
A Network Tour of Data Science EPFL, 2018-12-11

Learning on Graphs

Michaël Defferrard



Motivation

x =
y = f(x) =

{
“toxic”
“non-toxic”

y = f(x) = 80% toxic

Goal: learn the unknown function f , using both structure and features.

2 / 63



Graph

graph G = (V, E , A)

vertex set V = {vi} with |V| vertices

edge set E = {ei} with |E| edges

ek = (vi, vj) is an oriented edge from vi to vj

adjacency A ∈ R|V|×|V|

A(i, j) is the weight of the edge (vi, vj)
A(i, j) = 1 if edges are not weighted
A(i, j) = 0 if (vi, vj) /∈ E

3 / 63



Example

v1 v2

v3

v4

e1

e2

e3e4

e5 G = (V, E , A)

V = {v1, v2, v3, v4}

E = {(v1, v2)︸ ︷︷ ︸
e1

, (v4, v1)︸ ︷︷ ︸
e2

, (v3, v2)︸ ︷︷ ︸
e3

, (v2, v3)︸ ︷︷ ︸
e4

, (v4, v4)︸ ︷︷ ︸
e5

}

A =


0 w 0 0
0 0 w 0
0 w 0 0
w 0 0 w

, with edge weight w

4 / 63



Degree

outdegree Dout = diag(A1) = diag(dout)

dout(i) =
∑
j A(i, j) is the (weighted) number of edges leaving vi

indegree Din = diag(1A) = diag(din)

din(j) =
∑
iA(i, j) is the (weighted) number of edges arriving at vi

degree D = 1
2(Dout +Din) = diag(d)

d(i) is the (weighted) number of edges connected to vi
(D = Dout = Din for undirected graphs)

5 / 63



Example

v1 v2

v3

v4

e1

e2

e3e4

e5 A =


0 w 0 0
0 0 w 0
0 w 0 0
w 0 0 w



dout = A1 = (w,w,w, 2w)>

din = 1A = (w, 2w,w,w)

D = 1
2(Dout +Din) =


w 0 0 0
0 3

2w 0 0
0 0 w 0
0 0 0 3

2w


6 / 63



Signals

vertex signal a function x : V → R seen as a vector x ∈ R|V|

x(i) is the value of x on vertex vi

edge signal a function y : E → R seen as a vector x ∈ R|E|

y(k) is the value of y on edge ek = (vi, vj)

Signals are data about vertices and edges, such as features or labels.

7 / 63



Diffusion and random walks

P = D−1
outA is the probability transition matrix of a Markov chain

Properties

I P is a right stochastic matrix, i.e., P1 = 1

I a random walker starting on vi has probability (δiP k)(j) to be on vj after k steps1

I there exists a stationary probability vector x such that xP = x

1The Kronecker delta δi ∈ R|V| has value zero at all vertices but vi where δi(i) = 1.
8 / 63



Example
δP 0 δP 1 δP 2 δP 3

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

xP = x xP = x xP = x xP = x

0.14

0.16

0.18

0.20

0.22

0.24

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

9 / 63



Differential operators

incidence S(i, k) =


−
√

A(i,j)
2 if ek = (vi, vj) for some j,

+
√

A(i,j)
2 if ek = (vj , vi) for some j,

0 otherwise.

(can leave the 1/
√

2 and drop half the edges for undirected graphs)

Laplacian L = SS> = D − 1
2

(
A+A>

)
(A = 1

2 (A+A>) for undirected graphs)

Normalized versions: Sn = D−1/2S and Ln = SnS
>
n = D−1/2LD−1/2

10 / 63



Example

v1 v2

v3

v4

e1

e2

e3e4

e5 A =


0 w 0 0
0 0 w 0
0 w 0 0
w 0 0 w

 D =


w 0 0 0
0 3

2w 0 0
0 0 w 0
0 0 0 3

2w



S =


−
√
w/2 +

√
w/2 0 0 0

+
√
w/2 0 +

√
w/2 −

√
w/2 0

0 0 −
√
w/2 +

√
w/2 0

0 −
√
w/2 0 0 0



L = SS> = D− 1
2(A+A>) =


w −1

2w 0 −1
2w

−1
2w

3
2w −w 0

0 −w w 0
−1

2w 0 0 1
2w


11 / 63



Differential operators

gradient ∇Gx = S>x ∈ R|E|

(∇Gx)(k) =
√

A(i,j)
2 (x(j)− x(i)), for ek = (vi, vj)

divergence divG y = Sy ∈ R|V|

(divG y)(i) =
∑
ek=(vj ,vi)

