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Abstract: 
Modern isolated power grids are constantly evolving to adopt smart grid concepts that can permit higher 
renewable energy penetration and energy management optimization, in the view of a sustainable RES based 
energy production EU policy with reduced pollutant emissions. Nevertheless, many islandic power systems 
like the islands in Southern Europe are still depending on oil-fired diesel engines, while the renewable energy 
production is limited due to financial, technical and environmental reasons. In this study, the power system of 
a typical non-interconnected South European island consisting of diesel generators and a PV farm is modelled 
and simulated. Scope of this paper is to examine the ability of a Battery Energy Storage System (BESS) to 
achieve load peak shaving combined with maximization of the PV power penetration into the grid leading to 
pre-planned zero curtailment. For this purpose, a novel peak shaving algorithm is developed and implemented 
into an Energy Management System (EMS), for optimal scheduling of the diesel engines. Thereinafter, 
dynamic simulations of the island’s power system are carried out employing a predictive control strategy for 
different time scales, ranging from a supervisor BESS controller based on load forecasting, to a real-time 
battery power regulation. The predictive BESS controller is based on future consumption values forecasting, 
which in turn result from an Artificial Neural Network (ANN) and an optimization procedure taking into account 
PV power generation and a peak shaving threshold. Thus, a new diesel engine scheduling is obtained capable 
of replacing the maximum peak power demand with renewable power while at the same time load curve 
smoothening and reduced diesel generators ramps-up are achieved. The simulations are executed in APROS 
(Advanced Process Simulator) dynamic simulation platform, using built-in components for the BESS modelling, 
an external model for load forecasting and a user-developed EMS structure.  
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1. Introduction 
Nowadays, fundamental concepts related with energy production and consumption are continuously 
evolving and being reformed towards the forthcoming energy revolution based on smart energy 
networks predominance. Due to constant environmental regulations and limitations, energy utilities 
are enforced to implement changes and alter their policy in order to achieve a more sustainable and 
renewable based operation [1]. This task may be more feasible for large scale, highly interconnected 
grids, but this is not the case for smaller islanded grids, where renewable production can be a 
significant proportion compared to the total system production and excess energy cannot be exported. 
Through this perspective, islands’ power networks, that resemble the future structure of distributed 
microgrids in islanded operation too, are highly dependent on precise forecasts and storage solutions, 
since grid stability and production/consumption balancing are met exclusively by the local power 
generation. This is primarily dependent on diesel generators. Abrupt changes in load conditions and 
sudden impulses of renewable energy injections into the grid are usually counterbalanced by 
commissioning more diesel generators for peak hour demand, forcing them to experience cold start-
ups or to operate in variable power setpoints which result in fuel-consuming ramp-ups. Both of these 
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operational conditions are strongly related to high operating costs and reduced diesel engine lifetime, 
which in turn have a negative effect on grid operators illustrated by the high cost of the produced 
electricity. In addition, as Chua et al. stated in [2], commercial and industrial customers are subject 
to monthly maximum demand charges which can be as high as 30% of the total electricity bills, thus 
peak shaving can be an efficient way to reduce those charges and relieve diesel generators from cost-
intensive and energy-demanding ramps-up, accelerating from base to the peak load. 
Concerning the aforementioned inherent difficulties in operating islanded grids and managing the 
power flows between production and consumption, battery energy storage systems (BESS) have 
proved to be a very promising option for smoothening those instabilities and enabling higher 
renewable power penetration simultaneously. However, the most suitable operation strategy of the 
BESS, which is determined by a centralized Energy Management System (EMS), is related with the 
shape of the load profile of the system and the type of renewable power generation. Thus, for an 
islandic power system, where the load profile presents a high peak in late night hours and high 
photovoltaic (PV) generation in daylight hours, peak shaving with BESS energy stored from PV 
generation seems a rational approach. Specifically, this is the case for most South European islands 
where the load profile is shaped mainly from activities related to tourism at night hours rather than 
energy devouring industries that operate during the daylight hours.  
Many studies related with short term load forecasting for power grids implementing numerous 
methodologies and algorithms from the field of time-series forecasting have been published so far. 
Among them, Artificial Neural Networks (ANNs) that incorporate many versions is considered as a 
common approach [3,4,5] and is also adopted in this study. In order to evaluate the performance of 
neural networks and their capability to forecast accurately, some statistical indicators are used such 
as Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) with the last being the most common for comparison actions [5].  
However, implementing such predictive energy management systems for large isolated power 
systems and grid scaled BESS can be more challenging due to inherent difficulties related with system 
stability. In studies such as [6], load forecasting was used for a system with high PV penetration. In 
other studies [7,8,9], a simple linear regression model for load forecasting has been implemented in 
order to achieve optimal operation of a grid-scaled BESS for the power network of Hawaii island, 
considering also the large number of installed PV capacity on rooftops at the distribution grid. 
Halfmann et al. [10], implemented a predictive real-time BESS control based on load forecasting with 
ANNs to provide both peak shaving and primary frequency control for the Germany power system at 
the same time. Predictive energy management systems for a microgrid consisting of grid-tied BESS 
with PV generation were also examined in [11,12], where load and PV generation forecasts were 
provided as input and used in combination with an optimization problem for minimizing renewable 
curtailment power or grid consumption and consequently the electricity cost. The cost reduction from 
the peak shaving ability of a grid-tied BESS was also studied in [13]. However, the ability for power 
exchange with the main power grid interconnection presents an operating advantage over isolated 
microgrids. According to those studies [10-13] the economic feasibility of BESS was remarked and 
validated, especially for their ability of peak shaving the load curve. 

