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Genetics-B ased Machine 
Learning for the Assessment 

of Certain Neuromuscular Disorders 
Constantinos S. Pattichis, Member, IEEE, and Christos N. Schizas, Senior Member, ZEEE 

Abstruct- Clinical electromyography (EMG) provides useful 
information for the diagnosis of neuromuscular disorders. The 
utility of artificial neural networks (ANN’S) in classifying EMG 
data trained with backpropagation or Kohoiien’s self-organizing 
feature maps algorithm has recently been demonstrated. The 
objective of this study is to investigate how genetics-based ma- 
chine learning (GBML) can be applied for diagnosing certain 
neuromuscular disorders based on EMG data. The effect of 
GBML control parameters on diagnostic performance is also 
examined. A hybrid diagnostic system is introduced that com- 
bines both neural network and GBML maldels. Such a hybrid 
system provides the end-user with a robust and reliable system, 
as its diagnostic performance relies on more than one learn- 
ing principle. In the clinical EMG laboratory, 680 motor unit 
action potentials (MUAP’s) were collected from 12 normal, 11 
motor neuron disease, and 11 myopathy subjects. Eight subjects 
from each group formed the training set, and the other 10 
subjects formed the evaluation set. Each subject was described 
by a 14-element feature vector consisting of the mean and the 
standard deviation of each of the following MUAP parameters: 
duration, spike duration, amplitude, area, spike area, phases, 
and turns. More than a thousand GBML models were developed 
by varying the following parameters: message length size (49, 
74), number of classifiers (100, 150, 200, 250, 300, SOO), lifetax 
(0.000, 0.002, 0.005, 0.010), period of genietic algorithm (GA) 
introduced, which is expressed in iterations, showing how often 
the classifier system calls the GA (50, 100, 200, 500), crossover 
probability (0.5, l.O), and mutation probability (0.00, 0.01, 0.02). 
A total of 28 models were selected that achieved a diagnostic 
yield better than 95% and 70% for the training and evaluation 
sets, respectively. This criterion, suggested1 by two expert neu- 
rophysiologists, has formed the bases for classifying a GBML 
model as “successful” and worthy of further consideration in 
a clinical environment. The performance of GBML models as 
affected by varying the above parameters; can be summarized 
as follows: 1) 49-bit MUAP parameters decoding scheme were 
sufficient for accommodating the complexity of the feature vector; 
2) the number of classifiers for selected models trained with 
74-bit data strings were 300 and 500, whereas the number of 
classifiers for most selected models with 491-bit data strings were 
200 and 500; 3) by increasing lifetax, training performance is 
reduced, whereas evaluation performance remains at the same 
levels; 4) the genetic algorithm should not be called upon very 
frequently because it causes drastic changes to the status of the 
classifiers; and 5) models with crossover probability equal to one 
yielded better overall performance. GBML models demonstrated 
similar performance to neural-network models, but with less 
computation. The diagnostic performance of neural network and 
GBML models is enhanced by the hybrid system. 
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I. INTRODUCTION 

LECTROMYOGRAPHY (EMG) is the recording and E‘ study of the electrical activity of voluntary contracting 
muscles. In humans, clinical EMG findings provide useful 
information in the electrodiagnostic examination of peripheral 
nerves and skeletal muscle, and in deciding the level of the 
lesion in patients suffering from neuromuscular disorders. 
EMG is also particularly helpful in deciding whether the 
symptom of muscle weakness in the assessment of neuromus- 
cular disorders is myopathic or neurogenic in origin. It should 
be emphasized, however, that EMG findings evaluated alone 
cannot be used for providing a clinical diagnosis because they 
do not show any specific reason that can cause disease [l]. 
In the last two decades there has been an attempt to improve 
the objectivity and accuracy of EMG analysis. Advances in 
computer technology and digital signal processing provided 
a basis for computer-aided EMG feature extraction [2] .  This 
allows measurements to be standardized, to be more accurate 
and save diagnostic time. There is now a need to add decision 
making capabilities so that all the data can be processed in an 
integrated environment. The advantages of automated EMG 
diagnostic systems can be summarized [3]: 

Standardization. Diagnoses obtained from different labora- 
tories using similar criteria can be verified. 
Sensitivity. EMG findings on a particular subject may be 
compared with a database of normal values and/or a decision 
can be made by an automated diagnostic system deciding 
whether or not an abnormality exists. 
SpeciJicity. Findings may be compared with databases for 
various neuromuscular diseases andlor a decision can be 
made by the automated diagnostic system with respect to 
the type of abnormality. 
EquivaZence. Results from a series of examinations of the 
same patient may be compared to decide whether there is 
evidence of disease progression or of response to treatment. 
In addition, the findings of different automatic diagnostic 
methods can be compared to determine which are more 
sensitive and specific. 
ESJicacy. The results of different treatments can be more 
properly evaluated. 

Different approaches have been used to address the problem of 
automated EMG diagnosis. Knowledge engineering [4], causal 
probabilistic networks [ 5 ] ,  artificial neural networks [61, [7], 
and other methods have been investigated. The usefulness 
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of genetics-based machine learning (GBML) in EMG data 
classification was discussed in a recent pilot study [SI. The aim 
of this investigation is to further examine how GBML models 
can be applied in the diagnosis of certain neuromuscular 
disorders based on EMG data, and explore the possibility of 
adopting a synergistic hybrid system based on both neural 
networks and GBML. The hybrid system tries to mimic the 
examination procedure where more than one expert physician 
can independently provide their diagnosis on a case, given 
the same information. The diagnostic performance and the 
learning behavior of the models is examined with respect 
to the following GBML parameters: message length, number 
of classifiers, lifetax, period of genetic algorithm introduced, 
crossover probability, and mutation probability. A description 
of these parameters is given in Section III. Furthermore, the 
diagnostic performance of GBML models is examined as the 
EMG sample size is reduced. 

