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AI, ML, systems and quantum research is booming - 1000+ papers every year …

Applications
• Meteorology  
• Health 
• Robotics
• Automotive
• Economics 
• Physics 
• Astronomy 
• Education 

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices



Many great tools, data sets and models to help researchers …

Applications
• Meteorology  
• Health 
• Robotics
• Automotive
• Economics 
• Physics
• Astronomy 
• Education

Programs
• Image classification
• Object detection
• Natural Language 

processing
• Text processing
• Video processing
• Personal assistant 

OS
• Linux
• MacOS
• BSD
• Windows
• Android

AI/ML 
frameworks

• TensorFlow
• PyTorch
• MXNet
• Caffe
• MCT (CNTK)
• Keras
• Kubeflow
• AutoML
• SageMaker
• Apache Spark

Libraries
• SciPy
• TFLite
• OpenBLAS
• MAGMA
• cuDNN
• cuFFT
• ArmNN
• CLBlast
• gemmlowp
• Boost
• HDF5
• MPI
• OpenCV
• Protobuf

Languages
• C++
• C#
• C
• Go
• PHP
• Fortran
• Java
• Python

Shells
• bash
• sh
• csh
• ksh
• Windows 

shell

Scientific 
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot
• LaTeX
• Ipython

Build
tools

• Make
• Cmake
• SCons
• Bazel
• Gradle
• Ninja

Package 
managers

• Anaconda
• Go
• Npm
• Pip
• Sbt
• dpkg
• Spack
• EasyBuild

Workload 
managers
• MPI
• SLURM
• PBS
• FLUX

Databases / 
experiments
• MySQL
• PostgreSQL
• MongoDB
• CouchDB
• Text files
• JSON files
• XLS files

Compilers
• LLVM
• GCC
• Intel
• PGI
• TVM
• CUDA

Hardware
• CPU
• GPU
• TPU / NN
• DSP
• FPGA
• Quantum
• Simulators
• Interconnects

Benchmarks
• SPEC
• EEMBC
• HPCG
• LINPACK
• cBench
• MLPerf

Datasets
• ImageNet
• KITTI
• COCO
• MiDataSets
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet
• AlexNet
• VGG
• ResNet
• MobileNets
• SSD
• SqueezeNet
• DeepSpeech

DevOps 
tools

• Git
• Jenkins
• Docker 
• Kubernetes
• Singularity

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Knowledge 
sharing

• ArXiv
• ACM DL
• IEEE DL
• GitHub
• Zenodo
• FigShare
• Web pages

Web services
• GitHub
• GitLab
• BitBucket
• Travis
• JupyterHub
• Codelabs
• SageMaker
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cTuning.org/ae: what I noticed during artifact evaluation at PPoPP, PACT, SC 

How the community run, share, reproduce and reuse experiments

• Download an archive or some container with artifacts from an accepted paper (manually)

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
What if different shell or even OS? 

• Download source code (typically with recursion from GitHub, GitLab, BitBucket) 
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …) 
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ? 

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!



Let’s hide the mess …
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• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!
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How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)
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How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper
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PI-API: validate results from a program using pre-recorded ones, auto-generate paper
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$ ck ls repo or     ck search repo

my-paper     local     default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py 

$HOME / CK / my-paper / module / hello / .cm / meta.json

$ ck say hello --fosdem --is=cool @input.json

{ “action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool” …}

$ python        (or Jupyter notebooks)

import ck.kernel as ck

r=ck.access({“action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool”})

print (r)

{‘return’:0}

$ ck add my-paper:hello:world –tags=fosdem,20190203

Local directory: $HOME / CK / my-paper / hello / world / .cm / meta.json

$HOME / CK / my-paper / hello / world /    <- holder for files and dirs

$ ck search hello –tags=fosdem --all

$ ck load hello:world --min

{ “tags”:[“fosdem”,”20190203”] }

$ ck say hello:world -f

{ “action”:”say”, “module_uoa”:”hello”, “data_uoa”:”world”, “f”:”yes” …}

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

{  “tags”:[“fosdem”,”20190203”]  }



Collective knowledge: collaboratively abstract, describe and reuse everything!