√
A(j,i)

2 y(k)−
∑
ek=(vi,vj)

√
A(i,j)

2 y(k)

Laplacian ∆Gx = divG ∇Gx = Ly ∈ R|V|

(∆Gx)(i) = d(i)x(i)− 1
2
∑
j A(i, j)x(j)

12 / 63



Example

v1 v2

v3

v4

e1

e2

e3e4

e5
S =


−1 +1 0 0 0
+1 0 +1 −1 0
0 0 −1 +1 0
0 −1 0 0 0

 (with w = 2)

L = SS> =


2 −1 0 −1
−1 3 −2 0
0 −2 2 0
−1 0 0 1


let x = (2, 4,−2, 1)>

y = ∇Gx = S>x = (2, 1, 6,−6, 0)>

z = divG y = ∆Gx = Sy = Lx = (−1, 14,−12,−1)>

13 / 63



Dirichlet energy

x>Lx = x>SS>x = 〈S>x, S>x〉 = ‖S>x‖22 = 1
2
∑
i,j

A(i, j)(x(j)− x(i))2 = ‖∇Gx‖22

This quadratic form is a measure of smoothness.

x>Lx = 0.48 x>Lx = 2.75 x>Lx = 6.88

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

14 / 63



Fourier transform

Introduced to study the heat equation. Why?

∂f

∂x2 = ∂f

∂t

Joseph Fourier (1768 – 1830)

15 / 63



Fourier basis

Answer: it diagonalizes the Laplace operator.

L = UΛU> uk = arg min
u∈R|V|
‖u‖2=1

u⊥{u1,...,uk−1}

u>Lu

eigenvectors U = (u1, . . . , u|V|), U>U = I

uk is the k-th Fourier mode s.t. Luk = λkuk

eigenvalues Λ = diag((λ1, . . . , λ|V|)) = U>LU

λk = u>k Luk is the frequency associated to uk

16 / 63



Example

Fourier mode uk associated to frequency λk = u>k Luk.

u>1 Lu1 = 0.00 u>2 Lu2 = 0.10 u>3 Lu3 = 0.10 u>4 Lu4 = 0.20 u>5 Lu5 = 0.38 u>6 Lu6 = 0.38 u>7 Lu7 = 0.48

u>1 Lu1 = 0.00 u>2 Lu2 = 0.33 u>3 Lu3 = 0.44 u>4 Lu4 = 0.86 u>5 Lu5 = 1.50 u>6 Lu6 = 1.59 u>7 Lu7 = 2.35

−0.2

0.0

0.2

−0.4

0.0

0.4

17 / 63



Fourier transform

transform x̂ = FG{x} = U>x

x̂(k) = 〈x, uk〉 measures how much frequency λk is present in x

inverse x = F−1
G {x̂} = Ux̂ = UU>x = Ix

Interpretation

I change of basis (from vertex to spectral): x⇒ x̂ and L⇒ Λ
I projections of x on the Fourier modes uk
I harmonic decomposition x =

∑
k x̂(k)uk

18 / 63



Example

Vertex domain representation x and spectral domain representation x̂ = U>x.

xTLx = 0.48 xTLx = 2.75 xTLx = 6.88

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

fre
qu

en
cy

co
nt

en
tx̂

(λ
)

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

19 / 63



Filtering

kernel a function g : R→ R that defines the action of the filter
filter an operator acting on signals represented by g(L)

A signal x ∈ R|V| is filtered by the kernel g as:

y = g(L)x = Ug(Λ)U>x

Step by step

1. take the Fourier transform: x̂ = U>x

2. take an element-wise product with the kernel evaluated at the eigenvalues:
ŷ = (g(λ1), . . . , g(λ|V|))� x̂

3. take the inverse Fourier transform: y = Uŷ

20 / 63



Functional calculus

What is a function of a matrix?