Of the various GBML systems, this investigation focuses on 
the simple classifier system (SCS) documented by Goldberg 
[9]. The SCS is a parallel production system designed to 
exploit the implicit parallelism of any genetic algorithm. In 
the SCS, interactions are implemented through standardized 
messages, whereas conditions are simply defined in terms of 
the messages they accept. Actions are defined in terms of the 
messages they send. The resulting system uses a simple syntax 
that makes it easy for a genetic algorithm to discover building 
blocks appropriate for the construction of new strings (rules). 
The SCS relies on competition to identify better rules. New 
rules can be introduced into the system, as hypotheses, without 
disturbing the existing status of the rules within the system. 
Goldberg [9] and Holland [IO] indicate that this gracefulness 
makes it possible for the system to operate incrementally, 
testing new structures and hypotheses while steadily improving 
its performance. 

Classifier systems are a type of traditional production ex- 
pert systems [9], [ll]. The performance of such systems is 
enhanced in that more than one production rule can fire 
simultaneously, and because the representations and operations 
of the system are based on simple syntactic matches. Classifier 
systems share many important features with connectionist or 
neural-network representations [ 1 I]. Both of these abstract 
models call for massively parallel computation and support 
subsymbolic models of cognition. These learning systems are 
derived bottom-up, that is directly from low-level represen- 
tations of the sensory interface, rather than top-down from 
semantically meaningful symbols [ 1 I]. 

In the following section, EMG methods and materials 
are presented. The pathology of neuromuscular disorders of 
interest is briefly discussed and EMG feature extraction is 
introduced. Section I11 presents the GBML paradigm, and 
the ways it was implemented for EMG diagnosis. Section IV 
presents the results of different GBML models. The last section 
provides an overall discussion. 

11. EMG METHOD AND MATERIAL 
The motor unit is the smallest functional unit of the muscle. 

It consists of an anterior horn cell, an axon, and the muscle 
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fibers innervated by the neuron. Structural reorganization of 
the motor unit takes place in neuromuschlar disorders that 
affect the peripheral nerve and/or muscle. Motor unit morphol- 
ogy can be determined by recording its electrical activity using 
different types of needle electrodes. The concentric needle 
electrode, measures an electrical potential difference between 
the bare tip of an insulated wire, usually platinum, and the 
bare shaft of a steel cannula through which it is inserted. 
This electrode picks up the electrical activity of a fraction 
of the motor unit where, at a slight voluntary contraction, 
motor unit action potentials (MUAP’s) are recorded. In this 
study, the EMG was recorded from the biceps brachii mus- 
cle for five seconds. MUAP’s were identified and selected 
from the EMG recording based on predetermined criteria. 
A parametric pattern recognition algorithm based on MUAP 
features was applied for recognizing similar MUAP’s gen- 
erated from the same motor unit [7]. Features measured 
automatically from each group of similar MUAP’s (Fig. 1) 
include: 

duration (Dur), the beginning and ending of the MUAP 
are identified by sliding a measuring window of 3 ms in 
length and 510 pV in width; 
spike duration (SpDur), measured from the first to the 
last positive peak; 
amplitude (Amp), the maximum peak to peak measure of 
the MUAP; 
area, the rectified MUAP integrated over the duration; 
spike area (SpArea), the rectified MUAP integrated over 
the spike duration; 
phases (Ph), the number of baseline crossings that exceed 
25 pV, plus one; 
turns (T), the number of positive and negative peaks 
separated from the preceding and following peak by 
25 pV. 
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TABLE I 

‘ MUM Dur P b T  
NO. ms 

1 10.4 2.46 0.27 0.51 0.14 3 3 

2 14.2 10.91 0.68 0.73 0.54 2 2 

3 7.2 4.31 0.13 0.13 0.10 2 3 

4 7.6 2.25 0.17 0.26 0.11 3 3 

5 11.2 5.43 0.16 0.42 0.26 3 3 

6 10.4 3.03 0.21 0.33 0.14 5 5 

7 5.1 4.05 0.09 0.09 0.07 2 2 

8 9.2 5.96 0.15 0.29 0.24 2 2 

9 7.8 7.87 0.22 0.19 0.19 3 3 

10 12.3 4.29 0.25 0.50 0.25 3 3 

11 11.1 2.50 0.90 0.60 0.31 3 4 

12 5.3 3.30 0.11 0.14 0.10 2 2 

13 7.1 4.70 0.16 0.12 0.10 2 3 

14 4.7 3.83 0.29 0.14 0.13 2 3 

15 5.4 3.63 0.11 0.15 0.11 2 2 

16 7.9 3.90 0.75 0.25 0.20 4 4 

17 11.9 9.06 0.35 0.56 0.46 2 3 

18 14.4 3.95 0.42 0.58 0.23 3 3 

19 11.9 5.52 0.21 0.35 0.19 5 4 

20 7.1 4.57 0.10 0.17 0.12 2 2 

mn 9.11 4.78 0.29 0.33 0.20 2.75 2.95 

sd 3.01 2.23 0.23 0.19 0.12 0.97 0.83 

mn = mean sd = standard deviation 

In quantitative EMG studies, it is appropriate to record 20 
sets of similar MUAP’s from the muscle of each subject; 
see Table I. This is considered an acceptable sample of the 
whole muscle [12]. The mean (mn) and the standard deviation 
(sd) for the 20 values of each parameter are also shown. The 
quantitative features that describe the subject are thus reduced 
to a 14-element vector to be classified for the sake of diagnosis. 