Applications
• Meteorology  
• Health 
• Robotics █
• Automotive █
• Economics 
• Physics █
• Astronomy 
• Education █

Programs
• Image classification █
• Object detection █
• Natural Language 

processing █
• Text processing █
• Video processing █
• Personal assistant 

OS
• Linux █
• MacOS █

• BSD
• Windows █
• Android █

AI/ML 
frameworks

• TensorFlow █

• PyTorch █

• MXNet █

• Caffe █

• MCT (CNTK) █
• Keras █

• Kubeflow
• AutoML
• SageMaker █

• Apache Spark

Libraries
• SciPy █

• TFLite █

• OpenBLAS █

• MAGMA
• cuDNN █

• cuFFT
• ArmNN █

• CLBlast █

• gemmlowp
• Boost █
• HDF5 █
• MPI █
• OpenCV █

• Protobuf █

Languages
• C++  █
• C#
• C  █
• Go
• PHP  █
• Fortran █
• Java █
• Python █

Shells
• bash  █
• sh █

• csh
• ksh
• Windows 

shell  █

Scientific 
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot █

• LaTeX █

• Ipython █

Build
tools

• Make █
• Cmake █

• SCons █

• Bazel █

• Gradle
• Ninja

Package 
managers

• Anaconda █
• Go
• Npm
• Pip █
• Sbt
• dpkg █

• Spack █

• EasyBuild █

Workload 
managers
• MPI █
• SLURM █
• PBS
• FLUX █

Databases / 
experiments
• MySQL █
• PostgreSQL
• MongoDB
• CouchDB
• Text files █
• JSON files █
• XLS files █

Compilers
• LLVM █
• GCC █
• Intel █
• PGI  █
• TVM █
• CUDA █

Hardware
• CPU █
• GPU █
• TPU / NN
• DSP
• FPGA █
• Quantum █
• Simulators █
• Interconnects

Benchmarks
• SPEC █
• EEMBC █
• HPCG
• LINPACK
• cBench █

• MLPerf █

Datasets
• ImageNet █
• KITTI █
• COCO █
• MiDataSets █

• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet █

• AlexNet █

• VGG █
• ResNet █

• MobileNets █

• SSD █
• SqueezeNet █

• DeepSpeech

DevOps 
tools

• Git █

• Jenkins
• Docker  █
• Kubernetes
• Singularity

Platforms
• HPC █
• Desktops █
• IoT █

• Mobile █
• Cloud sevices █

Knowledge 
sharing

• ArXiv █

• ACM DL █
• IEEE DL
• GitHub █
• Zenodo █

• FigShare
• Web pages █

Web services
• GitHub █
• GitLab █

• BitBucket █

• Travis █
• JupyterHub █

• Codelabs
• SageMaker █

Collective Knowledge
• Simple Python APIs with JSON (dictionary) I/O
• Simple JSON meta-description of all components
• Simple access from command line, 

different languages and web
• Simple sharing of all components 

via GitHub, Zenodo, etc …



Implement workflows (pipelines) adaptable to any SW/HW! Focus on innovation!

Applications
• Meteorology  
• Health 
• Robotics █
• Automotive █
• Economics 
• Physics █
• Astronomy 
• Education █

Programs
• Image classification █
• Object detection █
• Natural Language 

processing █
• Text processing █
• Video processing █
• Personal assistant 

OS
• Linux █
• MacOS █

• BSD
• Windows █
• Android █

AI/ML 
frameworks

• TensorFlow █

• PyTorch █

• MXNet █

• Caffe █

• MCT (CNTK) █
• Keras █

• Kubeflow
• AutoML
• SageMaker █

• Apache Spark

Libraries
• SciPy █

• TFLite █

• OpenBLAS █

• MAGMA
• cuDNN █

• cuFFT
• ArmNN █

• CLBlast █

• gemmlowp
• Boost █
• HDF5 █
• MPI █
• OpenCV █

• Protobuf █

Languages
• C++  █
• C#
• C  █
• Go
• PHP  █
• Fortran █
• Java █
• Python █

Shells
• bash  █
• sh █

• csh
• ksh
• Windows 

shell  █

Scientific 
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot █

• LaTeX █

• Ipython █

Build
tools

• Make █
• Cmake █

• SCons █

• Bazel █

• Gradle
• Ninja

Package 
managers

• Anaconda █
• Go
• Npm
• Pip █
• Sbt
• dpkg █

• Spack █

• EasyBuild █

Workload 
managers
• MPI █
• SLURM █
• PBS
• FLUX █

Databases / 
experiments
• MySQL █
• PostgreSQL
• MongoDB
• CouchDB
• Text files █
• JSON files █
• XLS files █

