is given by

2.8 Magic Cross of Order $(17,2 n+17)$

2.8.1 Magic Cross of $\operatorname{Order}(17,19)$

Example 41. A magic cross of order $(17,19)$ constructed based on a magic rectangle of order $(17,19)$ for the consecutive numbers 1 to 323. The bigger and smaller rows and columns are of sums 3078 and 2754 respectively. It is given by

	305	304	267	266	229	228	171	172	134	124	209	114	77	76	39	38	1		
323	3	319	7	315	2	320	6	316	29	312	14	137	18	313	13	309	17	305	3078
286	302	24	298	28	189	23	299	27	10	31	291	35	287	30	292	34	288	304	
285	41	281	45	277	40	282	44	278	67	274	52	270	56	142	51	271	55	267	
248	264	62	184	66	265	61	261	65	48	69	253	73	249	68	254	72	250	266	
247	79	243	83	239	78	244	82	240	105	236	90	232	94	237	89	138	93	229	
210	188	100	222	104	227	99	223	103	86	107	215	111	211	106	216	110	212	228	
153	201	157	118	204	191	126	127	145	129	141	139	132	199	205	121	207	17	9	
200	155	148	146	161	154	149	147	160	143	196	131	168	173	180	165	122	208	172	
190	226	91	260	49	303	16	158	194	162	130	166	308	21	275	64	233	98	4	
152	116	202	159	144	151	156	193	128	181	164	177	175	170	163	178	176	169	124	
115	150	117	203	119	125	192	185	183	195	179	197	198	133	120	206	167	123	171	
96	112	214	108	218	113	21	109	217	238	221	101	225	97	220	102	224	136	4	
95	231	186	235	87	230	92	234	88	219	84	242	80	246	85	241	81	245	77	
58	74	252	70	256	75	251	71	255	276	259	63	263	59	258	140	262	60	76	
57	269	53	273	182	268	54	272	50	257	46	280	42	284	47	279	43	283	39	
20	36	290	32	294	37	289	33	293	314	297	25	301	135	296	26	300	22	38	3078
19	307	15	311	11	306	187	310	12	295	8	318	4	322	9	317	5	321	1	
	19	20	57	58	95	96	153	152	190	200	115	210	247	248	285	286	323		2754

$\begin{array}{lllllllllllllllllll}2754 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 3078 & 2754\end{array}$

2.9 Magic Crosses of Order (4n, 4m)

This subsection brings magic crosses of order $(4 n, 4 m)$. In this case, all the magic crosses are and are with inner squares as magic squares. See the examples below.

2.9.1 Magic Cross of Order $(4,8)$

Example 42. A magic cross of order $(4,8)$ constructed based on magic rectangle of order $(4,8)$ for the consecutive numbers from 1 to 32. The middle square is magic square of order 4 with magic sum 66 . The bigger and smaller rows and columns are of sums 132 and 66 respectively. It is given by

We observe that the inner magic square is not of consecutive numbers. We can construct with consecutive numbers. See the example below

Example 43. A magic cross of order $(4,8)$ with inner square a magic square of consecutive numbers is given by

		28	27	6	5			6666
		8	7	26	25			
28	8	9	10	23	24	1	29	132
27	7	21	22	11	12	2	30	132
6	26	20	15	18	13	31	3	132
5	25	16	19	14	17	32	4	132
		1	2	31	32			66
		29	30	3	4			66

The inner magic square of order 4 is with consecutive numbers from 9 to 24 .

2.9.2 Magic Cross of Order $(4,12)$

Example 44. A magic cross of order $(4,12)$ constructed based on magic rectangle of order $(4,12)$ for the consecutive numbers 1 to 48. The middle square is a magic square of order 4 with magic sum 98 . The bigger and smaller rows and columns are of sums 294 and 98 respectively. It is given by

				3	40	10	45					98
				22	33	15	28					9898
				39	4	46	9					
				34	21	27	16					98
1	24	37	36	2	23	38	35	3	22	39	34	
42	31	6	19	41	32	5	20	40	33	4	21	29
12	13	48	25	11	14	47	26	10	15	46	27	29
43	30	7	18	44	29	8	17	45	28	9	16	294
				1	42	12	43					98989898
				24	31	13	30					
				37	6	48	7					
				36	19	25	18					
98	98	98	98	294	294	294	294	98	98	98	98	

Above are three magic squares of order 4 of equal magic sums.

