
Collective Knowledge framework to automate,
crowdsource, reproduce and share HPC experiments

Grigori Fursin (@grigori_fursin)

Founder and CEO, non-profit cTuning foundation, France
Co-founder and CTO, dividiti, UK

AI, ML, systems and quantum research is booming - 1000+ papers every year …

Applications
• Meteorology
• Health
• Robotics
• Automotive
• Economics
• Physics
• Astronomy
• Education

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Many great tools, data sets and models to help researchers …

Applications
• Meteorology
• Health
• Robotics
• Automotive
• Economics
• Physics
• Astronomy
• Education

Programs
• Image classification
• Object detection
• Natural Language

processing
• Text processing
• Video processing
• Personal assistant

OS
• Linux
• MacOS
• BSD
• Windows
• Android

AI/ML
frameworks

• TensorFlow
• PyTorch
• MXNet
• Caffe
• MCT (CNTK)
• Keras
• Kubeflow
• AutoML
• SageMaker
• Apache Spark

Libraries
• SciPy
• TFLite
• OpenBLAS
• MAGMA
• cuDNN
• cuFFT
• ArmNN
• CLBlast
• gemmlowp
• Boost
• HDF5
• MPI
• OpenCV
• Protobuf

Languages
• C++
• C#
• C
• Go
• PHP
• Fortran
• Java
• Python

Shells
• bash
• sh
• csh
• ksh
• Windows

shell

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot
• LaTeX
• Ipython

Build
tools

• Make
• Cmake
• SCons
• Bazel
• Gradle
• Ninja

Package
managers

• Anaconda
• Go
• Npm
• Pip
• Sbt
• dpkg
• Spack
• EasyBuild

Workload
managers
• MPI
• SLURM
• PBS
• FLUX

Databases /
experiments
• MySQL
• PostgreSQL
• MongoDB
• CouchDB
• Text files
• JSON files
• XLS files

Compilers
• LLVM
• GCC
• Intel
• PGI
• TVM
• CUDA

Hardware
• CPU
• GPU
• TPU / NN
• DSP
• FPGA
• Quantum
• Simulators
• Interconnects

Benchmarks
• SPEC
• EEMBC
• HPCG
• LINPACK
• cBench
• MLPerf

Datasets
• ImageNet
• KITTI
• COCO
• MiDataSets
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet
• AlexNet
• VGG
• ResNet
• MobileNets
• SSD
• SqueezeNet
• DeepSpeech

DevOps
tools

• Git
• Jenkins
• Docker
• Kubernetes
• Singularity

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Knowledge
sharing

• ArXiv
• ACM DL
• IEEE DL
• GitHub
• Zenodo
• FigShare
• Web pages

Web services
• GitHub
• GitLab
• BitBucket
• Travis
• JupyterHub
• Codelabs
• SageMaker

Let’s innovate …

Applications
• Meteorology
• Health
• Robotics
• Automotive
• Economics
• Physics
• Astronomy
• Education

Programs
• Image classification
• Object detection
• Natural Language

processing
• Text processing
• Video processing
• Personal assistant

OS
• Linux
• MacOS
• BSD
• Windows
• Android

AI/ML
frameworks

• TensorFlow
• PyTorch
• MXNet
• Caffe
• MCT (CNTK)
• Keras
• Kubeflow
• AutoML
• SageMaker
• Apache Spark

Libraries
• SciPy
• TFLite
• OpenBLAS
• MAGMA
• cuDNN
• cuFFT
• ArmNN
• CLBlast
• gemmlowp
• Boost
• HDF5
• MPI
• OpenCV
• Protobuf

Languages
• C++
• C#
• C
• Go
• PHP
• Fortran
• Java
• Python

Shells
• bash
• sh
• csh
• ksh
• Windows

shell

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot
• LaTeX
• Ipython

Build
tools

• Make
• Cmake
• SCons
• Bazel
• Gradle
• Ninja

Package
managers

• Anaconda
• Go
• Npm
• Pip
• Sbt
• dpkg
• Spack
• EasyBuild

Workload
managers
• MPI
• SLURM
• PBS
• FLUX

Databases /
experiments
• MySQL
• PostgreSQL
• MongoDB
• CouchDB
• Text files
• JSON files
• XLS files