This investigation was limited to the diagnosis of certain 
neuromuscular disorders based only on EMG findings. These 
include disorders that cause muscular weakness andor wast- 
ing (loss of muscle fibers). From the large number of such 
disorders only two groups were considered: motor neuron 
disease (MND), and myopathy (MYO). These two categories 
of MND and MY0 were selected because the former is 
purely a disorder of the motor neuron while the latter is 
purely a disorder of the muscle fiber per se. In trying to 
develop the GBML computer-aided diagnostic system, it was 
felt that it would be best to have two pathologically distinct 
and contrasting categories of neuromuscular disorders that 
could eventually be diagnosed accurately on clinical grounds. 
Furthermore, the biceps brachii muscle was examined because 
it is a proximal muscle of the shoulder girdle that is usually 
affected at an early stage in both MND and MYO. Also, its 
easy accessibility has made it attractive to study and widely 
reported in the literature. In this study, 680 MUAP’s were 
collected from 12 normal, 11 MND, and 11 MY0 subjects. 
The 14-element feature vector describing each subject consists 
of MUAP measures that are widely uised in the everyday 
practice of clinical EMG. In addition, these features are easily 
understood by the physician, and they have also been proved to 

describe well the motor unit structural changes as affected by 
disease. A brief discussion of the EMG findings in the NOR, 
MND, and MY0 groups for the material under study is given. 

Normal (NOR): the mean and standard deviation values 
computed for duration, amplitude, and number of phases for 
240 MUAP’s for this group were 9.60 f 2.75 ms, 0.376 f 
0.306 mV, and 2.6 f 0.8, respectively. 

Motor Neuron Disease (MND): is a disease causing selec- 
tive degeneration of the upper and lower motor neuron. 
This disease affects middle-aged and older people. There is 
progressive widespread loss of motor neurons, usually leading 
to death within three to five years. In the advanced stages of 
this disease large motor units also denervate. Typically the 
mean durations of the motor unit potentials are longer than 
normal and there are increased amplitudes. There is an increase 
in the number or density of fibers in the motor units, or an 
increase in the temporal dispersion of the activity picked up 
by the recording electrode. The latter effect is the result of 
slowed conduction along the terminal branches of individual 
nerve fibers, increase in the end-plate zone, or both. Mean and 
sd duration, amplitude, and phases for 220 MUAP’s for this 
group were 13.4 f 3.86 ms, 0.614 f 0.426 mV, and 4.0 f 1.8, 
respectively. 

Myopathies (MYO): are a group of diseases that affect 
primarily skeletal muscle fibers. They are divided into two 
groups, according to whether they are inherited or acquired. 
Most muscular dystrophies are hereditary, causing severe 
degenerative changes in the muscle fibers. In this group of 
diseases, there are four main types of muscular dystrophy, 
namely Duchenne’s, Becker’s, fascioscapulohumeral, and limb 
girdle. They show a progressive clinical course from birth 
or after a variable period of apparently normal infancy. A 
frequently acquired myopathy is polymyositis. This is char- 
acterized by acute or subacute onset, with muscle weakness 
progressing slowly over a matter of weeks. MUAP’s with short 
duration and reduced amplitude are typical findings in patients 
suffering from myopathy. These findings are attributed to fiber 
loss within the motor unit, with the degree of reduction of 
these parameters reflecting the amount of fiber loss [13]. The 
mean and sd of MUAP duration, amplitude, and phases for 
this group of patients were 7.15 f 2.34 ms, 0.314 f 0.250 mV, 
and 2.7 f 1.0, respectively. 

Twenty-four of the above 34 cases were randomly selected 
to form the training set (eight subjects from each group). 
The remaining 10 subjects were used for evaluating the 
performance of the models after their training. Mean duration 
of normal subjects varies from 8-12 ms, and mean amplitude 
varies from 0.280 to 0.520 mV. Myopathy patients usually 
have MUAP’s with short duration and low amplitude, whereas 
MND patients have MUAP’s with long duration and high 
amplitude, but no clear boundaries enclosing each group can 
be drawn. 

111. A SIMPLE GENETICS-BASED MACHINE 
LEARNING CLASSIFIER SYSTEM 

The classifier system contains three main components: the 
rule and message system, the apportionment of credit algo- 
rithm, and the genetic algorithm, as shown in Fig. 2. 
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~~ 

1. Auction 

A. Rule and Message System 

Data are decoded to a standard length message the envi- 
ronmental message length and is positioned on a message 
list where the message can then activate string rules called 
classifiers. Classifiers are listed in the classifier store where 
a classifier is a production rule which is a simple string 
that consists of a condition and a message: Classifier = 
Condition: Message. The message of the classifier is a string 
of finite length of a certain coding system. The condition of 

Fig. 2. 

the classifier acts like a pattern recognition device with a wild 
card character added to the coding system. With reference to 
the binary system, the message is composed of n codes that 
are either “0’s” or “1’s.” The product could be a string of 
the same length n as the message, but composed of “O’s,” 
“1’s”’ and the wild card symbol #, which means that, at the 
specific part of the string, the code could either be a “0” or “1.” 
For example the classifier could be 01#1:0010, where 01#1 
is the condition and 0010 is the message. In this example 
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the condition would be matched by both strings 0101 and 
0111. 

B. Apportionment of Credit Algorithm 

When a message matches a condition (of a classifier in the 
message list it may then be sent as the output. Matching 
classifiers, however, do not send their messages directly to 
the message list but they instead participate in the auction 
based on their strength values. The string with the highest 
strength wins, but before it proceeds with posting its message, 
it has to pass through the clearinghouse. At this stage, the 
winner is taxed by removing 10% of its current strength. The 
third routine in the apportionment of credit algorithm is the 
tax collector. The objective of this routine is to discourage 
nonproductive classifiers. For this purpose, two different types 
of taxes are collected, an existence tax and a bid tax. The 
existence tax is assessed and collected from all classifiers at a 
tax rate specified by the variable lifetax. The bid tax is assessed 
and collected from all classifiers that bid in the last auction, 
specified by the variable bid tax. Thus the three procedures 
within the apportionment of credit algorithm distribute and 
collect taxes in trying to ensure that good rules receive higher 
strength whereas bad rules receive lower strength [9]. 