2.9.3 Magic Cross of Order $(8,12)$

Example 45. A magic cross of order $(8,12)$ constructed based on magic rectangle of order $(8,12)$ for the consecutive numbers from 1 to 96 . The bigger and smaller rows and columns are of sums 582 and 388 respectively. It is given by

		1	2	3	4	93	94	95	96		
		89	90	91	92	5	6	7	8		
1	89	88	87	86	85	12	11	10	9	56	48
2	90	16	15	14	13	84	83	82	81	55	47
3	91	17	18	19	20	77	78	79	80	54	46
4	92	73	74	75	76	21	22	23	24	53	45
93	5	72	71	70	69	28	27	26	25	44	52
94	6	32	31	30	29	68	67	66	65	43	51
95	7	33	34	35	36	61	62	63	64	42	50
96	8	57	58	59	60	37	38	39	40	41	49
		56	55	54	53	44	43	42	41		
		48	47	46	45	52	51	50	49		

$\begin{array}{llllllllllll}388 & 388 & 582 & 582 & 582 & 582 & 582 & 582 & 582 & 582 & 388 & 388\end{array}$
The inner square is not a magic square. For inner square as magic square, see the example below
Example 46. For inner square as magic square, the magic cross of order $(8,12)$ is given by

		88	87	86	85	12	11	10	9	388388		
		16	15	14	13	84	83	82	81			
1	89	17	18	19	20	77	78	79	80	88	16	582
2	90	73	74	75	76	21	22	23	24	87	15	
3	91	72	71	70	69	28	27	26	25	86	14	
4	92	32	31	30	29	68	67	66	65	85	13	
93	5	33	34	35	36	61	62	63	64	12	84	
94	6	57	58	59	60	37	38	39	40	11	83	
95	7	56	47	54	53	44	43	50	41	10	82	
96	8	48	55	46	45	52	51	42	49	9	81	
		1	2	3	4	93	94	95	96			
		89	90	91	92	5	6	7	8			388

$\begin{array}{llllllllllll}388 & 388 & 582 & 582 & 582 & 582 & 582 & 582 & 582 & 582 & 388 & 388\end{array}$

2.9.4 Magic Cross of $\operatorname{Order}(12,16)$

Example 47. A magic cross of order $(12,16)$ constructed based on magic rectangle of order $(12,16)$ for the consecutive numbers from 1 to 192. The bigger and smaller rows and columns are of sums 1544 and 1158 respectively. In this case, the inner square is a magic square of order 12 with magic sum 1158 of numbers from 25 to 168. It is given by

		1	2	3	4	5	6	187	188	189	190	191	192			11581158
		181	182	183	184	185	186	7	8	9	10	11	12			
1	181	25	26	27	28	29	30	163	164	165	166	167	168	180	24	1544
2	182	157	158	159	160	161	162	31	32	33	34	35	36	179	23	
3	183	156	155	154	153	152	151	42	41	40	39	38	37	178	22	
4	184	48	47	46	45	44	43	150	149	148	147	146	145	177	21	
5	185	49	50	51	52	53	54	139	140	141	142	143	144	176	20	
6	186	133	134	135	136	137	138	55	56	57	58	59	60	175	19	1544
187	7	132	131	130	129	128	127	66	65	64	63	62	61	18	174	
188	8	72	71	70	69	68	67	126	125	124	123	122	121	17	173	
189	9	73	74	75	76	77	78	115	116	117	118	119	120	16	172	
190	10	109	110	111	112	113	114	79	80	81	82	83	84	15	171	
191	11	108	95	106	105	104	103	90	89	88	87	98	85	14	170	1544
192	12	96	107	94	93	92	91	102	101	100	99	86	97	13	169	544
		180	179	178	177	176	175	18	17	16	15	14	13			
		24	23	22	21	20	19	174	173	172	171	170	169			1158