Compilers
• LLVM
• GCC
• Intel
• PGI
• TVM
• CUDA

Hardware
• CPU
• GPU
• TPU / NN
• DSP
• FPGA
• Quantum
• Simulators
• Interconnects

Benchmarks
• SPEC
• EEMBC
• HPCG
• LINPACK
• cBench
• MLPerf

Datasets
• ImageNet
• KITTI
• COCO
• MiDataSets
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet
• AlexNet
• VGG
• ResNet
• MobileNets
• SSD
• SqueezeNet
• DeepSpeech

DevOps
tools

• Git
• Jenkins
• Docker
• Kubernetes
• Singularity

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Knowledge
sharing

• ArXiv
• ACM DL
• IEEE DL
• GitHub
• Zenodo
• FigShare
• Web pages

Web services
• GitHub
• GitLab
• BitBucket
• Travis
• JupyterHub
• Codelabs
• SageMaker

cTuning.org/ae: what I noticed during artifact evaluation at PPoPP, PACT, SC

How the community run, share, reproduce and reuse experiments

• Download an archive or some container with artifacts from an accepted paper (manually)

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
What if different shell or even OS?

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

Let’s hide the mess …

How the community run, share, reproduce and reuse experiments

• Download an archive or some container with artifacts from an accepted paper (manually)

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
What if different shell or even OS?

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

How the community run, share, reproduce and reuse experiments

• Download an archive or some container with artifacts from an accepted paper (manually)

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
What if different shell or even OS?

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
What if different shell or even OS?

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
What if some sources are already available?

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
What if URL changed or file is not available?

What if I want to try different datasets or my own ones?
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

What if I want to try different models or my own ones? Will they be compatible?

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

PI-API: install model compatible with a program from Supercomputing18 paper

• Install numerous software dependencies (often manually or semi-manually)

What if some are already installed? Can I reuse them? What if they are newer?
What if they are not available for my system?

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

PI-API: install model compatible with a program from Supercomputing18 paper

• Install numerous software dependencies (often manually or semi-manually)

PI-API: install package for a program from Supercomputing18 paper
PI-API: detect soft compatible with a program from Supercomputing18 paper

• Compile program and some dependencies (most of the time “automated”)
Of course, it will never fail ;) !!!

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

PI-API: install model compatible with a program from Supercomputing18 paper

• Install numerous software dependencies (often manually or semi-manually)

PI-API: install package for a program from Supercomputing18 paper
PI-API: detect soft compatible with a program from Supercomputing18 paper

• Compile program and some dependencies (most of the time “automated”)
PI-API: compile a program from Supercomputing18 paper with flags=“-O3 –flto”

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

What can possibly go wrong (of course APIs and command lines never change) ;) ?

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

PI-API: install model compatible with a program from Supercomputing18 paper

• Install numerous software dependencies (often manually or semi-manually)

PI-API: install package for a program from Supercomputing18 paper
PI-API: detect soft compatible with a program from Supercomputing18 paper

• Compile program and some dependencies (most of the time “automated”)
PI-API: compile a program from Supercomputing18 paper with flags=“-O3 –flto”

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

PI-API: run a program with compatible dataset and model, automatically record steps

• Process results, compare with the paper, and report discrepancies (often manually)
That’s the simplest part - just check 5 tables, 10 graphs, and just spot the difference!!!

How can we automate all those steps and enable DevOps?

Platform independent and human readable APIs (from any language or CMD)

• Download an archive or some container with artifacts from an accepted paper (manually)
Platform Independent API: pull repository for Supercomputing18 paper

• Go to scripts directory (ad-hoc *.sh or python scripts, and occasionally Jupyter notebooks)
PI-API: find scripts for Supercomputing18 paper

• Download source code (typically with recursion from GitHub, GitLab, BitBucket)
PI-API: install soft for a program from Supercomputing18 paper

• Download dataset(s) from some external sources (often automated unless included)
PI-API: install dataset compatible with a program from Supercomputing18 paper

PI-API: detect datasets compatible with a program from Supercomputing18 paper
• Download model(s) from some external sources (often automated unless included)