From the above review analysis, it makes clear that despite the wide spectrum of combination of 
energy management systems with BESS, their effectiveness is highly correlated with the optimization 
targets, the operational constraints, the specific characteristics of the load profile and the amount and 
type of installed renewable power. Regarding the present study, a novel predictive algorithm for peak 
shaving and diesel engine operation smoothing is proposed. This algorithm is combined with a load 
forecasting method and then integrated into a microgrid simulation model, including a detailed non-
linear battery representation. In this way, the isolated power system of a South-European island is 
examined and the developed predictive open loop EMS with relatively simple implementation and 
low complexity is integrated into a dynamic simulation model. Compared to other studies mentioned 
before, the novel aspect of this study is the combined attributes of a machine learning method for load 
forecasting and a developed tailored made optimization algorithm with a custom modelled EMS and 
the dynamic simulation of a detailed Lithium (Li) battery model in Apros software. Therefore, a 
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complete simulation framework for isolated power systems is proposed, combining load forecasting, 
predictive EMS algorithms and dynamic simulation models (see Fig. 5). Aim of this study is the 
development of a smart predictive control architecture for a BESS, based on load forecasting, for the 
optimum integration of PV power into an islanded power grid, through peak demand shaving and 
smoothening of the load curve. 

2. Load Forecasting with Artificial Neural Network 
A forecasting model is a necessary subsystem that needs to be implemented in a predictive energy 
management algorithm able to compensate for future events. In this study, such a model was 
developed for future consumption values forecasting by implementing a simple single-hidden layer 
feedforward neural network. This neural network structure was selected based on the well-known 
Kolmogorov theorem [14]. In this way, short-term load forecasting was mathematically formulated 
as a function fitting problem in which the hourly load time-series of a whole year were estimated. 
Specifically, the developed model was trained from past years load data (i.e. years 2014, 2015) 
provided from the South-European island’s grid operator and the outputs were the load data for the 
next year (i.e. year 2016). A strong correlation between the trend of the load curve and the temperature 
data of the island was observed, making the latter as an appropriate input for the developed neural 
network model. The hourly temperature data was produced by the long validated CFSR [15] 
numerical weather model (NWM) from representative grid points near the most-highly inhabited 
areas of the island for the years examined, so that the correlation of weather phenomena with 
electricity consumption to be intensified.  