$\begin{array}{llllllllllllllll}1158 & 1158 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1544 & 1158 & 1158\end{array}$

2.10 Magic Crosses of Orders $2 \times(e v e n, o d d)$

2.10.1 Magic Cross of Order $(4,6)$

Example 48. A magic cross of order $(4,6)$ constructed based on magic rectangle of order $(4,6)$ for the consecutive numbers from 1 to 24 . The bigger and smaller rows and columns are of sums 75 and 50 respectively. It is given by

	1	19	18	12	24
1	2	3	22	23	
19	20	21	4	5	6
18	17	16	9	8	7
12	11	10	15	14	13
	24	6	7	13	

2.10.2 Magic Cross of Order $(4,10)$

Example 49. A magic cross of order $(4,10)$ constructed based on magic rectangle of order $(4,10)$ for the consecutive numbers from 1 to 40. The middle square is a magic square of order 4 with magic sum 82 . The bigger and smaller rows and columns are of sums 205 and 82 respectively. It is given by

2.10.3 Magic Cross of $\operatorname{Order}(6,8)$

Example 50. A magic cross of order $(6,8)$ constructed based on magic rectangle of order $(6,8)$ for the consecutive numbers from 1 to 48. The bigger rows and columns are of sum 196, and lower rows and columns are of same sum for two small rows. It is given by

	43	44	45	7	8	9	
1	43	42	12	13	31	30	24
2	44	41	11	14	32	29	23
3	45	40	10	15	33	28	22
46	4	9	39	34	16	21	27
47	5	8	38	35	17	20	26
48	6	7	37	36	18	19	25
	6	5	4	42	41	40	

$\begin{array}{llllllll}147 & 196 & 196 & 196 & 196 & 196 & 196 & 147\end{array}$
This is the only example, where we don't have regular magic cross, because two of rows/columns don't have same sums as of other rows/columns. Let's call it semi-magic cross.

2.10.4 Magic Cross of Order $(6,12)$

Example 51. A magic cross of order $(6,12)$ constructed based on magic rectangle of order $(6,12)$ for the consecutive numbers from 1 to 72 . The bigger and smaller rows and columns are of sums 438 and 219 respectively. It is given by

$\begin{array}{llllllllllll}219 & 219 & 219 & 438 & 438 & 438 & 438 & 438 & 438 & 219 & 219 & 219\end{array}$

2.11 Magic Crosses of Order $(4 n+2,4 m+2)$

The magic crosses given in this subsection are are all regular and the inner square is magic square of order 6.

2.11.1 Magic Cross of Order $(6,10)$

Example 52. A magic cross of order $(6,10)$ constructed based on magic rectangle of order $(6,10)$ for the consecutive numbers from 1 to 60. The bigger and smaller rows and columns are of sums 305 and 183 respectively. The inner square is a magic square of order 6 with magic sum 183 for the consecutive numbers from 13 to 48 is given by

$\begin{array}{llllllllll}183 & 183 & 305 & 305 & 305 & 305 & 305 & 305 & 183 & 183\end{array}$

2.11.2 Magic Cross of $\operatorname{Order}(6,14)$

Example 53. A magic cross of order $(6,14)$ constructed based on magic rectangle of order $(6,14)$ for the consecutive numbers from 1 to 84. The bigger and smaller rows and columns are of sums 595 and 255 respectively. The inner square is a magic square of order 6 with magic sum 255 for the consecutive numbers from 25 to 60 is given by

2.11.3 Magic Cross of $\operatorname{Order}(10,14)$

Example 54. A magic cross of order $(10,14)$ constructed based on magic rectangle of order $(10,14)$ for the consecutive numbers from 1 to 140. The bigger and smaller rows and columns are of sums 987 and 705
respectively. The inner square is a magic square of order 10 with magic sum 7055 for the consecutive numbers from 21 to 120 is given by

3 Magic Crosses: Non Repeated Entries

In the above work, we have seen that there is a repetition of small rows and columns. There are possibilities of constructing magic crosses of different digits except the common part. Below are some examples of magic crosses of different digits, where each part is a magic square of respective order.