PI-API: install model compatible with a program from Supercomputing18 paper

• Install numerous software dependencies (often manually or semi-manually)

PI-API: install package for a program from Supercomputing18 paper
PI-API: detect soft compatible with a program from Supercomputing18 paper

• Compile program and some dependencies (most of the time “automated”)
PI-API: compile a program from Supercomputing18 paper with flags=“-O3 –flto”

• Run experiments (simulations) and record all results (outputs, performance …)
in raw, text and CSV files (usually semi-automated)

PI-API: run a program with compatible dataset and model, automatically record steps

• Process results, compare with the paper, and report discrepancies (often manually)
PI-API: validate results from a program using pre-recorded ones, auto-generate paper

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py

$HOME / CK / my-paper / module / hello / .cm / meta.json

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py

$HOME / CK / my-paper / module / hello / .cm / meta.json

$ ck say hello --fosdem --is=cool @input.json

{ “action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool” …}

$ python (or Jupyter notebooks)

import ck.kernel as ck

r=ck.access({“action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool”})

print (r)

{‘return’:0}

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py

$HOME / CK / my-paper / module / hello / .cm / meta.json

$ ck say hello --fosdem --is=cool @input.json

{ “action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool” …}

$ python (or Jupyter notebooks)

import ck.kernel as ck

r=ck.access({“action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool”})

print (r)

{‘return’:0}

$ ck add my-paper:hello:world –tags=fosdem,20190203

Local directory: $HOME / CK / my-paper / hello / world / .cm / meta.json

$HOME / CK / my-paper / hello / world / <- holder for files and dirs

$ ck search hello –tags=fosdem --all

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

{ “tags”:[“fosdem”,”20190203”] }

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py

$HOME / CK / my-paper / module / hello / .cm / meta.json

$ ck say hello --fosdem --is=cool @input.json

{ “action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool” …}

$ python (or Jupyter notebooks)

import ck.kernel as ck

r=ck.access({“action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool”})

print (r)

{‘return’:0}

$ ck add my-paper:hello:world –tags=fosdem,20190203

Local directory: $HOME / CK / my-paper / hello / world / .cm / meta.json

$HOME / CK / my-paper / hello / world / <- holder for files and dirs

$ ck search hello –tags=fosdem --all

$ ck load hello:world --min

{ “tags”:[“fosdem”,”20190203”] }

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

{ “tags”:[“fosdem”,”20190203”] }

Collective Knowledge basics: github.com/ctuning/ck/wiki and cKnowledge.org

$ sudo pip install ck

Now can implement, share and reuse APIs as Python modules via CK repositories

$ ck add repo:my-paper --quiet

Local directory: $HOME/CK/my-paper/.ckr.json (repo description and dependencies)

$ ck ls repo or ck search repo

my-paper local default

$ ck add my-paper:module:hello

$ ck add_action module:hello --func=say

Local directory: $HOME / CK / my-paper / module / hello / module.py

$HOME / CK / my-paper / module / hello / .cm / meta.json

$ ck say hello --fosdem --is=cool @input.json

{ “action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool” …}

$ python (or Jupyter notebooks)

import ck.kernel as ck

r=ck.access({“action”:”say”, “module_uoa”:”hello”, “fosdem”:”yes”, “is”:”cool”})

print (r)

{‘return’:0}

$ ck add my-paper:hello:world –tags=fosdem,20190203

Local directory: $HOME / CK / my-paper / hello / world / .cm / meta.json

$HOME / CK / my-paper / hello / world / <- holder for files and dirs

$ ck search hello –tags=fosdem --all

$ ck load hello:world --min

{ “tags”:[“fosdem”,”20190203”] }

$ ck say hello:world -f

{ “action”:”say”, “module_uoa”:”hello”, “data_uoa”:”world”, “f”:”yes” …}

def say(i):

print (json.dumps(i))

actions=cfg[‘actions’]

return {‘return’:0, ‘error’:’’)

{ “tags”:[“fosdem”,”20190203”] }

Collective knowledge: collaboratively abstract, describe and reuse everything!