The inputs of the feedforward neural network were determined based on common input variables for 
similar networks referred in load forecasting studies [3-7] and after a trial-and-error iterative 
procedure. Therefore, the inputs that were found to give the best results in terms of the MAPE defined 
as: 
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where i) the 48 values of the hourly consumption data of the two previous days, ii) the 24 values of 
previous day temperature data, iii) 7 binary values corresponding to the day of the week and iv) a 
binary variable which was used as an index for weekend days and working days. The network output 
consisted of a 24-variable vector containing the next day’s forecasted load values on an hourly basis. 
The structure of the developed networks is schematically depicted in Fig. 1. 

 
Fig. 1.  Neural Network Structure 

The input variables before the training procedure were scaled in the interval [0, 1] so that every input 
has the same weighting despite the different physical scales that are related with the type of input 
variable. For the same reasons, the binary values were chosen to be 0 or 1. For the training procedure, 
as it was stated above, data from years 2014 and 2015 were used in a backpropagation algorithm 
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based on the Levenberg-Marquardt error minimization algorithm. In this way, after each iteration the 
neuron’s weight matrix and biases vectors are updated based on the following equation: 

𝑥⃑௞ାଵ ൌ 𝑥⃑௞ െ ሾ𝐽்𝐽 ൅ 𝜇𝐼ሿ𝐽்𝑒 (2) 

where J is the Jacobian matrix of the networks errors 𝑒. The latter are calculated based on the 
difference of the networks output 𝑦⃑ from target values 𝑡. The network’s output vector from each layer 
is calculated as the weighted sum of the neuron’s outputs from the previous layers and after being 
filtered from the logarithmic sigmoid activation function: 

𝑓ሺ𝑥ሻ ൌ
1

1 ൅ 𝑒ି௫   and therefore 𝑦⃑ ൌ 𝑓൫𝑾𝑢ሬ⃑ ൅ 𝑏ሬ⃑ ൯  (3) 

where 𝑢ሬ⃑  is the input vector and 𝑏ሬ⃑  the neuron’s biases vector. The mean squared error (MSE) was used 
as a termination criterion for the training procedure. The evaluation of the network output with the 
target values was determined with the correlation coefficient R as it is shown in Fig. 2. The MSE 
parameter was first calculated for the validation data set, chosen to be around 4% of the training set, 
and then the overall network’s performance was evaluated for the test set, which was not ever used 
in the training process. 

After the network configuration procedure was completed and the best results were achieved, the 
correlation coefficient was found to be R=0.99189, which considered as an acceptable value. 
Thereinafter, the outputs were scaled back to their physical scales, the overall network’s performance 
was evaluated for the test set and a MAPE=1.7412% was achieved. The results of the load forecast 
are presented in Fig. 2, where the real and forecasted load values are compared for the whole year 
and more specifically, during a typical week time period.  

 
Fig. 2.  Forecasting results for: a) the test year, b) a week time period, c) correlation coefficient 

3. Peak shaving optimization algorithm and power system 
modelling  
In this section, the developed peak shaving procedure is described. In order to take advantage of the 
load forecasting in the energy management of the island’s power system and considering the shape 

(a) 

(b) (c) 
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of the load profile (Fig. 2), it is seen that especially for winter period, the peaked values of load are 
detected during the night hours where the renewable installed PV power is not available. The island’s 
power system has maximum peak demand values about 1.3-1.5 MW, which are currently covered by 
the additional diesel generators that operate at low partial loads, while the installed capacity of PV 
power is approximately 300 kW, accounting for around 10% of the peak values. Therefore, in order 
to achieve zero curtailment and full renewable penetration to the grid, the diesel generators should 
operate at partial loads under variable conditions during daylight PV production period and at night, 
they should be capable of a steep and abrupt acceleration to cover the night peak demand. Both of the 
aforementioned cases contribute to diesel engine efficiency reduction, augmented emissions and 
pollutants levels and increased fuel consumption compared to a steadier operation. As a consequence 
of these is the increase in the electricity production cost.  