C. Genetic Algorithm 
The performance of the classifier systiem may be enhanced 

by introducing a genetic search for new, possibly better rules 
through the call of the genetic algorithm (GA). The GA is 
called to work only on a selected proportion (ps). Selection 
is based on the strength value of classifiers. This is used as 
their fitness value during the operation of the GA. The aim of 
the introduction of the GA is not to change the character of 
the “natural” data but to amplify some [characteristic features 
through optimization. The parameter period of GA introduced 
specifies the number of time steps the GA is called by 
the classifier system. This algorithm is composed of three 
operations: reproduction, crossover, and mutation [9]. During 
the reproduction phase, classifier strength values are used as 
their “fitness values.” The strings of higher fitness are called 
into the mating pool and are paired depending on their values. 
The crossover takes place between the pairs of data strings, in 
a way similar to crossover between the: pairs of homologous 
chromosomes during meiosis. This leads to the production of 
two new strings carrying partial information from both parent 
strings. Their fitness values will be the average of parent 
fitness values. Mutation is another operator of the genetic 
algorithm that is introduced at very rare intervals to change a 
character of data strings, chosen at random, to any of the other 
characters of the code. Crossover and mutation probabilities 
express the probabilities of crossover per mating event, and 
mutation per bit change, respectively. The resulting population 
of new strings will follow the same genetic procedure for 
several generations. 

D. An Example of a Learning ClassiJier System 
Mean MUAP parameters of a normal subject are decoded 

to binary, with the environmental message length being 26. A 

message could belong to any of three classes, 0 = NOR, 
1 = MND, and 2 = MYO. The message is then posted 
to the message list, to be processed through the classifier 
store. The apportionment of credit algorithm is called, wherein 
the auction process matching classifiers are selected (R.1 and 
R.4), and the classifier (R.l) with higher strength (9.01) wins. 
Then, in the clearinghouse operation, the matching classifiers’ 
strength value is reduced by 10%. The third operation is the tax 
collector. A small fraction of the strength value, specified by 
the parameter lifetax (0.2%) is deducted from all classifiers. In 
addition, the strength value of matching classifiers is reduced 
by 1% as given by parameter bidtax. 

The classifier store periodically calls the GA. Within the 
GA, the reproduction process selects a few classifiers, two 
in this example, that have the higher strength (R.l and R.2). 
Then, in the crossover operation these strings are crossed 
with the new strings taking the average strength value of 
the parent strings. In this example the crossover position 
and probability are 10 and one, respectively. In the mutation 
process, a character of the code is changed to any of the other 
characters of the code with equal probability. As shown in 
Fig. 2, position 18 of string R.l is changed from zero to one. 
The learning process continues for the specified number of 
epochs. 

IV. RESULTS 
The mean and the standard deviation of the seven MUAP 

parameters form the 14-element feature vector that describes 
each subject. Each vector has been decoded into 49- and 74-bit 
strings (environmental messages) as shown in Table 11. The 
49-bit string decoding scheme is considered to provide the 
minimum acceptable resolution required by the physician in 
reaching a conclusive diagnosis, whereas the 74-bit decoding 
scheme represents the resolution that MUAP parameters are 
usually measured by the EMG machine. 

GBML models were investigated by varying the values of 
the parameters, environmental message length (s ize) ,  number 
of classifiers (cl), lifetax (Ztaz), period of GA introduced 
(TGA), crossover probability (pc ) ,  and mutation probability 
( p m ) ,  see Table 111. Over 1000 models have been investigated 
by combining the values of the above parameters. Three differ- 
ent sets of data, with MUAP sample size 20, 10, and five, were 
also used for training. The stopping criterion of learning for the 
investigated models was set at 10 000 iterations. By the end of 
training the input data was applied to the classifier system 416 
times or epochs (10000/24). The diagnostic performance of 
models for the training and evaluation data sets are expressed 
as a percentage of correctly classified cases by TR (training 
set) and EV, respectively. For example, EV is equal to 60% 
if six of the 10 subjects in the evaluation set are classified 
correctly by the model. 

A. Selected GBML Models 
The 28 GBML models, shown in Table IV, were selected 

from all those investigated, by applying the following criterion: 
(MUAP sample size equal to 20) AND (diagnostic yield for 
TR at least 95%) AND (diagnostic yield for EV at least 
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MUM Parameters 

Duration mn 

Duration sd 

Spikeduration mn 

Spikeduration sd 

Ampfihl& mn 

Amplitude sd 

Area mn 

Area sd 

Spike area mn 

Spikearea sd 

Phases mn 

Phases sd 

TUmS mn 

Tums sd 

TABLE I11 

environmental message length, size 

no. of classifiers, cf 

49,74 bits 

100, 150,200, 250,300,500 

bidtax, btax 0.01 

lifetax, ltax 

period of GA introduced, TGA 

0.000, 0.002, 0.005, 0.010 

50, 100,200,500 

proportion select, ps 10% 

crossover probability, pc 0 5 ,  1.0 

mutation probability, pm 

no of iterations 10,000 

0.00, 0.01, 0 M 

70%). The threshold of 95% for TR and 70% for EV were 
suggested by two expert neurophysiologists after studying the 
material under investigation. In this respect, a GBML model 
is considered “successful” for clinical purposes if it satisfies 
the above criterion. The tabulation of the models, shown in 
Table IV, was carried out by size (49, 74), cl (200, 250, 300, 

l .O), and p ,  (0.00, 0.01, 0.02). The first 13 models are of 
size 49 and the remaining 15 models are of size 74. The 
performance of the models with MUAP sample size 10 and 
five is also shown in Table IV. 