3.1 Magic Crosses of Order $(4,12)$

Example 55. The magic cross of different values except inner square of order $(4,12)$ for the numbers from 1 to 80 is given by

Each block of order 4 is a magic square with magic sum 162.

3.2 Magic Crosses of Order $(5,15)$

Based on similar lines we can construct magic cross of order $(5,15)$, where each value is different except the inner squares.

Example 56. The magic cross of different values except inner square of order $(5,15)$ for the numbers from 1 to 125 is given by

Each block of order 5 is a magic square with magic sum 315.

3.3 Magic Crosses of $\operatorname{Order}(\mathbf{6}, 18)$

Based on similar lines we can construct magic cross of order $(6,18)$, where each value is different except the inner squares.

Example 57. The magic cross of different values except inner square of order $(6,18)$ for the numbers from 1 to 180 is given by

Each block of order 6 is a magic square with magic sum 543.

3.4 Magic Crosses of Order $(8,24)$

Based on similar lines we can construct magic cross of order $(8,24)$, where each value is different except the inner squares.

Example 58. The magic cross of different values except inner square of order $(8,24)$ for the numbers from 1 to 320 is given by

Each block of order 8 is a magic square with magic sum 1284.

3.5 Magic Crosses of Order $(10,30)$

Based on similar lines we can construct magic cross of order $(10,30)$, where each value is different except the inner squares.

Example 59. The magic cross of different values except inner square of order $(10,30)$ for the numbers from 1 to 500 is given by

										24	391	316	477	188	102	235	449	260	63											$\begin{aligned} & 2505 \\ & 2505 \end{aligned}$
										485	52	38	349	441	363	266	160	224	127											
										227	424	110	388	99	166	463	291	302	35											2505
										341	277	435	163	2	474	138	66	399	210											2505
										413	488	252	74	216	335	360	27	141	199											2505
										60	185	213	41	377	299	402	124	466	338											2505
										366	249	191	410	135	88	327	452	13	274											2505
										288	113	499	202	324	10	91	385	177	416											2505
										149	16	77	285	460	241	174	313	438	352											2505
										152	310	374	116	263	427	49	238	85	491											2505
1	398	323	484	195	109	237	426	262	70	17	389	314	500	181	125	228	442	253	56	8	380	305	486	197	111	244	433	269	72	7515
487	59	45	326	448	370	273	162	201	134	478	75	31	342	439	356	264	153	217	150	494	61	47	333	430	372	255	169	208	136	7515
234	401	112	395	76	173	470	298	309	37	250	417	103	381	92	164	456	289	325	28	236	408	119	397	83	155	472	280	311	44	7515
348	284	437	170	9	451	145	73	376	212	339	300	428	156	25	467	131	64	392	203	330	286	444	172	11	458	147	55	383	219	7515
420	495	259	51	223	337	362	34	148	176	406	481	275	67	214	328	353	50	139	192	422	497	261	58	205	344	369	36	130	183	7515
62	187	220	48	384	276	409	101	473	345	53	178	206	39	400	292	425	117	464	331	69	194	222	30	386	283	411	108	455	347	7515
373	226	198	412	137	95	334	459	20	251	364	242	189	403	128	81	350	475	6	267	355	233	180	419	144	97	336	461	22	258	7515
295	120	476	209	301	12	98	387	184	423	281	106	492	225	317	3	89	378	200	414	297	122	483	211	308	19	80	394	186	405	7515
126	23	84	287	462	248	151	320	445	359	142	14	100	278	453	239	167	306	431	375	133	5	86	294	469	230	158	322	447	361	7515
159	312	351	123	270	434	26	245	87	498	175	303	367	114	256	450	42	231	78	489	161	319	358	105	272	436	33	247	94	480	7515
										15	382	307	493	179	118	246	440	271	54											2505
										496	68	29	340	432	354	257	171	215	143											2505
										243	415	121	379	90	157	454	282	318	46											2505
										332	293	446	154	18	465	129	57	390	221											2505
										404	479	268	65	207	346	371	43	132	190											2505
										71	196	204	32	393	290	418	115	457	329											2505
										357	240	182	421	146	79	343	468	4	265											2505
										279	104	490	218	315	21	82	396	193	407											2505
										140	7	93	296	471	232	165	304	429	368											2505
										168	321	365	107	254	443	40	229	96	482											2505
2505	505	505	2505	2505	2505	2505	2505	2505	2505	7515	7515	515	7515	7515	7515	7515	7515	7515	7515	2505	2505	2505	2505	2505	2505					

Each block of order 10 is a magic square with magic sum 2505.