3.1. Predictive peak shaving methodology 
Regarding the above concerns, a BESS capable of saving renewable energy when it is not required 
and releasing it at night peak demands is a meaningful strategy. However, a BESS should operate 
with an optimum plan in order to be sized appropriately and minimize the pay-back period of the 
investment. In addition, considering that this would be a grid-scale BESS and that the installed 
renewable capacity in the island, for the time being, is not enough to cover the load curve at any point, 
the PV energy storage should be optimized. To achieve this, an optimization algorithm which is 
presented in Fig. 3 was developed and deployed: 

 
Fig. 3.  Proposed algorithm for the diesel operation planning 

Initially, the next day forecasted load curve and the PV production is used as input into the algorithm. 
The energy production of the installed PV plants is predicted using a simulation engine developed by 
Pfenninger et al. [16] and through which it is possible to obtain an hourly based production based on 
the irradiance intensity on the island while considering the power converter losses of the system at 
10% based on a conservative assumption. As the purpose of this work is the evaluation of the 
performance of the neural network load forecasting module combined with the energy management 
of a BESS for peak shaving, the produced renewable energy is considered as a perfect forecast. 

Subsequently, the peak shaving level is determined and then an offset initial value is set equal to the 
base forecasted load of each day. The latter is set equal to the daily minimum of load curve. In this 
study, the peak reduction level was set at 0.1 MW lower than the peak demand, defined as the 
maximum value of the daily load curve. The final offset value is obtained through an iterative 
procedure. At first step, the intersection of the combined PV and offset curves with the load curve at 
two points (points ii, iii in Fig. 3) have to be achieved. The combined PV and offset curve is the result 
of the PV production superimposition to the offset curve. The desired curve intersection is achieved 
by increasing the offset value by dP=1 kW (see Fig. 3). Then, a second criterion for the offset value 
determination is imposed: the artificial PV excess production has to be at least equal to the peak 
shaved area, as seen in Fig. 4. The second criterion is mathematically formulated as:  

න ሺ𝑃௢௙௙௦௘௧ ൅ 𝑃௉௏ሻ
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௧భ
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௧య

𝑑𝑡 ൑ 𝜀   (4) 

Where ε is a small value around 10-3, t1, t2 are the intersection points of the combined curve with the 
load curve and t3, t4 are the intersection points of the peak reduction level with the load curve. The 
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offset level is constantly increasing by dP, until sufficient surplus area (spa in Fig. 3) is created. This 
surplus energy can be spotted in Fig. 4d as the lighter area above the darker area, which represents 
the load area at the corresponding hours. The peak reduction level with the corresponding load curve 
of each day, define a shaved area (sha in Fig. 3) which is represented by the grey area of Fig. 4. In 
this way, the offset level determined from the algorithm acts as an “elevator” for the PV production 
curve and at the same time as an upper limit for the diesel operation during the off-peak hours. In 
order to calculate the above areas as more accurately as possible, a linear interpolation is considered 
between the hourly values of demand and production, which is quite close to the true case. Thus, it is 
possible to set a new 24-hour based operation plan for the diesel generators consisting of the offset 
value that is achieved from the algorithm and the new shaved peak, which are also the outputs of the 
procedure (Fig. 3). 

 
Fig. 4.  Results for a typical winter day: a) load profile and peak shave level, b) area between load 
curve and offset level for sunlight time period, c) shaved energy, d) artificial excess PV energy  

3.2. Apros BESS model with EMS  
Thereafter, the predictive peak shaving algorithm described in previous sections was incorporated in 
the BESS energy management system, which was modelled in Apros software and simulated for the 
whole year. An Apros multi-cell Lithium battery module was employed in order to model the BESS. 
The basic equations [17] related to the Lithium battery model, are the following: 

𝑈ሺ𝑡ሻ ൌ 𝑉ை஼ ∙ 𝑛 െ ௡
௠
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𝐶௠௔௫ ൌ 𝐶௡௢௠ ∙ ሾ1 െ ሺ𝑓௦௟ ൅ 𝑓௖௟ሻሿ  (8) 