500), ltax (0.000, 0.002), TGA (SO,” 100, 200, SOO), p ,  (0.5, 

B. Effect of MUAP Sample Size 
Quantitative MUAP analysis requires 20 MUAP’s to be 

collected per muscle so as to allow the physician to draw con- 
clusions regarding any underlying pathology. In this section, 
an attempt was made to investigate the diagnostic performance 
of GBML models supplied with the 14 element feature vector 
that resulted from only 10 MUAP sample sizes rather than the 
20. For this purpose the mean and standard deviation of the 
seven parameters of the first 10 MUAP’s for each subject were 
computed. The same exercise was repeated by selecting only 
the first five MUAP’s. As shown in Table N, models with 

49bitdecdiag I 74bitdemdhg 

no. ofbas 

5 

4 

4 

3 

4 

3 

4 

4 

5 

5 

2 

2 

2 

2 

e 
0.125 

05 

0.125 

0.5 

5 

12.5 

6.2s 

25 

4.2 

16.6 

1 

2 

1 

2 

M U M  sample sizes of 10 and five gave poorer performance. 
For MUAP sample size equal to 10 and five, only models 
25 and 11, respectively, satisfy the 20 MUAP sample size 
inclusion criteria of TR 2 95 and EV 2 70%. The rest 
of the analysis in this section refers to models with MUAP 
sample size equal to 20. 

C. Effect of the Environment Message Length 

The environment message length is derived by deciding 
the range of each parameter and the decoding procedure. 
The longer the length of the environment message, the better 
the resolution, and thus one would expect to see significant 
improvement in the performance of a model with greater size. 
In this study, as shown in Table IV, clearly models with 
length 74 performed better than those with length 49; the 
improvement, however, is not as good as one would expect to 
see. This result suggests that the size of 49 bits was sufficient 
for accommodating the complexity of the feature vector. 

D. Effect of the Number of Clussijiers 

Table V illustrates the effect that cl has on the diagnostic 
yield for size = 74, ltax = 0.002, p ,  = 0.5, pm = 0.01, 
and MUAP sample size = 20. This table shows that both the 
training and evaluation performance improved as the number 
of classifiers increased until it reached the value of 500. 
TGA has little effect on the diagnostic performance of the 
models; however, for TGA = 500, cl = 300, and 500, a 
20-30% increase in EV was obtained. Similar findings were 
also obtained when the following GMBL parameters were 
changed to ltax = 0.000, p c  = 1.0, and pm = 0.02. 

\ 

E. Effect of Lifetax 

The effect of lifetax is shown by the performance of the 
models in Table VI. By increasing the ltax the TR is reduced, 
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TABLE IV 

No. 
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21 
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74 

74 

74 

74 

74 

14 

74 

74 

74 

74 

74 

74 

74 

74 - 

- 
d 

- 
200 

200 

200 

200 

200 

200 

2% 

300 

300 

500 

500 

500 

500 

300 

300 

300 

300 

300 

300 

500 

500 

500 

500 

500 

500 

500 

500 

500 

0 

0 

0 

0.002 

0.002 

0.002 

0.002 

0 

0 

0 

0 

0 

0.002 

0 

0 

0 

0 

0 

0.002 

0 

0 

0 

0 

0 

0.002 

0.002 

0.002 

0.002 

% 
TkA 

- 
100 

200 

500 

50 

50 

50 

500 

100 

500 

100 

200 

500 

100 

50 

50 

100 

500 

500 

100 

50 

100 

500 

500 

500 

50 

100 

200 

500 

- 
pc 

- 
1 

1 

0.5 

0.5 

0.5 

1 

0.5 

1 

1 

0.5 

0.5 

1 

1 

0.5 

1 

0.5 

1 

1 

0.5 

1 

0.5 

0.5 

1 

1 

0.5 

0.5 

1 

0.5 

- 
P 

- 
0.02 

0 

0.01 

0.01 

0.02 

0.01 

0.02 

0.02 

0.02 

0.01 

0.01 

0 

0.01 

0.02 

0.01 

0.01 

0 

0.02 

0 01 

0 

0 

0 

0.01 

0.02 

0 

0.02 

0.01 

0.01 

h 

a0 

T R W  

98 

98 

95 

95 

% 

95 

95 

95 

98 

98 

98 

98 

% 

99 

98 

99 

98 

99 

% 

98 

99 

99 

98 

99 

% 

98 

96 

99 

m 
70 

70 

70 

70 

80 

70 

70 

80 

70 

80 

70 

70 

70 

70 

70 

80 

70 

70 

70 

70 

70 

70 

80 

70 

80 

70 

80 

T R W  

9 2 8 0  

8 8 4 0  

82 50 

85 50 

85 50 

89 50 

89 40 

9 4 5 0  

90 70 

95 40 

9s 40 

98 60 

96 30 

9 2 4 0  

9 3 5 0  

9 2 3 0  

84 30 

92 60 

93 50 

97 40 

95 50 

95 60 

95 60 

95 40 

98 70 

95 50 

97 50 

94 40 

5 

T R W  

9 3 7 0  

95 60 

91 40 

9 4 6 0  

9 3 6 0  

95 40 

9 4 6 0  

9 7 3 0  

95 40 

99 10 

9 9 7 0  

91 30 

9 7 6 0  

89 10 

95 30 

87 10 

95 60 

9 0 3 0  

8 8 5 0  

9 9 3 0  

9 9 4 0  

9 9 4 0  

9 8 6 0  

9 9 5 0  

9 6 4 0  

98 50 

9 7 3 0  

95 U) 

Percentage diagnostic performance: TR = training set EV = evaluation set 

TABLE V 

size = 74. ltax = 0.002. M: = 0.5. om = 0.01, MUAP samule size = 20 

whereas the EV remains at the same levels. This finding 
suggests that during the training phase :several classifiers are 
lost because of the lifetax penalty, thus reducing the diagnostic 
yield during this phase. There is no effect on the diagnostic 
yield of the evaluation data as no lifetaut is deducted during 

the evaluation phase. Besides, it is shown that Ztax has no 
significant effect on the quality of the resulting model. The 
significance of the ltux is important, however, since it makes 
the model more robust for sustaining temporal changes. These 
finding were also obtained by studying models with classifier 



434 

50 

100 

200 

500 

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7 ,  NO 2, MARCH 1996 

98 60 95 50 n 80 80 50 

98 30 94 30 88 40 75 30 

98 40 91 50 79 50 72 30 

99 40 87 70 82 50 69 70 

50 

100 

200 

500 

94 40 94 40 93 40 

95 50 96 40 95 70 

93 30 95 50 94 60 

98 40 93 70 98 80 

TABLE WI 

0 

0.01 

0.02 

05 1.0 

TR Ev TR EV 

99 70 98 50 

98 40 98 70 

99 40 99 80 

size = 74 and keeping the other parameter values the same as 
those shown in Table VI. 

