
Readme of the Antarex Dataset

Alessio Netti1, Zeynep Kiziltan1, Ozalp Babaoglu1

Alina Ŝırbu2, Andrea Bartolini3, Andrea Borghesi3

1 Department of Computer Science and Engineering
University of Bologna, Italy

{alessio.netti, zeynep.kiziltan, ozalp.babaoglu}@unibo.it
2 Department of Computer Science

University of Pisa, Italy
alina.sirbu@unipi.it

3 Department of Electrical, Electronic and Information Engineering
University of Bologna, Italy

{a.bartolini, andrea.borghesi3}@unibo.it

Abstract. The Antarex dataset contains trace data collected from an
homonymous experimental HPC system located at ETH Zurich while it
was subjected to fault injections. The dataset is publicly available for use
by the community. In this document we give an overview of the dataset,
by describing the experimental set up associated with data acquisition
and discussing the features extracted from the dataset.

1 Dataset Overview

In order to acquire data, we executed benchmark applications and at the
same time injected faults in the system at specific times via dedicated
programs, so as to trigger anomalies in the behaviour of the applications.
One type of data in the dataset refers to a series of CSV files, each con-
taining a set of system performance metrics sampled through an HPC
monitoring framework. Another type refers to the log files detailing the
status of the system (i.e. currently running benchmark applications or in-
jected fault programs) at each time point in the dataset. Such a structure
enables researchers to perform a wide range of studies on the dataset.
Moreover, since we collected the dataset by streaming continuous data,
any study based on it will easily be reproducible on a real HPC system,
in an online way.
The dataset is divided in two parts. The first part includes only the
CPU and memory-related benchmark applications and fault programs,
while the second is strictly hard drive-related. We executed each part
in both single-core and multi-core variants. In the former, we executed
all benchmark applications and fault programs on one specific core with
one thread. In the latter, conversely, we executed benchmark applications
with multiple threads on 8 of the 16 cores of the system, and executed
fault programs freely on any of them. This structure resulted in 4 blocks
of nearly 20GB of data in total, each block being obtained at different
execution times, during an acquisition period of 32 days. The dataset



Table 1. A summary of the structure for the Antarex dataset.

Dataset Type Parallel Duration Benchmark Fault
Block Programs Programs
Block I

CPU-Mem
No

12 days DGEMM4, HPCC5,
STREAM6, HPL7

leak, memeater, ddot,
dial, cpufreq, pagefailBlock III Yes

Block II
Hard Drive

No
4 days IOZone8, Bonnie++9 ioerr, copy

Block IV Yes

structure is summarized in Table 1. The related benchmark applications
and fault programs will be explained in the following subsections.

2 Experimental Setup for Data Acquisition

The Antarex HPC node used for data acquisition consists of two Intel
Xeon E5-2630 v3 CPUs, 128GB of RAM, a Seagate ST1000NM0055-1V4
1TB hard drive and runs the CentOS 7.3 operating system. The node
has a default Tier-1 computing system configuration. In order to sched-
ule the execution of the benchmark applications and to inject faults,
we used the FINJ tool [5] in a Python 3.4 environment, with its fault-
injecting engine running on the target machine itself, and its orchestrat-
ing controller running on a remote host. In order to collect performance
metrics from the target system for the duration of the experiment, we
used the Lightweight Distributed Metric Service (LDMS) framework [1].
Like FINJ, the sampler component of LDMS was running on the target
node, while the collector component was running on a remote host. We
configured LDMS to sample a variety of metrics at each second, which
come from the following seven different plug-ins:

1. meminfo collects general information on RAM usage;
2. perfevent collects CPU performance counters;
3. procinterrupts collects information on hardware and software inter-

rupts;
4. procdiskstats collects statistics about hard drive usage;
5. procsensors collects metrics about CPU temperature and frequency;
6. procstat collects general metrics about CPU usage;
7. vmstat collects information about virtual memory usage.

This configuration resulted in a total of 2094 metrics collected at each
second. Some of the metrics are system-wide, and describe the status of
the system as a whole, others instead are core-specific and describe the
status of a specific CPU core. Since there are 16 cores in our system,
these metrics will have 16 instances as well, one for each core.
In order to minimize noise and bias in the sampled data, we chose to
analyze, execute benchmarks and inject faults into only 8 of the 16 cores

4 https://lanl.gov/projects/crossroads/benchmarks-performance-analysis.php
5 https://icl.cs.utk.edu/hpcc/
6 https://www.cs.virginia.edu/stream/
7 https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
8 https://www.iozone.org
9 https://www.coker.com.au/bonnie++/



available in the system, and therefore used only one CPU. On the other
CPU of the system, instead, we executed the FINJ and LDMS tools,
which rendered their CPU overhead negligible.