In the above equations, 𝑉ை஼  represents the open circuit voltage of each cell, which is a function of 
remaining capacity and is set at maximum capacity at about 4 V, n =199, m =169 are the number of 
cells in series and in parallel respectively, Cnom is the nominal capacity of the BESS which is set to 
2000 Ah. Cmax is the maximum remaining capacity of the battery, which is affected by battery aging 
and degradation effects, through coefficients fsl and fcl that represents the lifetime storage loss fraction 
and the lifetime cycle loss fraction respectively. C is the current battery capacity, which is updated at 
each simulation step. The latter is set equal to Δt=0.2s, in order to capture small scale dynamic 
transients in voltage U(t) and current I(t) parameters. The remaining capacity was also used with the 
current maximum capacity at every step for a state of charge (SoC) calculation, which in this study 
and based on recent advances in battery technology is allowed to be in the range 0-100%. The term 
ΔE(T) is related with the battery temperature and its effect on voltage, while the Ri parameters 
represent an internal resistance model of the battery that can be found in [17]. Rseries is responsible for 
the instantaneous voltage drop in battery terminal voltage. The other component of series resistor, 

(a) (b) 

(c) (d) 



7 

Rcycle, is used to explain the increase in the battery resistance with cycling. The components Rtr_sh and 
Rtr_ln of the battery RC network are responsible for short and long-time transients in battery internal 
impedance respectively. The battery model operation is controlled by two PI controllers, one for 
battery charging control and one for discharging. The charge controller regulates the voltage level of 
an ideal DC source, which represents the DC to AC bus connection to the grid through the inverter 
module, so that the power system balance is preserved. The discharge controller regulated the set 
point of an iconic controllable load so that the battery could provide enough energy to the grid to 
account for system imbalances. The integrated simulation framework of the system examined in this 
study, is presented in Fig. 5. 

 
Fig. 5.  System configuration and methodology procedure 

The system inputs to the model are the 24-hour diesel generators setpoints for every day of the year, 
which are calculated in the previous section, the true demand curve of the island for 2016 and the 
perfect PV forecasted power values for the same year. The EMS that controls the system is formulated 
as a binary signal logic, which is responsible for the state of the BESS. In particular, when PV power 
available at daylight and at the same time the sum of the offset set-point of the diesel generators and 
the PV power is greater than the current load demand, the EMS defined a charging state for the 
battery. If PV power is not available or the aforementioned sum is less than the load demand, the 
battery should discharge as much energy as possible. In case that the offset set-point of the diesel 
generators is either greater than the load demand or the absolute value of the residual, defined as the 
diesel power plus the PV power minus the load demand, is smaller than 0.1 kW, then the BESS should 
be in idling mode and ready for a future incident. Thanks to this operation plan, not only is BESS 
charged with renewable energy that can be used at a next time, but also the false scheduling due to 
forecasting errors are compensated at the same time.  

4. Results of the dynamic simulations  
After the system model configuration is completed, the power system yearly operation is simulated 
with the rules and the operational strategies mentioned before. Thus, it is possible to estimate the 
performance of the predictive EMS algorithm regarding the impact of load forecasting to the real time 
operation of the BESS. 