F. Effect of the GA 

In this exercise the parameters of the GA, T G A , ~ ~ ,  and p ,  
are investigated. 

Period of GA Introduced: Table VI1 shows that the models 
which called the genetic algorithm less frequently (every 500 
epochs than every 50 epochs) produced better results. This 
finding suggests that the GA should not be called upon very 
frequently because it causes drastic changes to the classifiers, 
at a higher rate than the system can accommodate. The 
'introduction of the GA is needed for generating new classifiers 
that will hopefully make a good match with some inputs. If i 
the rate of introduction is high there is a high probability that 
many good classifiers are replaced by offsprings that are not 
as good as their parents. 

Crossover: Table VI11 shows that the models with pc  = 
1.0 have an overall better performance with respect to the 
diagnostic yield than the models with p c  = 0.5. The high value 

of the crossover probability was suggested also by Goldberg 
[9]. The above holds as long as the period of introducing GA, 
TGA, is kept constant. 

Mutation, p,: The probability of mutation was kept at low 
rates compared to pc  following 191. The effect of this parameter 
is illustrated in Tables VI1 and VIII. Table VI1 shows that the 
best model is that with TGA = 500 and p ,  = 0.02. Table VI11 
shows that for p ,  = 1.0 EV increases as p ,  increases. 

G. Learning Pe~ormance 
Learning performance curves of selected models are shown 

in Figs. 3 and 4. Each graph shows the percentage diagnostic 
yield of the TR, against the number of iterations. The percent- 
age yield calculated at each iteration, is the cumulative value 
of correctly identified subjects. Fig. 3 shows a set of learning 
curves that corresponds with models having values pc and 
p,. All the models had the same values for the remainder 
of the parameters (size = 49, cl = 200, TGA = 200, ltax 
= 0.000). Similar learning curves were obtained when the 
value of lifetax was changed to 0.002. As shown in Fig. 3 
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Fig. 3. 
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Iterations 

Fig. 4. 

the value of TR reaches 78% of success within 500 iterations. 
Learning then continues at a slower rate:, with TR reaching 
values within the range of 88 to 95%. It was also observed 
that faster learning is exhibited for all of the presented models 
when the lifetax is increased to 0.002. TR reached values of 
the order of 84% within 500 iterations. This rate of faster 
learning for GBML models with ltux = 0.002 continues until 
the number of iterations reaches 1500. Thereafter, TR levels 
off to the same values as those shown in Fig. 3. 

Fig. 4 shows the learning performance of GBML models 
with size = 74, cl = 500, TGA = 200, and ltax = 0.000. It 
is shown that faster learning was obtained as compared with 
Fig. 3. In Fig. 4 at 500 iterations, TR was 87%. It is shown 
that further training resulted in higher diagnostic performance 
compared to Fig. 3. When the value of ltux was increased to 
0.002, a slightly better diagnostic performance was obtained as 
compared with that of models in Fig. 3. As shown in Figs. 3 
and 4, varying p ,  and p m  causes no significant change in TR 
that can suggest any correlation with the learning behavior of 
the models under study. 

H. Strength Distribution 
The strength distribution at the end of training is shown for 

models with size = 49, cl = 200, TGA = 100, p ,  = 1.0, 
p ,  = 0.02, and ltax = 0.000, and 0.002 in Figs. 5 and 6, 
respectively. 

Fig. 5 shows that 38.5% of the classifiers had a value of 10, 
that is, they represent the rules that have to be discarded. Fifty- 

-" I 
16 

i! z 
x 5 12 

g 8  

8 
-2 

c 

0 0) 

4 

0 
0 1 2  3 4 5 6 7 8 9 10 

Strength 

Fig. 5. 

Strength 

Fig. 6. 

eight percent of the classifiers take strength values between 
six and nine, with only 3.5% having strength less than or 
equal to five. The classifiers that match the MY0 group are 
almost twice as many as those matching the MND and NOR 
groups, that is 30.5%, 13.5%, and 14%, respectively. In Fig. 6, 
42% of the classifiers resulted in zero strength. In this model, 
for strength values between one-four, 25.5%, 16%, and nine 
percent of the classifiers were distributed to the NOR, MND, 
and MY0 groups, respectively. 

For the model with size = 74, cl = 500, TGA = 500, p ,  = 
1.0, p ,  = 0.02, and ltax = 0.000, the percentage of classifiers 
with strength frequencies 10, nine, eight, and less than or equal 
to seven were 78.8%, 12.4%, 3.2%, and 5.6%, respectively. 
Out of the 500 classifiers, only 106 classifiers remained active 
(useful) after completion of the training process. For the same 
model, but with ltax = 0.002, the percentage of classifiers 
corresponding to strength frequencies of zero, one, two, and 
six was 82.2%, 7.0%, 3.2%, and 3.2%, respectively. 