Compilers
• LLVM █
• GCC █
• Intel █
• PGI  █
• TVM █
• CUDA █

Hardware
• CPU █
• GPU █
• TPU / NN
• DSP
• FPGA █
• Quantum █
• Simulators █
• Interconnects

Benchmarks
• SPEC █
• EEMBC █
• HPCG
• LINPACK
• cBench █

• MLPerf █

Datasets
• ImageNet █
• KITTI █
• COCO █
• MiDataSets █

• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet █

• AlexNet █

• VGG █
• ResNet █

• MobileNets █

• SSD █
• SqueezeNet █

• DeepSpeech

DevOps 
tools

• Git █

• Jenkins
• Docker  █
• Kubernetes
• Singularity

Platforms
• HPC █
• Desktops █
• IoT █

• Mobile █
• Cloud sevices █

Knowledge 
sharing

• ArXiv █

• ACM DL █
• IEEE DL
• GitHub █
• Zenodo █

• FigShare
• Web pages █

Web services
• GitHub █
• GitLab █

• BitBucket █

• Travis █
• JupyterHub █

• Codelabs
• SageMaker █

Assemble portable, customizable 
and reusable workflows

Models

CK JSON API

Programs

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

For example, co-design of AI/ML/quantum
software and hardware



Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html


Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env


Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env


Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

3) Detecting installed “software” (both code and data):

$ ck search soft --tags=dataset cKnowledge.org/shared-soft-detection-plugins.html

$ ck detect soft:compiler.llvm

$ ck show env --tags=llvm

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env
http://cknowledge.org/shared-soft-detection-plugins.html


Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

3) Detecting installed “software” (both code and data):

$ ck search soft --tags=dataset cKnowledge.org/shared-soft-detection-plugins.html

$ ck detect soft:compiler.llvm

$ ck show env --tags=llvm

4) Installing missing packages (both code and data): front-end to EasyBuild, Spack, scons, cmake

$ ck search package --tags=model cKnowledge.org/shared-packages.html

$ ck install compiler:compiler-llvm-7.0.0-universal

$ ck show env --tags=llvm

$ ck virtual env –tags=llvm,v7.0.0

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env
http://cknowledge.org/shared-soft-detection-plugins.html
http://cknowledge.org/shared-soft-detection-plugins.html


Enabling customizable and portable workflows by connecting CK components

Available libraries / skeletons

Compilers

Binary or byte code 

Hardware,
simulators

Run-time environment

Run-time state 
of the system

Inputs Various models

Algorithm / source code

AI framework

Common JSON API Universal program workflow to compile, run and profile 
diverse benchmarks with different data sets, 

validate results, record experiments, share and 
reproduce them, and report discrepancies

http://cKnowledge.org/shared-programs.html

$ ck pull repo:ck-crowdtuning

$ ck ls program

$ ck ls dataset

$ ck load program:cbench-automotive-susan  --

min

$ ck compile program:cbench-automotive-

susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-

susan

$ ck crowdtune program:cbench-automotive-

susan

$ ck replay experiment

JSON 
meta

Having APIs and JSON meta enables DevOps and easy integration with Jenkins, Travis, etc.
CK complements containers and can be easily used in Jupyter notebooks!

http://cknowledge.org/shared-programs.html


Implementing autotuning pipeline of the whole AI/ML/SW/HW stack!

We can even automatically generate reproducible and interactive articles 
(collaboration with Raspberry Pi foundation): cKnowledge.org/rpi-crowd-tuning

CK Python modules (wrappers) with a unified JSON API

C
K

 in
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u
t 

(J
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N
/d

ic
t)

C
K

 o
u

tp
u

t 
(J

SO
N

/d
ic

t)Unified input

Behavior

Choices

Features

State

Action

Unified output

Behavior

Choices

Features

State

b       = B( c      , f       , s       )  
… … … …

Formalized function B
of a behavior of any CK object

Flattened CK JSON vectors
(dict converted to vector)

to simplify statistical analysis, 
machine learning 
and data mining

Some 

actions

Tools (compilers, profilers, etc) Generated files

Chain CK modules to implement research workflows such as multi-objective autotuning and co-design