As it was described in the previous section, the system power balance was used as a criterion for 
power generation-consumption balancing and it was monitored in order to be constantly zero (i.e. no 
over/under production was allowed). For that reason, the battery power delivered to the system was 
controlled according to this specification. However, at specific times over the year period, the power 
balance was not achieved due to isolated large forecast errors or operational limitations owed to the 
state of charge of the battery. This surplus or deficit of energy was considered to be compensated by 
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the diesel engines supposing a flexible operation with small deviations around their base scheduled 
operating point, as forecasted. A good overall performance of the system was obtained with a 
significant success in smoothening the load curve around the engines predicted operating points. As 
it makes clear in Fig. 6, the new achieved operation of the diesel engines consisted of basically two 
levels, one related with the offset obtained from the optimization algorithm and one owed to 
successful peak shaving implementation. In this picture, the simulation results are indicatively 
presented for a one-week duration, making possible the comparison of two different operational 
strategies of the diesel engines. The first approach namely “OLD Diesel” corresponds to the diesel 
engine operation if the system could absorb all possible PV energy production, meaning zero 
curtailment, despite the lack of load forecasting. The second approach namely “NEW Diesel” 
corresponds to the proposed methodology. According to Fig. 6, it is clear that the NEW Diesel 
operation curve is much smoother than the OLD one while the produced PV energy is completely 
absorbed by the system by supplying the artificially achieved excess PV power at the time periods of 
peak shaving. This ensures that all renewable energy produced is supplied to the grid resulting in a 
predicted and planned zero curtailment. 

 
Fig. 6.  Obtained diesel engine production curves for a typical winter week time period 

In Fig. 7, the achieved results during a single day operation of the week presented in Fig. 6 are shown. 
As it is evident, with the proposed methodology the diesel engines operate in a more monotonic mode, 
owed to the calculated offset level and it is possible to avoid in a great extent the valleys and crests 
due to the PV generation at the specified time-periods. These time varying, and unplanned operating 
conditions are eliminated with the proposed BESS operation and this has a significant improvement 
to the magnitude and the gradient of the engine’s ramp-up for the following peak event (Fig. 7). Under 
this scope, a more precise dispatch planning of the diesel engines can be obtained and the allocation 
of fewer additional engines to cover the ramp-up of the load curve can be achieved. In addition, the 
acceleration rate of the engines, depicted through the gradient of their operation at Fig. 6 is decreased. 
Provided that this is directly related with immense fuel consumption decreasing this gradient results 
in a less aggressive engine operation and a more cost-effective fuel consumption. 

The aforementioned effects on the operation of the system are also depicted from the BESS side in 
Fig. 8a, where the correlation of the BESS delivered power, state of charge and PV production are 
presented. It is revealed that during the time period of PV production, the BESS stores energy that it 
is supplied later on during the peak demand. For that reason, the SoC of the BESS is around its daily 
maximum values right before the peak demand event and subsequently it supplies the daily maximum 
power when the peak demand event is reached. This fact is also depicted in Fig. 8a, where the 
maximum PV energy production is followed from the maximum value of the battery’s SoC, which in 
turn is followed from the maximum value of the power delivered from the BESS. The latter, is also 
achieved at the same time of the maximum peak demand value, which is another indication that the 
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peak demand is satisfied from the stored renewable energy. In addition, in Fig. 8b, it is observed that 
the EMS that controls the battery, operates the BESS according to the plan derived from the developed 
algorithm. This is obvious from the actual and the scheduled battery operation curves depicted in Fig. 
8 b that present a similar pattern. 

In order to evaluate the performance of our methodology for the whole year operation, (though it is 
applicable when the peak demand is misaligned with PV production which is the case for winter 
periods), a statistical indicator is employed. Specifically, the kurtosis feature is calculated for the 
reference case (Diesel + PV) and the case proposed (Diesel + BESS + Predictive EMS) by 
implementing the following formulas: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 ൌ
∑ ሺ𝑥ሺ𝑘ሻ െ 𝑥௠ሻସ௄

௞ୀଵ
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where x(k) is a signal series for k=1,2,…,K, and K is the number of data points, xstd  the standard 
deviation and xm the mean value. This feature which is commonly used in vibration analysis [18] for 
bearings health monitoring, expresses the quality of the data values distribution around the mean 
value of the dataset. The latter has a direct relation with the concertation of the data values around 
some central values and therefore it can be an indicator of the peak frequency of the signal. Thus, a 
signal with a high frequency of peaked values will typically have a greater kurtosis value compared 
to a smoother signal. Therefore, the quantification of the results of this approach is accomplished 
through the calculation of the kurtosis feature for the signals of interest in our study. Therefore, for 
the signals “NEW Diesel” and “OLD Diesel” depicted in Fig. 6 and as obtained from the simulations, 
the kurtosis values are: 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠ை௅஽ ஽௜௘௦௘௟ ൌ 2.5416 and 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠ோௐ ஽௜௘௦௘௟ ൌ 2.1319. 

