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Abstract— SMARTool aims to the accurate risk 

stratification of coronary artery disease patients as well as to 

the early diagnosis and prediction of disease progression. This 

is achieved by the acquisition of data from about 300 patients 

including computed tomography angiographic images, clinical, 

molecular, biohumoral, exposome, inflammatory and omics 

data. Data are collected in two time points with a follow-up 

period of approximately 5 years. In the first step, data mining 

techniques are implemented for the estimation of risk 

stratification. In the next step, patients, who are classified as 

medium to high risk are considered for coronary imaging and 

computational modelling of blood flow, plaque growth and 

stenosis severity assessment. Additionally, patients with 

increased stenosis are selected for stent deployment. All the 

above modules are integrated in a cloud-based platform for the 

clinical decision support (CDSS) of patients with coronary 

artery disease. The work presents preliminary results 

employing the SMARTool dataset as well as the concept and 

architecture of the under development platform. 

I. INTRODUCTION 

Cardiovascular disease (CVD) has been established as 
one of the leading causes of death in western societies having 
social, economic and medical impact [1]. Atherosclerosis is 
the main form of CVD presenting a local phenotype affected 
however by systemic factors. More specifically, systemic 
factors and comorbid conditions such as hypertension and 
diabetes may accelerate the atherosclerotic process. 
Additionally, atherosclerosis has local manifestations 
affected by the hemodynamics and in particular the low 
endothelial shear stress (ESS). Low ESS is found to have a 
multifactorial effect to arterial physiology, for instance to 
gene expression, to endothelial permeability and to 
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inflammation. Several clinical factors contribute to the 
formation of atherosclerotic plaque including age, gender, 
hypertension, hyperlipidemia, and other. Since 
atherosclerosis is affected by several factors, the process is 
multifactorial and starts from the accumulation of low density 
lipoproteins (LDL) in the arterial wall and their oxidation. 
This process triggers an inflammatory response in the arterial 
wall causing the monocyte migration and their transformation 
into macrophages. Consequently, foam cells are formed and 
the smooth muscle cells proliferate causing the wall 
thickening.  

The recent years computational modelling is used for the 
understanding of the mechanisms of atherosclerosis. The 
majority of the studies focus on the blood flow modelling and 
the relation of low ESS with plaque formation [2, 3]. Besides 
the hemodynamics studies, LDL transport modelling is 
performed and its accumulation is associated to plaque 
formation. Most of these studies assume that endothelial 
membrane is a semi-permeable biological membrane with a 
constant permeability. Finally, very recently proof-of-concept 
studies were presented simulating the major steps of the 
atherosclerotic plaque formation process. One major outcome 
of the last decade is the acquisition and collection of big data 
coming from several categories including imaging, 
molecular, clinical, omics, lipidomics and inflammatory 
markers. The aim of this collection is the identification of 
potential risk factors and biomarkers for the risk stratification 
and the early diagnosis and prognosis of the disease. 
However, the main limitation of most of these attempts is that 
there is no comprehensive study or clinical trial, which 
collects data from all the above categories in two time points 
to estimate the progression of atherosclerosis.  

SMARTool project aims to the collection of data from 
approximately 300 patients in two time points including 
computed tomography coronary angiography (CTCA) 
imaging, clinical data, biohumoral, exposome, inflammatory, 
molecular, lipidomics and omics from mRNA. The collected 
data are analysed and processed using machine learning 
algorithms in order to provide risk stratification of coronary 
artery disease (CAD) existence. In case of medium to high 
risk, CTCA is utilized for the 3D reconstruction of coronary 
arteries, the computational modelling of plaque progression 
for prediction Decision Support System (DSS), the non-
invasive fractional flow reserve (FFR) for diagnosis DSS and 
the stent deployment modeling for treatment DSS. The 
proposed approach is integrated into a novel one of its kind 
cloud-based platform. The current work presents the concept 
and architecture of the proposed platform as well as the 
preliminary results of the data analysis.   
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Figure 1. The overall concept of SMARTool platform. 

II. MATERIAL AND METHODS 

A. Concept and approach 

The overall concept of SMARTool is presented in Figure 
1. The collected data includes both imaging data (CTCA) and 
clinical, molecular and cellular data (clinical records, 
phenotype, genotype). As shown in Fig. 1, all non-imaging 
data of baseline and follow-up are analyzed using statistical 
approaches as well as using machine learning techniques. 
The aim is to identify biomarkers and independent predictors 
of CAD severity and progression. The identified markers are 
integrated into a CAD risk stratification algorithm.  