For polynomial functions g(x) =
∑
k akx

k:

g(L) =
∞∑
k=0

akL
k = U

∞∑
k=0

akΛkU> = Ug(Λ)U>

g(Λ) = diag(g(λ1), . . . , g(λ|V|))

Continuous functions through their Taylor expansion:

g(L) = eL =
∞∑
k=0

1
k!L

k = U
∞∑
k=0

1
k!Λ

kU> = Ug(Λ)U>

21 / 63



Example

xTLx = 61.93

input signal x in the vertex domain

0.0 2.5 5.0 7.5 10.0 12.5
graph frequency λ

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

co
nt

en
tx̂

(λ
)

signals in the spectral domain

input signal x̂
kernel g
filtered signal ŷ

yTLy = 10.75

filtered signal y in the vertex domain

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Observation: the low-pass filtered signal y is much smoother than x!

22 / 63



Convolution without translation?

1D Euclidean convolution:
(x ∗ g)(i) =

∑∞
j=−∞ x(j)g(i− j) = 〈Tig, x〉,

where Tig is a translation of the signal g by i steps.

Graph convolution:
(x ∗G g)(i) = (g(L)x)(i) = 〈Tig(L), x〉 = 〈g(L)δi, x〉,

where Tig is the localization of the kernel g at node vi.

We filter x with a kernel g. We cannot convolve x with another signal!

23 / 63



Example: localization vs translation

Tig(L) = g(L)δi

0 2 4
eigenvalues λ

0.0

0.5

1.0

g
(λ

)=
ex

p
( −

10
λ

λ
m
a
x

)

heat kernel g(L)δ0 g(L)δ10 g(L)δ20

0 5 10
eigenvalues λ

0.0

0.5

1.0

g
(λ

)=
ex

p
( −

10
λ

λ
m
a
x

)

heat kernel g(L)δ0 g(L)δ10 g(L)δ20

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

24 / 63



Example: vertex domain kernel visualization

Tig(L) = g(L)δi

yTLy = 367.18

localized y = g(L)δ10 (sensor)

0

1

g(λ) = 1

kernel g(λ) defined in the spectral domain localized y = g(L)δ10 (path graph)

yTLy = 6.83
0

1
g(λ) = exp

(
−5λ
λmax

)

yTLy = 0.00 λ: laplacian’s eigenvalues / graph frequencies
0

1
g(λ) = exp

(
−100λ
λmax

)

v0 v5 v10 v15 v20

25 / 63



Summary so far

1. The adjacency matrix A fully describes a graph G and acts as a diffusion operator.

2. The incidence matrix S acts as the gradient S>x and divergence Sy.
The Laplacian L = SS> is the divergence of the gradient.

3. The Laplacian L = UΛUT is diagonalized by the Fourier basis U .

4. The Fourier transform x̂ = U>x shows the frequency content of the signal x.

5. L and Λ (x and x̂) are the same operator (function) expressed in different bases.

6. The kernel g filters a signal x as g(L)x with the operator g(L) = Ug(Λ)U>.

7. Kernel g(λ) defined in the spectral domain. Localized on vi as Tig(L) = g(L)δi.

26 / 63



Filter design

Task: design a kernel g : R→ R such that y = g(L)x is the solution of something
interesting.

Examples

I Heat diffusion: gτt(λ) = exp(−τtλ)
I Wave propagation: gτt(λ) = cos

(
t arccos

(
1− τ2

2 λ
))

I Projection on a subspace: g(λ) =
{

1 if λmin < λ < λmax,

0 otherwise.
I Denoising with arg miny ‖y − x‖22 + τy>Ly: g(λ) = 1

1+τλ

But what if we don’t know the process by which y depends on x, and can’t derive g?