4 Final Comments

This paper extends the idea of magic rectangles to magic crosses. The work for the orders (odd, odd) and orders (even, even). In the smaller rows and columns there is a repetition of numbers. What we observed that, we have all the possible results, except the case, of order (6,8). In this case, we have magic rectangle, but we have difficulties in making magic cross. In this case we don't have two of small rows are of different sums. This type we called as semi-magic rectanagle. For non repeated entries we worked with orders $(4,12),(5,15),(6,18),(8,24)$ and $(10,30)$. In this case the, the magic squares are of equal magic sums. For the non repeated entires, we used blocks of equal sums magic squares. Still, it is an open problem to check the magic crosses with non repeated entries for other situations.

During past years the author worked with magic squares in different situations. These are given in details below:

- Author's Contributions to Magic Squares

The item-wise author's work on magic squares is as follows:
(i) Digital numbers magic squares - 50678 10 10;
(ii) Block-wise construction of bimagic squares - [11];
(iii) Connections with genetic tables and Shannon's entropy - [12];
(iv) Selfie and palindromic-type magic squares - [13];
(v) Intervally distributed and block-wise magic squares - [14, 15) 16];
(vi) Multi-digits magic squares - [17];
(vii) Perfect square sum magic squares with uniformity and minimum Sum - [18, 19];
(viii) Pythagorean triples to generate perfect square sum magic squares - [19];
(ix) Block-wise equal sums pan magic squares of order $4 k-[20]$;
(x) Block-wise equal sums magic squares of order $3 k-[21] ;$
(xi) Block-wise unequal sums magic squares of order $3 k-$ [24];
(xii) Magic rectangles in Construction of block-wise pan magic squares - [22].

Acknowledgement

The author wishes to thanks Mitsutoshi Nakamura (email: tustim@post.nifty.jp) for helping in construction of magic rectangles.