Applications
• Meteorology
• Health
• Robotics █
• Automotive █
• Economics
• Physics █
• Astronomy
• Education █

Programs
• Image classification █
• Object detection █
• Natural Language

processing █
• Text processing █
• Video processing █
• Personal assistant

OS
• Linux █
• MacOS █

• BSD
• Windows █
• Android █

AI/ML
frameworks

• TensorFlow █

• PyTorch █

• MXNet █

• Caffe █

• MCT (CNTK) █
• Keras █

• Kubeflow
• AutoML
• SageMaker █

• Apache Spark

Libraries
• SciPy █

• TFLite █

• OpenBLAS █

• MAGMA
• cuDNN █

• cuFFT
• ArmNN █

• CLBlast █

• gemmlowp
• Boost █
• HDF5 █
• MPI █
• OpenCV █

• Protobuf █

Languages
• C++ █
• C#
• C █
• Go
• PHP █
• Fortran █
• Java █
• Python █

Shells
• bash █
• sh █

• csh
• ksh
• Windows

shell █

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot █

• LaTeX █

• Ipython █

Build
tools

• Make █
• Cmake █

• SCons █

• Bazel █

• Gradle
• Ninja

Package
managers

• Anaconda █
• Go
• Npm
• Pip █
• Sbt
• dpkg █

• Spack █

• EasyBuild █

Workload
managers
• MPI █
• SLURM █
• PBS
• FLUX █

Databases /
experiments
• MySQL █
• PostgreSQL
• MongoDB
• CouchDB
• Text files █
• JSON files █
• XLS files █

Compilers
• LLVM █
• GCC █
• Intel █
• PGI █
• TVM █
• CUDA █

Hardware
• CPU █
• GPU █
• TPU / NN
• DSP
• FPGA █
• Quantum █
• Simulators █
• Interconnects

Benchmarks
• SPEC █
• EEMBC █
• HPCG
• LINPACK
• cBench █

• MLPerf █

Datasets
• ImageNet █
• KITTI █
• COCO █
• MiDataSets █

• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet █

• AlexNet █

• VGG █
• ResNet █

• MobileNets █

• SSD █
• SqueezeNet █

• DeepSpeech

DevOps
tools

• Git █

• Jenkins
• Docker █
• Kubernetes
• Singularity

Platforms
• HPC █
• Desktops █
• IoT █

• Mobile █
• Cloud sevices █

Knowledge
sharing

• ArXiv █

• ACM DL █
• IEEE DL
• GitHub █
• Zenodo █

• FigShare
• Web pages █

Web services
• GitHub █
• GitLab █

• BitBucket █

• Travis █
• JupyterHub █

• Codelabs
• SageMaker █

Collective Knowledge
• Simple Python APIs with JSON (dictionary) I/O
• Simple JSON meta-description of all components
• Simple access from command line,

different languages and web
• Simple sharing of all components

via GitHub, Zenodo, etc …

Implement workflows (pipelines) adaptable to any SW/HW! Focus on innovation!

Applications
• Meteorology
• Health
• Robotics █
• Automotive █
• Economics
• Physics █
• Astronomy
• Education █

Programs
• Image classification █
• Object detection █
• Natural Language

processing █
• Text processing █
• Video processing █
• Personal assistant

OS
• Linux █
• MacOS █

• BSD
• Windows █
• Android █

AI/ML
frameworks

• TensorFlow █

• PyTorch █

• MXNet █

• Caffe █

• MCT (CNTK) █
• Keras █

• Kubeflow
• AutoML
• SageMaker █

• Apache Spark

Libraries
• SciPy █

• TFLite █

• OpenBLAS █

• MAGMA
• cuDNN █

• cuFFT
• ArmNN █

• CLBlast █

• gemmlowp
• Boost █
• HDF5 █
• MPI █
• OpenCV █

• Protobuf █

Languages
• C++ █
• C#
• C █
• Go
• PHP █
• Fortran █
• Java █
• Python █

Shells
• bash █
• sh █

• csh
• ksh
• Windows

shell █

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot █

• LaTeX █

• Ipython █

Build
tools

• Make █
• Cmake █

• SCons █

• Bazel █

• Gradle
• Ninja

Package
managers

• Anaconda █
• Go
• Npm
• Pip █
• Sbt
• dpkg █

• Spack █

• EasyBuild █

Workload
managers
• MPI █
• SLURM █
• PBS
• FLUX █

Databases /
experiments
• MySQL █
• PostgreSQL
• MongoDB
• CouchDB
• Text files █
• JSON files █
• XLS files █