27 / 63



Example: heat diffusion

−τLf(t) = ∂tf(t) ⇒ f(t) = gτt(L)f(0) with gτt(λ) = exp(−τtλ)

0 2 4 6 8
λ

−1

0

1

2

ĝ
(λ

):
fil

te
rr

es
po

ns
e

f̂(0) = g1,0 � f̂(0)

f̂(0)
g1,0

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(5) = g1,5 � f̂(0)

f̂(5)
g1,5

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(10) = g1,10 � f̂(0)

f̂(10)
g1,10

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(20) = g1,20 � f̂(0)

f̂(20)
g1,20

f(0) f(5) f(10) f(20)

0

1

2

3

4

5

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.05

0.10

0.15

28 / 63



Example: wave propagation

−τ2Lf(t) = ∂ttf(t) ⇒ f(t) = gτt(L)f(0) with gτt(λ) = cos
(
t arccos

(
1− τ2

2 λ
))

0 2 4 6 8
λ

−1

0

1

2

ĝ
(λ

):
fil

te
rr

es
po

ns
e

f̂(0) = g1,0 � f̂(0)

f̂(0)
g1,0

0 2 4 6 8
λ

−1

0

1

f̂(5) = g1,5 � f̂(0)

f̂(5)
g1,5

0 2 4 6 8
λ

−1

0

1

f̂(10) = g1,10 � f̂(0)

f̂(10)
g1,10

0 2 4 6 8
λ

−1

0

1

f̂(20) = g1,20 � f̂(0)

f̂(20)
g1,20

f(0) f(5) f(10) f(20)

0

1

2

3

4

5

−2

−1

0

1

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

29 / 63



Learning

Answer: learn the kernel from examples.

Task: approximate the optimal unknown mapping y = g(L)x by a parameterized
approximation y ≈ ỹ = gθ(L)x, where θ are the parameters to be learned.

We got:
I a set of examples {(xn, yn)}Nn=1, hopefully large enough
I a cost function to measure how good our approximation is,

for example c(ỹ, y) = ‖ỹ − y‖22

30 / 63



Learning

The goal is to minimize the expected cost E(x,y)[c(gθ(L)x, y)].

The expectation cannot be computed as the distribution P (x, y) is unknown. However,
we can compute the empirical risk, an approximation that is the average cost over our
training data: R(gθ) = 1

N

∑
n c(gθ(L)xn, yn).

Solution: θ̂ = arg minθ R(gθ)

31 / 63



Training

How to find θ̂ = arg minθ R(gθ)?

A popular optimization algorithm is (stochastic) gradient descent, an iterative
algorithm that updates the parameters as

θ ← θ − η ∂
∂θ
c(gθ(L)xi, yi)

upon seeing the example (xi, yi).

All the computations must be differentiable w.r.t. θ!
In practice, gradients are computed through back-propagation.

32 / 63



Kernel parameterization
Defferrard, Bresson, and Vandergheynst 2016

Non-parametric filter, can learn any filter (n degrees of freedom):

gθ(Λ) = diag(θ), θ ∈ Rn ⇒ y = U diag(θ)U>x

0 2 4 6 8 10 12 14
λ: laplacian’s eigenvalues / graph frequencies

0.0

0.2

0.4

0.6

0.8

1.0

ĝ
(λ

):
fil

te
rr

es
po

ns
e

I Learning complexity is O(n)
I Computational complexity is O(n2) (& memory)
I Non-localized in vertex domain

33 / 63



Polynomial parametrization
Defferrard, Bresson, and Vandergheynst 2016

gθ(Λ) =
K−1∑
k=0

θkΛk =
K−1∑
k=0

θ̃kTk(Λ̃), Λ̃ = 2
λn

Λ− In

Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Can learn any K-localized filter.
I Allows a distributed implementation: only accesses the K-neighborhood.

I K-localized
I Learning complexity is O(K)
I Computational complexity is O(K|E|) (same as classical ConvNets!)