The non-imaging phase of SMARTool is connected with 
an imaging based DSS. The proposed system consists of 
modules of DSS for diagnosis, prognosis and treatment. More 
specifically, the identified patients of medium-high risk from 
the risk stratification algorithm are called for a CTCA 
imaging, data of which are later used for the 3D 
reconstruction of the coronary arteries and the calculation of 
several geometric characteristics such as lumen area, plaque 
burden, calcified and non-calcified plaques, etc. The 
reconstructed geometries are utilized for blood flow and 
plaque growth modelling (prognosis DSS), non-invasive 
Flow Fractional Reserve (FFR) assessment (diagnosis DSS) 
and stent deployment (treatment DSS).  

B. Data acquisition  

Patient-specific data are collected from a retrospective 
database of EVINCI study [4], and it is considered as 

baseline information, while 262 patients are re-enrolled after 
5±2 years for a follow-up re-evaluation. A clinical case report 
(CRFA) platform is developed for data storing and simple 
analytics as depicted in Fig. 2. The platform ensures through 
internal controls, that no faulty entries or missing values are 
added. 

 

Figure 2. The CRFA platform of SMARTool patients’ data collection and 

storage. 

C. CAD risk stratification  

A multimodal multiclass classification problem was 
defined for risk stratification based on the annotations 
provided by the medical experts of SMARTool and 
considering the stenosis degree. Thus, three classes are 
defined: (i) no CAD, (ii) obstructive CAD, (iii) non-
obstructive CAD. The feature classes of demographics; 
clinical data; risk factors; symptoms; molecular variables (i.e. 



  

biohumoral, inflammatory markers and lipids profile); gene 
expression data; exposome; and monocytes were defined. 
The multimodal architecture consists of two processing 
layers which are defined according to late or intermediate 
data integration strategies. The first consists of: (i) decision 
tree-based prediction models (i.e. random forests, boosted 
decision trees) for each data view, whose individual decisions 
are effectively merged using simple mechanisms (e.g. 
weighted voting), or (ii) a multimodal deep neural network 
comprising appropriate deep learning subnetworks for each 
separate data view and, unifying their output into higher 
network layers. Intermediate data integration is based on 
multiple kernel learning. Kernel matrices are computed for 
each data view, and then they are combined, through a 
parametric linear function, in order to generate the final 
kernel matrix. Kernel-based classification (i.e. support vector 
machine, relevance vector machine) is subsequently applied 
to predict CAD risk stratification.  

D. CTCA imaging viewer  

A cloud-based repository is developed based on 
3DnetMedical cloud solution and populated with 
retrospective and follow-up CCTA studies, which are 
retrieved from SMARTool CRFA. The viewer allows several 
visualization layouts and modes, including 2D and 3D 
manipulation, enabling annotation, comparing series and 
studies, creating snapshots and reports, and will integrate the 
functionalities to call the advanced modules for DSS (Fig. 3). 

 

Figure 3. 3Dnet SMARTool Image viewer. 

E. 3D reconstruction of arterial trees 

An innovative methodology and a software tool for 3D 
artery reconstruction of the entire coronary arterial tree based 
on CTCA images has been developed. The proposed 
methodology includes the following steps: pre-processing of 
CTCA images using a Frangi Vesselness filter [5], extraction 
of the vessel centerline using Multistencil Fast Marching 
Method (MSFM) [6], removal of blooming effect, estimation 
of membership distribution functions for the lumen, the outer 
wall and the calcified and non-calcified plaques (CP) 
intensities, implementation of an extension of active contour 
models using prior shapes for the lumen, the outer wall and 
the CP plaques segmentation based on Chan et al. [7] 
methodology and extraction of an adaptive intensity range for 

the detection of (NCP) in the plaque burden region. The 
major improvement of the segmentation algorithm is the 
incorporation of a prior shape comparison term into the 
energy function of the Level Set based model. In the final 
step, the segmented surfaces for each component are 
connected to construct the watertight 3D models. The 
proposed methodology has been implemented into an easy to 
use reconstruction tool.  

 

Figure 4. The 3D reconstruction tool for coronary reconstruction using 

CTCA images. 

F. Prognosis decision support system  

The prognosis DSS is based on the blood flow modelling, 
ESS estimation and plaque growth simulation. For this 
purpose the reconstructed geometries are utilized for finite 
element mesh discretization and an in house solver is used for 
the solution of the system of equations. In particular, Navier-
Stokes are employed for blood flow, while convection-
diffusion equations are employed for modelling the mass 
transport in arterial lumen and wall [8, 9]. Additionally, the 
oxidation of LDL, the inflammation caused by monocytes 
and macrophages and the formation of plaque due to foam 
cells formation and smooth muscle cells proliferation are 
modeled. The overall approach is presented in [10, 11]. 