Compilers
• LLVM █
• GCC █
• Intel █
• PGI █
• TVM █
• CUDA █

Hardware
• CPU █
• GPU █
• TPU / NN
• DSP
• FPGA █
• Quantum █
• Simulators █
• Interconnects

Benchmarks
• SPEC █
• EEMBC █
• HPCG
• LINPACK
• cBench █

• MLPerf █

Datasets
• ImageNet █
• KITTI █
• COCO █
• MiDataSets █

• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet █

• AlexNet █

• VGG █
• ResNet █

• MobileNets █

• SSD █
• SqueezeNet █

• DeepSpeech

DevOps
tools

• Git █

• Jenkins
• Docker █
• Kubernetes
• Singularity

Platforms
• HPC █
• Desktops █
• IoT █

• Mobile █
• Cloud sevices █

Knowledge
sharing

• ArXiv █

• ACM DL █
• IEEE DL
• GitHub █
• Zenodo █

• FigShare
• Web pages █

Web services
• GitHub █
• GitLab █

• BitBucket █

• Travis █
• JupyterHub █

• Codelabs
• SageMaker █

Assemble portable, customizable
and reusable workflows

Models

CK JSON API

Programs

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

For example, co-design of AI/ML/quantum
software and hardware

Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html

Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env

Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env

Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

3) Detecting installed “software” (both code and data):

$ ck search soft --tags=dataset cKnowledge.org/shared-soft-detection-plugins.html

$ ck detect soft:compiler.llvm

$ ck show env --tags=llvm

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env
http://cknowledge.org/shared-soft-detection-plugins.html

Anyone can share reusable components (code and data) with common APIs and meta descriptions

Started converting all my own past R&D on autotuning and machine learning to CK

cKnowledge.org/shared-repos.html cKnowledge.org/shared-modules.html

1) Describing different operating systems (github.com/ctuning/ck-env)

$ ck pull repo:ck-env

$ ck ls os

$ ck load os:linux-64 --min

2) Detecting and unifying information about platforms

$ ck detect platform --help

$ ck detect platform --out=json

$ ck load os:linux-64 --min

3) Detecting installed “software” (both code and data):

$ ck search soft --tags=dataset cKnowledge.org/shared-soft-detection-plugins.html

$ ck detect soft:compiler.llvm

$ ck show env --tags=llvm

4) Installing missing packages (both code and data): front-end to EasyBuild, Spack, scons, cmake

$ ck search package --tags=model cKnowledge.org/shared-packages.html

$ ck install compiler:compiler-llvm-7.0.0-universal

$ ck show env --tags=llvm

$ ck virtual env –tags=llvm,v7.0.0

http://cknowledge.org/shared-repos.html
http://cknowledge.org/shared-modules.html
https://github.com/ctuning/ck-env
http://cknowledge.org/shared-soft-detection-plugins.html
http://cknowledge.org/shared-soft-detection-plugins.html

Enabling customizable and portable workflows by connecting CK components

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,
simulators

Run-time environment

Run-time state
of the system

Inputs Various models

Algorithm / source code

AI framework

Common JSON API Universal program workflow to compile, run and profile
diverse benchmarks with different data sets,

validate results, record experiments, share and
reproduce them, and report discrepancies

http://cKnowledge.org/shared-programs.html

$ ck pull repo:ck-crowdtuning

$ ck ls program

$ ck ls dataset

$ ck load program:cbench-automotive-susan --

min

$ ck compile program:cbench-automotive-

susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-

susan

$ ck crowdtune program:cbench-automotive-

susan

$ ck replay experiment

JSON
meta

Having APIs and JSON meta enables DevOps and easy integration with Jenkins, Travis, etc.
CK complements containers and can be easily used in Jupyter notebooks!

http://cknowledge.org/shared-programs.html

Implementing autotuning pipeline of the whole AI/ML/SW/HW stack!