Summarizing the results of this section, it can be concluded 
that: 1) approximately 60% and 20% or 140 and 100 classifiers 
survived the learning process for the investigated models with 
cl = 200 and 500, respectively, and 2) with ltax = 0.000 
productive classifiers have strength with ascending distribution 
between six-nine, whereas with ltux = 0.002 productive clas- 
sifiers have strength with descending distribution in the range 
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TABLE IX 

TABLE X 

Trainiagtime 
No. Adlifemlre Gain 4 Epochs, (-W 

Total one 
Epoch 

1 14-10-15-3 0.1 0.1 1033 207 0.20 

2 144-10-3 0.1 0.1 392 216 0.55 

3 14-108.20-3 0.5 0.5 67 135 2.01 

’ p = momentum 

TABLE XI 

Training @me 
Output Grid Size 

10x10 0.10 

3 12x12 I 0.9 63 0.16 

TR EV 

I 

100 

100 

100 - 

EV 

80 

80 

80 - 

of one-three. All classifiers, irrespective of their matching 
success, have to pay lifetax. This penalty results eventually 
to the “extinction” of nonmatching classifiers. 

I. A Hybrid EMG Diagnostic System 
A hybrid EMG diagnostic system was built incorporating 

selected models trained with the backpropagation algorithm 
[ 141, the self-organizing feature maps algorithm [ 151, and the 
GBML classifier system. This hybrid system is based on the 
following modules: 
INPUT: Composed of the 14-element feature vector. 
CLASSIFIER SYSTEM: Composed of both supervised and 
unsupervised modules as follows: 
Supervised trained EMG module: 

* three models trained with the GBML paradigm 

0 three models trained with the backpropagation algorithm 
(Table IX); and 

(Table X) [7]. 
Unsupervised trained EMG module: 

algorithm (Table XI) [7]. 
0 three models trained with the self-organizing feature maps 

OUTPUT: The output from each of the nine models is fed 
into the diagnostic assessment module. The performance of 
the system is expressed as a string, indicating the number of 
models that classified a certain subject under investigation as 
NOR, and/or MND, and/or MYO. 

Neural network backpropagation models and self-organizing 
feature maps gave similar diagnostic performance of the 
order of 80%. Two of the backpropagation models shown 
in Table X achieved EV = 90%. Several backpropagation 
models with different architectures, gain, and momentum 
factors were investigated [7]. Models with small architec- 
tures, shown in Table X, require more epochs during training, 
thus are more demanding in computation power (in one 
epoch, the data of the 24 subjects in the training set are 
input to the algorithm). For models with bigger architectures, 
however, the number of epochs and training time are also 
reduced. For neural network models trained with the Ko- 
honen’ s self-organizing feature maps algorithm, computation 
time per epoch is the smallest compared to the backprop- 
agation and the GBML algorithms. Total training time for 
the model with grid size 10 x 10 (Table XI) is similar 
to GBML training of model 3 (Table IX). GBML models 
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SUBIECPS 

NOR9 

NORlO 
NOR11 

NOR12 
MND9 

MNDlO 

h4NDll 

MY09 
MY010 

moll 

TABLE XI1 

- HYBRID S Y m M  OUTPUT 

NOR MND MY0 - 
9/9 (100%)’ 019 (0%) 0/9 (0%) 

8/9 (89%) 019 (0%) 1/9 (11%) 

819 (89%) 019 (0%) 1/9 (11%) 

9/9 (100%) 0/9 (0%) 0/9 (0%) 
119 (11%) 819 (89%) 0/9 (0%) 

419 (44%) 519 (56%) 019 (O%:i 

2/9 (22%) 119 (78%) 0/9 (0%) 

3/9 (33%) 319 (33%) 319 (33%) 

219 (22%) 0/9 (0%) 719 (78%) 
a/9 (0%) 019 (0%) 9/9 (100~16, 

CC at DL z 55% 

YES 

YES 
YES 
YES 

YES 

YES 

YES 

NO 
YES 

YES 

CC= Correct Classification DL= Diagnostic Level 
‘919 (100%) indicates that 9 out of the 9 models classified the subject NOR9 as NOR, 

given in Table IX were trained for 100 epochs (2400 itera- 
tions). 

The diagnostic performance of the hybrid EMG system 
was tested using the data of the evalnation set, as shown 
in Table XII. Subjects NOR9, NOR12, and MY011 were 
correctly classified by all the models (9/9). Subjects NOR10 
and NOR11 were classified as NOR by eight of the nine 
models, with one model classifying them as MYO. Similarly, 
subject MND9 was identified as MND b y  eight, and as NOR 
by one of the nine models. These findings are also expressed 
in percentage format, see Table XII. A minimum decision 
level was set at 55%, i.e., when five or more of the nine 
models were giving the same diagnosis. With this criterion 
the cases in the evaluation set were assessed and the results 
are shown in the last column of Table XII. For example, 
MNDlO was classified as NOR by four models, and classified 
as MND by five models (CC‘ = YElS); subject NORlO 
was classified as NOR by all eight models, and as MY0 
by one model (CC = YES); subject MY09 was classified 
as NOR, MND, and MY0 by three models in each class 
(CC = NO). 

‘ 

V. DISCUSSION 

GBML models supplied with EMG (data can be used for 
the successful assessment of normals, and patients suffering 
with MND or myopathy. Important aldvantages of GBML 
models compared to other models justify mg their further appli- 
cation in clinical EMG include: 1) simplicity in implementing 
GBML classifier systems; 2) ease of training and instantaneous 
evaluation; 3) ease in extracting useful rules by studying 
the classifiers; 4) parallel activation of rules; and 5 )  support 
reasoning with uncertainty in the sense that the strength of 
each classifier reflects the previous utility of its inference in 
the past performance of the system. 