Choose 
exploration 

strategy

Perform SW/HW DSE 
(math transforms, 
skeleton params, 

compiler flags, 
transformations …)

Perform 
stat. 

analysis

Detect 
(Pareto)
frontier

Model 
behavior, 

predict 
optimizations

Reduce 
complexity

Set  
environment 

for a given 
tool version

CK program module 
with pipeline function

Compile  
program

Run 
code

i

i

i i

Collaboratively expose choices, features, system state and behavior characteristics

http://cknowledge.org/rpi-crowd-tuning


Crowdsource experiments with the help of volunteers
across diverse models, data sets and platforms

Repositories of customizable, portable and 
reusable research components with CK API

cKnowledge.org/shared-repos.html

AI frameworks

TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeDet

SSD

MobileNets

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects
from the 

community

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

ArmCL

CK JSON APICK JSON API
CK JSON API

CK JSON API
OS

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

…

… …

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU

NN accelerators

…
FPGA

Customizable CK workflows 
for real-world user tasks 

Assemble scenarios such as image classification as LEGO™

Simulators

Models

CK JSON API

Software

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

Present best results, workflows and components 
on a live scoreboard for fair comparison and reuse

cKnowledge.org/repo

Real-world use cases with our partners: cKnowledge.org/partners

Share complete workflows along with published papers 
to automate artifact evaluation 

and help the community build upon prior work

Help students learn multidisciplinary techniques, 
quickly prototype new ones,

validate them in practice with companies, 
and even contribute back new research components

Help companies select the most appropriate workflows, 
save R&D costs, accelerate adoption of new techniques!



Open science: organizing reproducible tournaments and sharing research components

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks 
across diverse models, data sets and platforms 

via open competitions,
share them as reusable CK components 

and visualize on a public scoreboard

Collective Knowledge Platform

Interdisciplinary
community

Organizers (A-Z)

Luis Ceze, University of Washington
Natalie Enright Jerger, University of Toronto
Babak Falsafi, EPFL
Grigori Fursin, dividiti/cTuning foundation
Anton Lokhmotov, dividiti
Thierry Moreau, University of Washington
Adrian Sampson, Cornell University
Phillip Stanley Marbell, University of Cambridge

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors 
(Google, NVIDIA, ARM, 
Intel, IBM, Qualcomm, 
Apple, AMD …)

AI models
Many groups in 
academia & industry
(Google, OpenAI, 
Microsoft, Facebook …)

AI software
• AI frameworks 
(TensorFlow, MXNet, 
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL, 
OpenBLAS) 

AI integration/services
• Cloud services 
(AWS, Google, Azure ...)

Real 
use-cases

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

* Workshop organizers

http://cknowledge.org/request


We organized the 1st reproducible tournament at ACM ASPLOS’18

AlexNet, VGG16

Nvidia Jetson TX2; 
Raspberry Pi 

with ARM 

TensorFlow; Keras; 
Avro

ResNet-50; 
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler 
17.0.5 20170817

Intel Caffe ; 
BVLC Caffe

AWS; Xeon® 
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet; 
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-18

MXNet; 
NNVM/TVM

Xilinx FGPA 
(Pynq board)

ResNet-*

ArmCL 18.01 vs
18.02 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Public validation at github.com/ctuning/ck-request-asplos18-results via GitHub issues.

All validated papers are published in the ACM DL 
with portable, customizable and reusable CK components and workflows:

dl.acm.org/citation.cfm?doid=3229762

See ACM ReQuEST report: portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://dl.acm.org/citation.cfm?doid=3229762
https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf


All results and research components are available via a live CK scoreboard

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically 

generated with a calibration process from FP32 model without the 

need of fine-tuning or retraining. We show that the inference 

throughput and latency with ResNet-50, Inception-v3 and SSD are 

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible 

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and 

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard 
and become available for public comparison and further customization, 

optimization and reuse!

We are not announcing a single winner! We show all multi-dimensional results at 
cKnowledge.org/dashboard/request.asplos18

and let users select best ML/SW/HW stacks depending on multiple constraints!

https://github.com/ctuning/ck-request-asplos18-caffe-intel
http://cknowledge.org/dashboard/request.asplos18


Other companies managed to reproduce results and started using CK

Accelerate technology transfer: companies can now quickly validate published 
techniques in their production environment using shared CK workflows!