We can even automatically generate reproducible and interactive articles
(collaboration with Raspberry Pi foundation): cKnowledge.org/rpi-crowd-tuning

CK Python modules (wrappers) with a unified JSON API

C
K

 in
p

u
t

(J
SO

N
/d

ic
t)

C
K

 o
u

tp
u

t
(J

SO
N

/d
ic

t)Unified input

Behavior

Choices

Features

State

Action

Unified output

Behavior

Choices

Features

State

b = B(c , f , s)
… … … …

Formalized function B
of a behavior of any CK object

Flattened CK JSON vectors
(dict converted to vector)

to simplify statistical analysis,
machine learning
and data mining

Some

actions

Tools (compilers, profilers, etc) Generated files

Chain CK modules to implement research workflows such as multi-objective autotuning and co-design

Choose
exploration

strategy

Perform SW/HW DSE
(math transforms,
skeleton params,

compiler flags,
transformations …)

Perform
stat.

analysis

Detect
(Pareto)
frontier

Model
behavior,

predict
optimizations

Reduce
complexity

Set
environment

for a given
tool version

CK program module
with pipeline function

Compile
program

Run
code

i

i

i i

Collaboratively expose choices, features, system state and behavior characteristics

http://cknowledge.org/rpi-crowd-tuning

Crowdsource experiments with the help of volunteers
across diverse models, data sets and platforms

Repositories of customizable, portable and
reusable research components with CK API

cKnowledge.org/shared-repos.html

AI frameworks

TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeDet

SSD

MobileNets

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects
from the

community

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

ArmCL

CK JSON APICK JSON API
CK JSON API

CK JSON API
OS

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

…

… …

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU

NN accelerators

…
FPGA

Customizable CK workflows
for real-world user tasks

Assemble scenarios such as image classification as LEGO™

Simulators

Models

CK JSON API

Software

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

Present best results, workflows and components
on a live scoreboard for fair comparison and reuse

cKnowledge.org/repo

Real-world use cases with our partners: cKnowledge.org/partners

Share complete workflows along with published papers
to automate artifact evaluation

and help the community build upon prior work

Help students learn multidisciplinary techniques,
quickly prototype new ones,

validate them in practice with companies,
and even contribute back new research components

Help companies select the most appropriate workflows,
save R&D costs, accelerate adoption of new techniques!

Open science: organizing reproducible tournaments and sharing research components

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks
across diverse models, data sets and platforms

via open competitions,
share them as reusable CK components

and visualize on a public scoreboard

Collective Knowledge Platform

Interdisciplinary
community

Organizers (A-Z)

Luis Ceze, University of Washington
Natalie Enright Jerger, University of Toronto
Babak Falsafi, EPFL
Grigori Fursin, dividiti/cTuning foundation
Anton Lokhmotov, dividiti
Thierry Moreau, University of Washington
Adrian Sampson, Cornell University
Phillip Stanley Marbell, University of Cambridge

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

Real
use-cases

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

* Workshop organizers

http://cknowledge.org/request

We organized the 1st reproducible tournament at ACM ASPLOS’18

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-18

MXNet;
NNVM/TVM

Xilinx FGPA
(Pynq board)

ResNet-*

ArmCL 18.01 vs
18.02 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Public validation at github.com/ctuning/ck-request-asplos18-results via GitHub issues.

All validated papers are published in the ACM DL
with portable, customizable and reusable CK components and workflows:

dl.acm.org/citation.cfm?doid=3229762

See ACM ReQuEST report: portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://dl.acm.org/citation.cfm?doid=3229762
https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

All results and research components are available via a live CK scoreboard

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically

generated with a calibration process from FP32 model without the

need of fine-tuning or retraining. We show that the inference

throughput and latency with ResNet-50, Inception-v3 and SSD are

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard
and become available for public comparison and further customization,

optimization and reuse!

We are not announcing a single winner! We show all multi-dimensional results at
cKnowledge.org/dashboard/request.asplos18

and let users select best ML/SW/HW stacks depending on multiple constraints!

https://github.com/ctuning/ck-request-asplos18-caffe-intel
http://cknowledge.org/dashboard/request.asplos18

Other companies managed to reproduce results and started using CK

Accelerate technology transfer: companies can now quickly validate published
techniques in their production environment using shared CK workflows!