34 / 63



Chebyshev polynomials

−1 0 1
Eigenvalue λ

−1

0

1

Po
lyn

om
ial
T
k
(λ

)

Chebyshev basis (spectral domain)

k=0
k=1
k=2
k=3
k=4
k=5
k=6

0.0 2.5 5.0

0

2

4

6

Cross-correlation

0

200

400

600

800

1000

v−6 v−4 v−2 v0 v2 v4 v6

−2.5

0.0

2.5

5.0

7.5

(T
k
(L

)δ
0)
j

Chebyshev basis (localized on vertex v0)

k=0
k=1
k=2
k=3
k=4
k=5
k=6

0.0 2.5 5.0

0

2

4

6

Cross-correlation

20

40

60

35 / 63



Fast implementation by recursion
Defferrard, Bresson, and Vandergheynst 2016

y = gθ(L)x =
K−1∑
k=0

θkTk(L̃)x =
K−1∑
k=0

θkx̄k, L̃ = 2
λn
L− In

Recurrence: x̄0 = x

x̄1 = L̃x

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2

I Any polynomial can be used. They all have the same representative power.
Optimization difficulty might vary.

I Any matrix can be used instead of the Laplacian L, including the adjacency
matrix, or even a non-symmetric adjacency or “Laplacian”.

I The learned filter parameters θ can be transferred across graphs, i.e., used with
different L.

36 / 63



Spatial vs Spectral
Defferrard, Bresson, and Vandergheynst 2016

Convolution on graphs can be spectrally motivated.

y = Ugθ(Λ)Uᵀx

In the absence of an O(n logn) Fast Fourier Transform (FFT), which only exists for specific domains,
that is however too expensive. O(n3) operations for the EVD, plus O(n2) operations per forward and
backward pass.

With polynomials, the convolution is however spatially implemented.

y = gθ(L)x =
∑
k

θkL
kx =

∑
k

θ̃kTk(L̃)x

Leading to many other interpretations: message-passing between nodes, local tangent planes,
permutation invariant aggregation, etc.

37 / 63



Weights of paths

(W k)ij is the sum of all weighted paths of length k between vi and vj .

I A path is an ordered set of nodes. Example: (v2, v3, v4).
I pkij = {(vi, . . . , vj), . . . , (vi, . . . , vj)} is the set of all paths of length k between vi

and vj . Example: p2
0,3 = {(v0, v1, v3), (v0, v2, v3)}.

I Path weight (W k)ij = weight(pkij) =
∑

paths
∏

edges (vk,vl)Wkl.
Example: (W 2)0,3 = (W0,1 ·W1,3) + (W0,2 ·W2,3).

38 / 63



Neighborhoods

Lk defines the k-neighborhood Localization: dG(vi, vj) > K implies (LK)ij = 0

0 5 10 15 20
0

5

10

15

20

L0

0 5 10 15 20
0

5

10

15

20

L1

0 5 10 15 20
0

5

10

15

20

L2

0 5 10 15 20
0

5

10

15

20

L3

0 5 10 15 20
0

5

10

15

20

L4

||W 0||0 = 0 edges

|L0δ6| > 0

||W 1||0 = 40 edges

|L1δ6| > 0

||W 2||0 = 62 edges

|L2δ6| > 0

||W 3||0 = 108 edges

|L3δ6| > 0

||W 4||0 = 122 edges

|L4δ6| > 0

39 / 63



Learned combination of neighboring values

y =
∑
k θkL

kx is a linear transformation, where the coefficients are:
I the learned parameter θk,
I the k-neighborhood encoded by Lk.

Weighted sum of neighborhoods:

yi =
∑
k

θkx̄k = θ0x︸︷︷︸
own value

+ θ1x̄1︸ ︷︷ ︸
1-neighborhood

+ θ2x̄2︸ ︷︷ ︸
2-neighborhood

+ · · · + θK x̄K︸ ︷︷ ︸
K-neighborhood

I Monomials in L: x̄k = Lkx

I Monomials in A: x̄k = Akx

I Chebyshev polynomials in L: x̄0 = x, x̄1 = L̃x, x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2

40 / 63



Aggregation function

y = f(x) =
∑
k x̄k is learning how to combine the values x̄k from the k-neighborhood.

The basic unit is the neighborhoods, not the nodes.