See Amazon presentation at O’Reilly AI conference:

conferences.oreilly.com/artificial-intelligence/ai-eu/public/schedule/detail/71549

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard 
and become available for public comparison and further customization, 

optimization and reuse!

CK can also automatically generate 

a Docker image for this stack

CK assists 

AWS market place 

with collaboratively 

optimized AI/ML stacks

Collective Knowledge is now a community effort 

to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient 

software/hardware stacks for emerging AI/ML workloads

https://conferences.oreilly.com/artificial-intelligence/ai-eu/public/schedule/detail/71549


CK helps General Motors to select the most efficient SW/HW stacks

Performance, accuracy, power consumption practically never match official reports!

CK allows to select the most efficient SW/HW stacks on a Pareto frontier 
(performance, accuracy, energy, memory usage, costs) for object detection, 

image classification and other tasks: www.youtube.com/watch?v=1ldgVZ64hEI

http://www.youtube.com/watch?v=1ldgVZ64hEI


CK helps to automate Student Cluster competitions

github.com/ctuning/ck-scc18/wiki - proof-of-concept  CK workflow 
to automate installation, execution and customization of SeisSol application 

from the SC18 SCC Reproducibility Challenge 
across different platforms, environments and datasets

© www.seissol.org

• Support automatic detection of already installed tools and data sets
• Can install missing dependencies via EasyBuild and Spack
• Can deploy application on different supercomputers with different job managers
• Can automatically validate the correctness of results (output, performance)

https://github.com/ctuning/ck-scc18/wiki


Being part of the SC Conference enhances 
your career – whether you are presenting 
new research, showcasing innovative work 
or practices, helping teach the next 
generation, or competing for peak 
performance. The SC selection process is 
highly competitive and being selected is 
extremely rewarding. 

Submit your work to SC19!

sc19.supercomputing.org/submit/

Technical Program

Papers
March 1, 2019 – Submissions open
April 10, 2019 – Full paper deadline

Tutorials
February 15, 2019 – Submissions open
April 16, 2019 – Submissions close

Panels
February 15, 2019 – Submissions open
April 23, 2019 – Submissions close

Workshops
January 1, 2019 – Submissions open
February 14, 2019 – Submissions close

Posters
February 15, 2019 – Submissions open
July 31, 2019 – Submissions close

More Opportunities
Awards
Birds of a Feather
Early Career
Exhibitor Forum

Call for Participation

Program: November 17–22, 2019
Exhibits: November 18–21, 2019

Colorado Convention Center, Denver, 
CO

The International Conference
for High Performance
Computing, Networking,
Storage, and Analysis



CK is used to collaboratively advance quantum computing

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK) 

to support reproducible hackathons, and help researchers share, compare 
and optimize different algorithms across conventional and quantum platforms

cKnowledge.org/dashboard/hackathon.20190127

Results from the Quantum Machine 
Learning Hackathon in Paris

http://cknowledge.org/quantum
http://cknowledge.org/dashboard/hackathon.20190127


CK is used to collaboratively advance quantum computing

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK) 

to support reproducible hackathons, and help researchers share, compare 
and optimize different algorithms across conventional and quantum platforms

cKnowledge.org/dashboard/hackathon.20190127

Results from the Quantum Machine 
Learning Hackathon in Paris

The most efficient design

http://cknowledge.org/quantum
http://cknowledge.org/dashboard/hackathon.20190127


cKnowledge.org: future plans to enable open science

From prototype to production quality (beginning of a long journey)
• Collaboratively standardize APIs and meta descriptions
• Improve installation and documentation
• Add more CK components and workflows for real-world tasks

Open to collaboration
• Joint R&D projects and tournaments (AI, ML, quantum)
• Automation and sharing of experiments
• Reproducible articles with reusable workflows

Websites:
• github.com/ctuning/ck
• cKnowledge.org/shared-repos.html

Contact
Grigori.Fursin@cTuning.org or grigori@dividiti.com

https://github.com/ctuning/ck
http://cknowledge.org/shared-repos.html
mailto:Grigori.Fursin@cTuning.org
mailto:grigori@dividiti.com