3 Features of the Dataset

The FINJ tool orchestrates the execution of benchmark applications and
the injection of faults by means of a workload file, which contains a list
of benchmark and fault-triggering tasks to be executed at certain times,
on certain cores, for certain durations [5]. For this purpose, we used
several FINJ workload files, which were generated using FINJ’s built-in
workload generator, one for each block of the dataset.

Workload Files. We used two statistical distributions in the workload
generator to create the durations and inter-arrival times of the bench-
mark and fault-triggering tasks. We define the inter-arrival time as the
interval between the start of two consecutive tasks. The benchmark tasks
are characterized by rather simple duration and inter-arrival features. By
using normal distributions, we achieved that 75% of the dataset’s dura-
tion is spent running benchmark applications. This resulted in regular
benchmark tasks, having an average duration of 30 minutes, and average
inter-arrival times of nearly 40 minutes.

The fault-triggering tasks are modeled in a more complex way. In or-
der to achieve a realistic behavior, we chose to generate faults in the
workload using statistical distributions fitted from real historical data,
rather than specifying them analytically. For this purpose, we used the
Grid5000 trace available on Fault Trace Archive10, which includes the
host failure records of the Grid5000 large-scale cluster [2] belonging to
the period of May 2005 to November 2006. We extracted from this trace
the inter-arrival times of the host failures. Such data was then scaled and
shifted to obtain an average of 10 minutes, while retaining the shape of
the distribution. We then fitted the data using an exponentiated Weibull
distribution, which is commonly used to characterize failure inter-arrival
times [3]. To model durations, we extracted for all hosts the time in-
tervals between successive absent and alive records, which respectively
characterize host failure and recovery events. We then fitted a Johnson
SU distribution over a cluster of the data present at the 5 minutes point,
which required no alteration in the original data. This particular type of
distribution was chosen because of the quality of the fitting.

In Figure 1, we show the histograms for the durations (a) and inter-
arrival times (b) of the fault tasks in the workload files, together with
the original distributions fitted from the Grid5000 data. We observe that
the histograms differ slightly at the peaks, compared to the respective
reference distributions. This is because the workload generator is allowed
to manipulate the durations and inter-arrival times to ensure that faults
cannot overlap in time.

10 http://fta.scem.uws.edu.au/



100 200 300 400 500 600
Time [s]

.000

.002

.005

.007

.010

.012

.015

(a) Histogram of fault durations.

500 600 700 800 900 1000 1100
Time [s]

.000

.002

.005

.007

.010

.012

.015

.017

.020

(b) Histogram of fault inter-arrival times.

Fig. 1. Histograms for fault durations (a) and fault inter-arrival times (b) in the
Antarex dataset, compared to the PDFs of the Grid5000 fitted data.

Benchmark Applications. We used a series of well-known benchmark
applications to load the Antarex HPC node while acquiring the dataset,
stressing different parts of the system and providing a diverse environ-
ment for fault injection. Since we limit our analysis to a single machine,
we use versions of the benchmarks that rely on shared-memory paral-
lelism, for example through the OpenMP library. The benchmark appli-
cations are listed in Table 1 and are the following:

1. DGEMM measures matrix-to-matrix multiplication performance;

2. HPC Challenge (HPCC) is a collection of benchmarks that stress
both the CPU and memory bandwidth of an HPC system;

3. Intel distribution for High-Performance Linpack (HPL) measures
performance in solving a system of linear equations;

4. STREAM measures a system’s memory bandwidth;

5. Bonnie++ measures HDD read-write performance;

6. IOZone measures HDD read-write performance.

Fault Programs. We now discuss the fault programs that we imple-
mented and used to reproduce anomalous conditions in the analyzed
HPC system, which are available at the FINJ Github repository [5]. As
in [6], each fault program can operate in a high or low-intensity mode,
thus doubling the number of possible fault conditions. The programs,
together with the generated 8 distinct faults and their effects, are the
following:

1. leak periodically allocates 16MB arrays which are never released.
In low-intensity mode, 4MB arrays are allocated [6]. This program
produces a memory leak fault, which leads to memory fragmentation
and severe system slowdown when memory saturation is reached;