G. Diagnosis decision support system 

Diagnosis of the stenosis severity and the effect to 
hemodynamics is achieved invasively using a pressure wire 
for calculating FFR. An invasively measured FFR<0.8 is an 
indicator for percutaneous coronary intervention and stenting. 
In SMARTool a cost-effective approach is proposed which is 
employed in the reconstructed arteries using CTCA images 
providing in this way a non-invasive FFR calculation. We 
name the proposed index SmartFFR and its application is 
possible to reconstructed arteries with or without 
bifurcations. The approach is based on two blood flow 
calculations of 1 and 3 ml/s and the computation of the 
pressure gradient over the lesion, normalized by the ratio 
over the range of 0-4 ml/s for a normal artery. In case of 
bifurcation the Murray’s law is implemented for the 
estimation of flow at each branch [2]. 

H. Treatment decision support  

The DSS module for treatment is based on the 
computational modeling of stent deployment in the 
reconstructed arterial segments (Fig. 5). In addition, the 
comparison and evaluation of different procedural options 
taking into account not only the specific anatomical 
characteristics but also the mechanical properties of the 



  

arterial morphology, as well as the plaque type, could reveal 
useful clinical information and assist in the improvement of 
the interventional planning. In the proposed approach the 
stent geometry is placed in the stenosed arterial geometry and 
spatial grid generation is created for all the geometries 
(arterial wall, stent). The arterial wall is assumed to be a 
homogeneous hyperelastic material according to Mooney-
Rivlin law and the stent a bilinear elasto-plastic material. A 
pressure boundary condition is imposed at the inner side of 
the stent, while the ends of the arterial segment are not 
allowed to move and rotate but they are free to move only in 
the axial and radial directions of the stent.  

III. RESULTS  

An initial dataset of 101 patients from SMARTool is used 
for the risk stratification algorithm. The implemented 
machine learning algorithms are feed-forward neural 
networks, support vector machine (SVM) and random forest 
classifiers. The SVM presents the highest accuracy when 
using the features of demographics, risk factors, symptoms, 
molecular systemic variables by applying a feature ranking 
technique according to the InfoGain criterion. Specifically, 
25 and 76 patients are identified as no-CAD and mild to 
severe CAD, respectively. The accuracy, specificity and 
sensitivity are 85.1%, 98.7% and 44%, respectively. The 
methodology of 3D reconstruction was compared to IVUS-
VH based reconstruction and the correlation coefficients for 
the degree of stenosis, the plaque burden, the minimal lumen 
area and the minimal lumen diameter, were 0.79, 0.77, 0.75, 
0.85, 0.81, respectively. SmartFFR has been validated 
compared to invasively measured FFR with a correlation 
coefficient of 0.90 proven to be an accurate diagnostic index 
for DSS. Plaque growth modelling demonstrates that the 
inclusion of variables such as the macrophages and foam 
cells concentrations can increase to 75% the prediction 
accuracy of regions prone to plaque formation providing a 
good accuracy for prognosis DSS. The stent expansion is 
affected by the degree of stenosis. It is observed that the stent 
does not follow a uniform expansion, while highest stresses 
are depicted near the connection of the stent struts. This 
information is useful for the clinical practice and the 
treatment DSS.  

IV. DISCUSSION AND CONCLUSIONS 

SMARTool aims to develop a platform for risk 

stratification and DSS for diagnosis, prognosis and 

treatment. The preliminary results indicate that the 

developed algorithms and methodologies are accurate. More 

specifically, 3D reconstruction is validated using IVUS data 

and the accuracy is higher than the current literature. 

Additionally, the SmartFFR is an accurate diagnostic tool for 

PCI, while complex modelling of plaque growth could be 

used in the future for accurate prediction of regions which 

are prone to disease progression. The preliminary results of 

the effect of low ESS and high LDL concentration are in 

agreement with other studies [2, 3]. Finally, the risk 

stratification algorithm presents high accuracy and 

specificity, while the 44% of sensitivity means a reduction 

of unnecessary imaging and invasive interventions reducing 

the costs of CAD treatment and improving patient’s life.  

 

Figure 5. Von Mises stress (MPa) distribution for the stent in the unloading 

phase. 
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