What else can be done? Any function f that is invariant to the number of neighbors
and their permutation.

Goal: map a varying-length representation to a length K representation for O(K)
learning complexity.

41 / 63



Spatial approach: node ordering
Niepert, Ahmed, and Kutzkov 2016

I anisotropic filters
I require an ordering of the nodes

42 / 63



Spatial approach: patches on the manifold’s tangent plane
Monti, Boscaini, Masci, Rodola, Svoboda, and Bronstein 2017

I anisotropic filters
I manifolds only

43 / 63



The need to consider multiple scales

Most data on large graphs exhibit patterns at multiple scales.

Some filters thus need to have larger receptive fields to capture longer-range
dependencies. This can be achieved by:
1. increasing the size of the filters (the polynomial order),
2. increasing the number of layers,
3. down-sampling the domain (pooling).

While we can easily do (1) and (2), it can drastically increase the number of parameters
to learn. For now, we don’t yet have a generic and functional approach to (3).

44 / 63



Coarsening: hierarchical representation

Graph coarsening is certainly an answer to the down-sampling problem.

I Easy and well-defined when the domain has a hierarchical structure.
45 / 63



Coarsening: greedy local approach
Defferrard, Bresson, and Vandergheynst 2016

Input graph: |V| = 64, |E| = 303

0 10 20 30

0

10

20

30

40

50

60

Coarsening matrix C 66 × 33 Coarsened graph: |V| = 33, |E| = 230

I Greedy node merging (e.g., Graclus, Metis) works well for regular graphs.
I Can be done as pre-processing.
I Conditioned on the structure only.
I Much harder on non-regular graphs.

46 / 63



Learned coarsening: an attention mechanism
Defferrard and Loukas 2018

hard combinatorial problem ⇒ learn a continuous relaxation of the operation

Conditioned on:
1. the structure
2. the features
3. the task

introspection!

47 / 63



Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

48 / 63



Multiple kinds of problems: combination of data and tasks

Graphs that model discrete relations
I Social networks
I Graph of citations or hyperlinks
I Molecules (proteins)
I Knowledge graphs

Graphs that represent sampled manifolds
I Meshes (shapes, surfaces)
I Point clouds
I Data on spheres (planets, sky)
I Traffic on roads

Tasks:
I Node classification or regression (semi-supervized learning)
I Graph classification or regression
I Signal classification or regression

49 / 63



Cosmological application: data & problem
Perraudin, Defferrard, Kacprzak, and Sgier 2018

I Cosmologists devise models of how the universe works.
I We only get to observe one real universe.
I Problem: which simulation is closest to the real thing? A signal classification task.

Two mass maps generated from different cosmological parameters.
50 / 63



Cosmology: graph
Perraudin, Defferrard, Kacprzak, and Sgier 2018

I Data lives on the sky, a sphere.
I The sphere is discretized, and can be represented by a graph.
I Numerous kind of spherical sky maps in cosmology and astrophysics.

Cosmic microwave background, galaxy clustering, gravitational lensing.

Sphere discretized by graph.

Mode 0: =0, |m|=0 Mode 1: =1, |m|=1 Mode 2: =1, |m|=1 Mode 3: =1, |m|=0

Mode 4: =2, |m|=2 Mode 5: =2, |m|=1 Mode 6: =2, |m|=1 Mode 7: =2, |m|=0

Mode 8: =2, |m|=2 Mode 9: =3, |m|=2 Mode 10: =3, |m|=0 Mode 11: =3, |m|=3

Mode 12: =3, |m|=3 Mode 13: =3, |m|=2 Mode 14: =3, |m|=1 Mode 15: =3, |m|=1

Fourier modes resemble spherical harmonics.

51 / 63



Cosmology: model
Perraudin, Defferrard, Kacprzak, and Sgier 2018

A classical CNN or FCN architecture, but on the sphere, which is modeled by a graph.