See Amazon presentation at O’Reilly AI conference:

conferences.oreilly.com/artificial-intelligence/ai-eu/public/schedule/detail/71549

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard
and become available for public comparison and further customization,

optimization and reuse!

CK can also automatically generate

a Docker image for this stack

CK assists

AWS market place

with collaboratively

optimized AI/ML stacks

Collective Knowledge is now a community effort

to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient

software/hardware stacks for emerging AI/ML workloads

https://conferences.oreilly.com/artificial-intelligence/ai-eu/public/schedule/detail/71549

CK helps General Motors to select the most efficient SW/HW stacks

Performance, accuracy, power consumption practically never match official reports!

CK allows to select the most efficient SW/HW stacks on a Pareto frontier
(performance, accuracy, energy, memory usage, costs) for object detection,

image classification and other tasks: www.youtube.com/watch?v=1ldgVZ64hEI

http://www.youtube.com/watch?v=1ldgVZ64hEI

CK helps to automate Student Cluster competitions

github.com/ctuning/ck-scc18/wiki - proof-of-concept CK workflow
to automate installation, execution and customization of SeisSol application

from the SC18 SCC Reproducibility Challenge
across different platforms, environments and datasets

© www.seissol.org

• Support automatic detection of already installed tools and data sets
• Can install missing dependencies via EasyBuild and Spack
• Can deploy application on different supercomputers with different job managers
• Can automatically validate the correctness of results (output, performance)

https://github.com/ctuning/ck-scc18/wiki

Being part of the SC Conference enhances
your career – whether you are presenting
new research, showcasing innovative work
or practices, helping teach the next
generation, or competing for peak
performance. The SC selection process is
highly competitive and being selected is
extremely rewarding.

Submit your work to SC19!

sc19.supercomputing.org/submit/

Technical Program

Papers
March 1, 2019 – Submissions open
April 10, 2019 – Full paper deadline

Tutorials
February 15, 2019 – Submissions open
April 16, 2019 – Submissions close

Panels
February 15, 2019 – Submissions open
April 23, 2019 – Submissions close

Workshops
January 1, 2019 – Submissions open
February 14, 2019 – Submissions close

Posters
February 15, 2019 – Submissions open
July 31, 2019 – Submissions close

More Opportunities
Awards
Birds of a Feather
Early Career
Exhibitor Forum

Call for Participation

Program: November 17–22, 2019
Exhibits: November 18–21, 2019

Colorado Convention Center, Denver,
CO

The International Conference
for High Performance
Computing, Networking,
Storage, and Analysis

CK is used to collaboratively advance quantum computing

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)

to support reproducible hackathons, and help researchers share, compare
and optimize different algorithms across conventional and quantum platforms

cKnowledge.org/dashboard/hackathon.20190127

Results from the Quantum Machine
Learning Hackathon in Paris

http://cknowledge.org/quantum
http://cknowledge.org/dashboard/hackathon.20190127

CK is used to collaboratively advance quantum computing

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)

to support reproducible hackathons, and help researchers share, compare
and optimize different algorithms across conventional and quantum platforms

cKnowledge.org/dashboard/hackathon.20190127

Results from the Quantum Machine
Learning Hackathon in Paris

The most efficient design

http://cknowledge.org/quantum
http://cknowledge.org/dashboard/hackathon.20190127

cKnowledge.org: future plans to enable open science

From prototype to production quality (beginning of a long journey)
• Collaboratively standardize APIs and meta descriptions
• Improve installation and documentation
• Add more CK components and workflows for real-world tasks

Open to collaboration
• Joint R&D projects and tournaments (AI, ML, quantum)
• Automation and sharing of experiments
• Reproducible articles with reusable workflows

Websites:
• github.com/ctuning/ck
• cKnowledge.org/shared-repos.html

Contact
Grigori.Fursin@cTuning.org or grigori@dividiti.com

https://github.com/ctuning/ck
http://cknowledge.org/shared-repos.html
mailto:Grigori.Fursin@cTuning.org
mailto:grigori@dividiti.com