References

[1] Aale de Winkel, Online discussion, The Magic Encyclopedia, http://magichypercubes.com/Encyclopedia/.
[2] B. Datta and A. N. Shing, Magic Squares in India, Indian Journal of History of Science, 27(1), 1992, 51-120.
[3] M. Nakamura, Magic Cubes and Tesseracts, http://magcube.la.coocan.jp/magcube/en/rectangles.htm
[4] M. Trenkler The Mathematical Gazette, Vol. 83, No. 496 (Mar., 1999), pp. 102-105
[5] I.J. TANEJA, Digital Era: Magic Squares and 8th May 2010 (08.05.2010), May, 2010, pp. 1-4, https://arxiv.org/abs/1005.1384 - http://bit.ly/2Q1jRgR.
[6] I.J. TANEJA, Universal Bimagic Squares and the day 10th October 2010 (10.10.10), Oct, 2010, pp. 1-5, https://arxiv.org/abs/1010.2083 - textithttp://bit.ly/2DnPZK3.
[7] I.J. TANEJA, DIGITAL ERA: Universal Bimagic Squares, Oct, 2010, pp. 1-8, https://arxiv.org/abs/1010.2541; http://bit.ly/2OGRiF0.
[8] I.J. TANEJA, Upside Down Numerical Equation, Bimagic Squares, and the day September 11, Oct. 2010, pp. 1-7, https://arxiv.org/abs/1010.4186; http://bit.ly/2O2V.
[9] I.J. TANEJA, Equivalent Versions of "Khajuraho" and "Lo-Shu" Magic Squares and the day 1st October 2010 (01.10.2010), Nov. 2010, pp. 1-7, https://arxiv.org/abs/1011.0451; http://bit.ly/2O6x9Ls.
[10] I.J. TANEJA, Upside Down Magic, Bimagic, Palindromic Squares and Pythagoras Theorem on a Palindromic Day - 11.02.2011, Feb. 2011, pp.1-9, https://arxiv.org/abs/1102.2394; http://bit.ly/2PXVtws
[11] I.J. TANEJA, Bimagic Squares of Bimagic Squares and an Open Problem, Feb. 2011, pp. 1-14, https://arxiv.org/abs/1102.3052;http://bit.ly/2xz0gxv.
[12] I.J. TANEJA, Representations of Genetic Tables, Bimagic Squares, Hamming Distances and Shannon Entropy, Jun. 2012, pp. 1-19, https://arxiv.org/abs/1206.2220; http://bit.ly/2zpgxXk.
[13] I.J. TANEJA, Selfie Palindromic Magic Squares, RGMIA Research Report Collection, 18(2015), Art. 98, pp. 1-15. http://rgmia.org/papers/v18/v18a98.pdf; http://bit.ly/2QMCAOo.
[14] I.J. TANEJA, Intervally Distributed, Palindromic, Selfie Magic Squares, and Double Colored Patterns, RGMIA Research Report Collection, 18(2015), Art. 127, pp. 1-45. http://rgmia.org/papers/v18/v18a127.pdf; http://bit.ly/2MVmNhV.
[15] I.J. TANEJA, Intervally Distributed, Palindromic and Selfie Magic Squares: Genetic Table and Colored Pattern - Orders 11 to 20, RGMIA Research Report Collection, 18(2015), Art. 140, pp. 1-43. http:/|rgmia.org/papers/v18/v18a140.pdf -http://bit.ly/2OCadRn.
[16] I.J. TANEJA, Intervally Distributed, Palindromic and Selfie Magic Squares - Orders 21 to 25, 18(2015), Art. 151, pp. 1-33. http://rgmia.org/papers/v18/v18a151.pdf; http://bit.ly/2NnYyZM.
[17] I.J. TANEJA, Multi-Digits Magic Squares, RGMIA Research Report Collection, 18(2015), Art. 159, pp. 1-22. http://rgmia.org/papers/v18/v18a159.pdf, http://bit.ly/2O31yKy.
[18] I.J. TANEJA, Magic Squares with Perfect Square Number Sums, Research Report Collection, 20(2017), Article 11, pp. 1-24, http://rgmia.org/papers/v20/v20a11.pdf; http://bit.ly/2vJTjJi.
[19] I.J. TANEJA, Pythagorean Triples and Perfect Square Sum Magic Squares, RGMIA Research Report Collection, 20(2017), Art. 128, pp. 1-22, http://rgmia.org/papers/v20/v20a128.pdf - http://bit.ly/2BeRitx.
[20] I.J. TANEJA, Block-Wise Equal Sums Pandiagonal Magic Squares of Order 4k. Zenodo. http://doi.org/10.5281/zenodo. 2554288 - http://bit.ly/2RrKtaY.
[21] I.J. TANEJA, Block-Wise Equal Sums Magic Squares of Order 3k, RGMIA Research Report Collection, 20(2017), Art. 154, pp. 1-53, http://rgmia.org/papers/v20/v20a154.pdf; http://bit.ly/2Nn2U3l.
[22] I.J. TANEJA, Magic Rectangles in Construction of Block-Wise Pandiagonal Magic Squares. Zenodo, http://doi.org/10.5281/zenodo.2554520; http://bit.ly/2GfSDB9.
[23] I.J. TANEJA, Magic Crosses: Repeated and Non Repeated Entries, RGMIA Research Report Collection, 20(2017), Art. 162, pp. 1-36, http://rgmia.org/papers/v20/v20a162.pdf; http://bit.ly/2MHbmFA.
[24] I.J. TANEJA, Block-Wise Unequal Sums Magic Squares, RGMIA Research Report Collection, 20(2017), Art. 155, pp. 1-44, http://rgmia.org/papers/v20/v20a155.pdf; http://bit.ly/2QDDWus.

[^0]: ${ }^{1}$ Formerly, Professor of Mathematics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil (1978-2012). Also worked at Delhi University, India (1976-1978).
 E-mail: ijtaneja@gmail.com;
 Web-sites: http://inderjtaneja.com;
 Twitter: @IJTANEJA;
 Instagram: @crazynumbers.