52 / 63



Cosmology: results
Perraudin, Defferrard, Kacprzak, and Sgier 2018

0.0 0.5 1.0 1.5 2.0
Relative noise level

75

80

85

90

95

100

Ac
cu

ra
cy

 in
 %

Order 2

HealPixNet (FCN variant)
HealPixNet (CNN variant)
PSD + linear SVM
Histogram + linear SVM

0.0 0.5 1.0 1.5 2.0
Relative noise level

65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 in
 %

Order 4

HealPixNet (FCN variant)
HealPixNet (CNN variant)
PSD + linear SVM
Histogram + linear SVM

Significantly better that two standard benchmarks used in cosmology.

53 / 63



Segmentation of point clouds

remote sensing / surveying

indoor mapping

outdoor mapping

autonomous driving

54 / 63



Different classification problems

Goal: assign class labels.

I granularity
I class vs instance

input1 classification object recognition semantic seg. instance seg.

1Image source: https://sthalles.github.io/assets/deep_segmentation_network/object_class_segmentation.png
55 / 63

https://sthalles.github.io/assets/deep_segmentation_network/object_class_segmentation.png


Data

input a set of features associated to a set of points
output a label associated to each point

x,y,z coordinates with RGB colors class labels

56 / 63



Data acquisition

ground LIDAR aerial LIDAR aerial images

Our case, aerial images:
I Drones take aerial pictures of the ground.
I Each point is photographed multiple times from different point-of-views.
I Point cloud constructed by photogrammetry.

57 / 63



Graph
Cherqui, Morsier, and Defferrard 2018

A graph gives:
I Neighborhood information, needed for consistent labeling.
I A support, needed for efficient computation.

RGB features graph labels

58 / 63



Model
Cherqui, Morsier, and Defferrard 2018

64RGBZ

128 256
512

256
64

BN + graph conv K=5 + BN + Relu

Graph conv K=1 + softmax

Max Pooling size=4 + graph conv K=5 + BN + Relu

Unpooling with repetitions + graph conv K=5 + BN

Graph conv K=5 + BN

128

N
A node with N features

512

Characteristics:
I Dense prediction.
I Reason at multiple scales.
I Local decisions.

Main difficulties:
I Large number of points.
I Training samples are of varying sizes.

59 / 63



Data preparation
Cherqui, Morsier, and Defferrard 2018

I tiling: 36m× 36m (48m× 48m with context)
I split: 50% training tiles (green), 16% validation tiles (blue), 35% test tiles (red)

60 / 63



Results with RGBZ
Cherqui, Morsier, and Defferrard 2018

Accuracy
Overall Mean

Model (micro) (macro)

Random Forest 75% 53%
Graph ConvNet 86% 68%

0 10 20 30 40 50 60
Proportion (in %)

Ground

High vegetation

Building

Road

Car

Human made objects

50.64%

12.81%

13.25%

20.9%

0.43%

1.98%

Class distribution

61 / 63



Results
Cherqui, Morsier, and Defferrard 2018

Random forest baseline

Grou
nd

High
 ve

g.

Build
ing Roa

d Car

Hum
an

 m
ad

e o
bj.

Predicted label

Ground

High veg.

Building

Road

Car

Human made obj.

Tr
ue

 la
be

l

807919 111645 20379 20821 620 4548

99011 134143 6184 2899 200 1159

19336 8995 198616 22489 1716 6586

42386 4866 75775 366655 2342 15912

1891 260 5030 2175 1412 636

12538 3360 11867 9200 436 3923

Graph ConvNet

Grou
nd

High
 ve

g.

Build
ing Roa

d Car

Hum
an

-m
ad

e o
bj.

Predicted label

Ground

High veg.

Building

Road

Car

Human-made obj.

Tr
ue

 la
be

l

812954 90364 24305 28224 1146 8939

24180 210247 3780 2377 15 2997

8065 7025 226223 10405 310 5710

25005 7214 51894 418984 945 3894

220 291 2562 2191 3894 2246

6878 9103 8950 2528 1325 12540

62 / 63



Take-home message

Filters can be designed to solve known problems.

If the transformation is unknown, learn filters from examples.

PS: to practice, try the PyGSP from https://github.com/epfl-lts2/pygsp.

63 / 63

https://github.com/epfl-lts2/pygsp