Quantitative MUAP analysis was developed by Buchthal 
in the 1950’s, who routindy studied 20 MUAP’s per muscle 
[12]. In this study, selected GBML models derived with 
MUAP sample size 20 had a high diagnostic yield with 
TR 2 95 and EV 2 70%. The material under study 
and the diagnostic performance of the selected GBML mod- 

els was examined by two expert neurophysiologists. They 
claimed that “the performance of GBML models was com- 
parable to that of an experienced neurophysiologist.” The 
performance of the GBML models, shown in this study, is 
comparable to the backpropagation neural network and the 
self-organizing feature maps algorithms for classifying the 
same EMG data set. The K-means cluster analysis algorithm 
was also applied to the same set of data [7]. Performance of 
this system was very poor, however, with TR = 58% and 
EV = 50%. 

Findings of this study can be compared with the two dif- 
ferent automated EMG diagnostic systems developed through 
the European Community ESPRIT project P599. MUNIN 
(Muscle and Nerve Inference Network) that employs a causal 
probabilistic network for interpretation of electromyographic 
findings was developed by Andreassen and colleagues [5]. 
Design of the MUNIN system assumed a priori knowledge of 
diseased pathophysiological models, and also the associated 
conditional probabilities. The decision process is explained to 
the clinician by allowing him to inspect the nodes representing 
diseases, pathophysiology, and test results. In an evaluation 
study a panel of EMG’ers found this type of explanation 
to be intuitively appealing. In the same study the system 
was evaluated using a peer-review methodology. In 11 cases 
no major discrepancies were found between the consensus 
opinion of the clinicians and the opinion of the system. 
KANDID (knowledge-based assistant for neuromuscular dis- 
orders diagnosis), a rule-based EMG expert system prototype, 
was developed by Fuglsang-Frederiksen and his team [4]. 
WNDID was tested by nine clinical neurophysiologists at 
seven different EMG labs in Europe [ 161. Neurophysiologists 
agreed with the KANDID diagnosis in 53% of the 143 cases 
investigated. The variation from examiner to examiner was 33 
to 77% [16]. 

Models trained with MUAP sample size of 10 and five gave 
poorer diagnostic performance. Although few of these models 
resulted in good performance, with TR 2 95 and EV >_ 70%, 
it is felt that more EMG data are required for evaluating their 
diagnostic behavior. These findings agree with data published 
in a recent paper on the effect of MUAP sample size on the 
diagnostic yield [17]; the presence of myopathy in two of the 
10 patients was supported by the analysis of five MUAP’s and 
in nine of the 10 patients with the analysis of 20 MUAP’s. AS 
has already been mentioned, results discussed apply to MUAP 
sample size = 20. 

Diagnostic performance for the selected GBML models was 
slightly better for the 74-bit data string. For this group, only 
models with 300 and 500 classifiers satisfied the TR 2 95% 
and EV 2 70% criterion. Most of the models trained with the 
49-bit string that satisfied the above criterion had cl = 200, 
and 500. Selected models with size = 49 and 74 and cl = 200 
and 500, respectively, were trained with lifetax = 0.000 and 
0.002. The GA was called periodically by the classifier store to 
introduce “better” rules into the system. Findings of this study 
suggest that the GA should not be called upon very frequently, 
otherwise the system cannot tolerate changes in the classifier’s 
string structure and strength. For the crossover operation, given 
that TGA is kept constant, models trained with p ,  = 1.0 gave 
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better diagnostic yield than models trained with p ,  = 0.5. The 
mutation operation was kept at low rates compared to p,. 

Learning performance for the selected GBML models in- 
vestigated was better for the 74-bit data string. In addition, 
when the value of lifetax was 0.002 the leaming process 
was accelerated. Furthermore, for a given period of GA 
introduced and a number of classifiers, variations in the 
crossover and mutation probabilities cause limited effect on 
the learning performance. Strength distribution histograms 
portray the status of the classifiers at the end of training. 
From the limited number of GBML models investigated, it 
is observed that in 49-bit models with 200 classifiers, more 
classifiers survived when compared to the 74-bit models with 
500 classifiers. 

GBML models, backpropagation neural networks, and the 
self-organizing feature maps, achieved similar diagnostic per- 
formance, both for the training and evaluation sets [7], [SI. 
Total computation time required for training, however, was 
reduced for GBML learning as compared with the back- 
propagation and the self-organizing feature maps paradigms. 
Analysis of the computation time for one epoch shows that 
the self-organizing algorithm is the most efficient, whereas 
the GBML training requires fewer epochs. For the back- 
propagation learning, although small architectures require less 
computation time, the number of epochs required for the 
training is considerably greater, with the opposite being true 
for large architectures. Furthermore, these findings agree with 
a recent study where the diagnostic performance of GBML 
and backpropagation models produced similar results in three 
medical domains [ 181. 

In practice, it is suggested that a hybrid diagnostic system 
could be built incorporating both GBML and neural net- 
work models. With this scheme, the decision is expressed 
as a string giving the number of models that classified the 
subject under investigation in the diseases recognized by 
the system. The ability to combine diagnostic yields from 
different models expressed in an overall score enhances the 
usefulness of computer-aided diagnosis in the clinical context. 
The system could also give the option to the physician 
for deciding whether a neural-network or GBML opinion is 
required. Finally, the hybrid EMG system could be combined 
with the following computer aided modules: patient’s clinical 
assessments muscle biopsy study, biochemical findings, and 
genetic and molecular genetic findings. This would provide 
an integrated approach for the diagnosis of patients suffering 
with neuromuscular disorders [19], [20]. 

VI. CONCLUSION 

The usefulness of GBML has been assessed when applied to 
the classification of EMG findings. It provides an additional 
element in the hybrid EMG diagnostic system. The various 
GBML parameters were studied and their significance in 
building learning models was determined. The findings verified 
some theoretical aspects of GBML and helped in developing 
empirical rules for building successful EMG models. Work in 
progress includes the use of advanced operators and techniques 
in genetic search, also the development of a multidisciplinary 

approach that uses both clinical and laboratory findings for 
the diagnosis of patients suffering with neuromuscular disor- 
ders. 
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