2. memeater allocates a 36MB array which is filled with integers. The
size of the array is then periodically increased and new elements are
filled in. The application restarts after 10 iterations. In low-intensity
mode, an 18MB array is used [6]. This program produces a mem-
ory interference fault by saturating memory bandwidth, resulting in
degraded performance for running applications;



3. ddot repeatedly calculates the dot product between two equal-size
matrices. The sizes of the matrices change periodically between 0.9,
5 and 10 times the cache’s size. In low-intensity mode, the size of
the matrices is halved [6]. This program produces a CPU and cache
interference fault, resulting in degraded performance for all applica-
tions running on the same CPU as the program;

4. dial repeatedly generates random floating-point numbers and per-
forms numerical operations over them. In low-intensity mode, the
program sleeps for 0.5 seconds for each second of operation [6]. This
program produces an ALU interference fault, resulting in degraded
performance for applications running on the same core as the pro-
gram;

5. cpufreq decreases the maximum allowed CPU frequency by 50% of
its original value through the Linux Intel P-State driver11. In low-
intensity mode, the maximum frequency is reduced by 30%. This
program simulates a system misconfiguration or failing CPU fault,
resulting in degraded performance for running applications;

6. pagefail makes any page allocation request fail with 50% proba-
bility, by using the Linux kernel’s fault injection framework12. In
low-intensity mode, page allocations fail with 25% probability. This
program simulates a system misconfiguration or hardware malfunc-
tion fault, causing performance degradation and stalling of running
applications;

7. ioerr triggers errors upon hard-drive I/O operations, again using
the Linux kernel’s fault injection framework. One out of 500 I/O
operations fails with 20% probability in high-intensity mode, and
with 10% probability in low-intensity mode. This program simulates
a failing hard drive fault, causing degraded performance for I/O-
bound applications, as well as potential errors and crashes;

8. copy repeatedly writes and then reads back a 400MB file from a
hard drive. After such a cycle, the program sleeps for 2 seconds. In
low-intensity mode, a 200MB file is used [4]. This program simu-
lates an I/O interference or failing hard drive fault by saturating
I/O bandwidth, and results in degraded performance for I/O-bound
applications. Unlike ioerr, copy does not cause any I/O operations
to fail and cause errors, but only slows them down, thus reproducing
a different anomalous condition.

The faults triggered by our programs can be grouped in three categories
according to their nature. The interference faults (i.e. leak, memeater,
ddot, dial and copy) occur when orphan processes are left running in the
system, saturating resources and slowing down the other processes. The
misconfiguration faults occur when a component’s behavior is outside of
its specification, due to a misconfiguration by the users or administrators
(i.e. cpufreq). Finally, the hardware faults are related to physical com-
ponents in the system that are about to fail, and trigger various kinds
of errors (i.e. pagefail or ioerr). We note that some faults may belong to

11 https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
12 https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt



multiple categories, as they can be triggered by different factors in the
system.

References

1. Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop,
J., Gentile, A., Monk, S., Naksinehaboon, N., Ogden, J., et al.: The
lightweight distributed metric service: a scalable infrastructure for
continuous monitoring of large scale computing systems and applica-
tions. In: Proc. of SC 2014. pp. 154–165. IEEE (2014)

2. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot,
E., et al.: Grid’5000: A large scale and highly reconfigurable experi-
mental grid testbed. The International Journal of High Performance
Computing Applications 20(4), 481–494 (2006)

3. Gainaru, A., Cappello, F.: Errors and faults. In: Fault-Tolerance Tech-
niques for High-Performance Computing, pp. 89–144. Springer (2015)

4. Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures. In: Proc. of SRDS 2013.
pp. 205–214. IEEE (2013)

5. Netti, A., Kiziltan, Z., Babaoglu, O., Sirbu, A., Bartolini, A., Borgh-
esi, A.: FINJ: A fault injection tool for HPC systems. In: Proc. of
Resilience Workshop 2018. Springer (2018), https://github.com/

AlessioNetti/fault_injector

6. Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J.,
et al.: Online diagnosis of performance variation in hpc systems us-
ing machine learning. IEEE Transactions on Parallel and Distributed
Systems (2018)

https://github.com/AlessioNetti/fault_injector
https://github.com/AlessioNetti/fault_injector

	Readme of the Antarex Dataset