This reduction in kurtosis, accompanied by the probability distributions of the same signals which 
are depicted in Fig. 9, imply an improved performance of the power system for the whole year 
duration. In particular, observing the latter figure, two areas are easily distinguished: The one is 
related with the peak reduction success level as the frequencies around the peak demand values are 
considerably decreased, whereas the other area is related with the level of smoothness of the diesel 
engine operation. The intermediate power demand values with the proposed configuration are more 
uniformly distributed compared to the frequency distribution of the previous case.  

 
Fig. 7.  Consumption and production obtained power curves for a single day time period from the 
week of Figure 6 
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Fig. 8.  a) BESS operation results after the dynamic simulation for a single day b) actual vs scheduled 
battery operation for the same day 

 
Fig. 9.  Frequency histograms with fitted distributions of the diesel generators operation for the 
OLD and NEW case 

5. Conclusions and Future work 
In this study, a predictive EMS based on load forecasting was introduced and integrated with the 
operation of a BESS for peak demand reduction of a South-European islanded power grid. The results 
of the combined synergy of prediction and a new developed algorithm with real time control of the 
BESS, revealed that the peak shaving with renewable energy load levelling and smoothening in 
conjunction with a better diesel generators scheduling, can be achieved. Specifically, the load 
forecasting was realized by implementing a single-hidden layer feedforward neural network for day 
ahead hourly predictions and a MAPE=1.7412% was achieved. Moreover, an optimization algorithm 
for the appropriate operational strategy of diesel generators based on load forecasting was developed 
and implemented in Apros software for dynamic simulation. The system was simulated for a whole 
year and except from the peak shaving of the load curve by using stored PV energy, a significant 
reduction in the variability in diesel generators operation was also achieved. The proposed method 
reinforced the power grid ability to integrate renewable power in a more robust and planned way, 
leading to zero curtailment and possible cost reduction through fuel savings.  

A future step for the improvement of this method could be the battery size optimization and the 
implementation of real PV power production forecasting. Also, the fuel consumption of the diesel 
generators incorporated into a techno economical study, could enlighten the economic feasibility of 
the proposed configuration, leading to the reduction of the number and capacity of the existing diesel 
generators.  
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Abbreviations 
ANN: Artificial Neural Network 

BESS: Battery Energy Storage System 

DG: Diesel Generator(s) 

EMS: Energy Management System 

MAE: Mean Absolute Error 

MSE: Mean Squared Error 

MAPE: Mean Absolute Percentage Error 

NWM: Numerical Weather Model 

PV: Photovoltaic 

SoC: State of Charge 

Nomenclature 
𝑏ሬ⃑   network neurons biases 

C  battery capacity at each time step, Ah 

𝑒  network errors 

f(x)  neurons activation function 

I  battery current, A 

J  Jacobian matrix of the network errors 

N  battery charging cycles 

PPV  PV produced power, kW 

Poffset  offset power level for the DG, kW 

Pload  true demand power of the island’s power system, kW 

Ri  battery internal resistances, Ohm 

R  correlation coefficient 

spa artificially created surplus area derived from the developed algorithm, MWh   

sha shaved area created from the peak shaving level, MWh   

𝑡  network target values 

𝑢ሬ⃑   network inputs 

VOC  battery cell open circuit voltage, V 

U  voltage over BESS terminals, V 

𝑥⃑௞  vector of weight and biases at k iteration 

𝑦⃑  network outputs 

Greek symbols 

μ  relaxation coefficient of Levenberg-Marquardt method 

Δt  simulation time step, s 

Subscripts and superscripts 

eq  equivalent 

m  mean value 

std  standard deviation 
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