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Abstract
This work describes the performance of a sequencing batch reactor (SBR) and the involvement of a novel reconstituted 
bacterial consortium in olive mill wastewater (OMW) treatment. The organic loading rate applied to the SBR was serially 
increased in terms of initial COD from 10 to 75 g L−1 to allow gradual acclimatization of activated sludge to high concentra-
tions of toxic compounds in OMW. After the acclimatization period, up to 60% of the total COD content were effectively 
biodegraded from OMW at 75 g L−1 COD within 30 day hydraulic retention time. The diversity and community composition 
of cultivable bacteria participating in the aerobic process of treating OMW were further assessed. A total of 91 bacterial 
strains were isolated from the reactor and analyzed by amplification of the 16S-23S rRNA internal transcribed spacer (ITS) 
region and by 16S rRNA gene sequencing. The most abundant phylum was Firmicutes (57.1%) followed by Proteobacteria 
(35.2%) and Actinobacteria (7.7%). The use of the Biolog® Phenotype Microarray system to evaluate the ability of isolated 
strains to utilize OMW phenolic compounds is reported in this work for the first time. Interestingly, results showed that 
all species tested were able to utilize phenolics as sole carbon and energy sources. The removals of COD and phenolics 
from undiluted OMW by the reconstituted bacterial consortium were almost similar to those obtained by the acclimatized 
activated sludge, which suggest that cultivable bacteria play the major role in OMW biodegradation. Phytotoxicity assays 
using tomato seeds showed a significant improvement of seed germination values for treated OMW. Our overall results sug-
gest that the novel developed bacterial consortium could be considered as a good prospect for phenolics-rich wastewaters 
bioremediation applications.

Keywords Acclimatized aerobic consortium · Biolog ® phenotyping · Olive mill wastewater · Phenolic compounds · 
Phytotoxicity · Sequencing batch reactor

Introduction

Olive mill wastewater (OMW), generated from olive oil 
production process, is a dark brown effluent composed of 
soft tissues of the olive fruit, residual oil and processing 
waters (Lanciotti et al. 2005). Annually, around 30 mil-
lion m3 of OMW are generated in Mediterranean countries 
which account for almost 95% of the worldwide olive oil 
production, highlighting Spain, Italy, Greece, Tunisia and 
Portugal (McNamara et al. 2008). This wastewater is char-
acterized by high chemical and biological oxygen demand 
values and a high organic pollutant load owing to the pres-
ence of biodegradable and recalcitrant compounds, i.e., 
carbohydrates, polysaccharides, fatty acids, polyalcohols, 
pectins, tannins, anthocyanins, phenolic compounds and 
catechol–melaninic polymers (Obied et al. 2007). Hence, 
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when disposed untreated into the environment, OMW cre-
ates considerable environmental problems such as pollution 
of surface and ground waters, alterations in soil quality and 
microbial populations, plant growth inhibition, toxicity on 
species from several trophic levels, as well as, air pollution 
through phenol and sulfur dioxide emissions (Aggelis et al. 
2003).

As required by legislation in Tunisia, OMW has to be dis-
charged into evaporation ponds to mitigate its impact on the 
environment (Jarboui et al. 2010). Currently, several phys-
icochemical, biological and even combined treatment pro-
cesses have been proposed for the treatment of OMW aiming 
at removing the complex organic load from this effluent to 
make it suitable for discharge to the environment (Jaouani 
et al. 2005a, b). Physicochemical methods, including natural 
and forced evaporation, flocculation and coagulation, ultra-
filtration, reverse osmosis and advanced oxidation processes 
(AOP) (Chatzisymeon et al. 2013; El-Abbassi et al. 2014; 
Kavvadias et al. 2010; Michael et al. 2014), require costly 
investment and maintenance. In the field of biological treat-
ments, many investigations are available on the application 
of the anaerobic digestion as a promising technology for 
both OMW decontamination and methane production. The 
main limitation of OMW anaerobic digestion is the growth 
inhibition of methanogenic bacteria by phenolic compounds 
and certain organic acids (Beccari et al. 1996). Among bio-
logical methods, aerobic processes with selected microor-
ganisms and composting are indeed the most environmen-
tally friendly and the least expensive (Chiavola et al. 2014; 
Paredes et al. 2005). Aerobic methods use a more robust bio-
mass to degrade the polluting effluent charge (Neifar et al. 
2012). In the past, researchers have used single microbial 
species for organic matter biodegradation which may limit 
their field applications as a wide range of contaminants is 
present in OMW (Aissam et al. 2007; Ammar et al. 2005). 
Several studies have been performed with bacterial species 
or fungi, using either free or immobilized cell cultures under 
laboratory controlled conditions (Neifar et al. 2012; Tzi-
otzios et al. 2007; Zerva et al. 2016). There are, however, 
few reports which deal with the application of microbial 
consortia in discontinuous bioreactors for OMW biologi-
cal treatment despite their ability of efficiently degrading a 
variety of recalcitrant compounds. For instance, in previous 
studies carried out by our group, the adapted aerobic consor-
tium was found to be more efficient in COD removal from 
OMW when compared to both free and immobilized cells 
of the white rot fungus Coriolopsis polyzona (Jaouani et al. 
2005b; Neifar et al. 2012). Nevertheless, the knowledge of 
the microbial aspect of OMW- acclimatized aerobic consor-
tium is still incomplete.

The main purposes of the present investigation were (a) 
to evaluate the performance of activated sludge acclimatized 
to high OMW concentrations in a Sequencing Batch Reactor 

(SBR) for the treatment of OMW; (b) to determine the bacte-
rial diversity from OMW after acclimatization period using 
a culture-dependent approach; (c) to examine their ability to 
utilize OMW phenolic compounds as sole carbon sources; 
and (d) to assess the capacity of a novel reconstituted bacte-
rial consortium for phenol and COD removal from OMW.

Materials and methods

Seed sludge and olive mill wastewater (OMW)

Sequencing batch reactor (SBR) was inoculated by an acti-
vated sludge collected from a municipal wastewater treat-
ment plant located in Tunis (Tunisia).

Fresh OMW was collected from a three-phase decanter 
olive mill in the region of Tunis (Tunisia) and was imme-
diately stored at − 20 °C to avoid spontaneous fermenta-
tion. Before use, OMW was de-frozen, vigorously stirred 
and decanted. Due to low concentrations of total phosphorus 
and total nitrogen in OMW,  K2HPO4 and  (NH4)2SO4 were 
added to maintain the ratio COD:N:P around 100:5:1. The 
mixture was then used to feed the SBR.

The reactor was started-up and fed with raw OMW 
diluted with tap water in several ratios to give liquid media 
with various initial COD concentrations (10 g L−1, 25 g L−1, 
50 g L−1 and 75 g L−1).

SBR start‑up and operation

The laboratory-scale reactor used in this study consisted of 
a 1 L glass tank with 800 mL working volume. The oxygen 
was supplied by an aquarium air pump and the complete 
mixture was achieved with a magnetic stirrer. The bioreactor 
was operated at room temperature (≈ 25 °C).

The SBR plant was first seeded with a sample of acti-
vated sludge and fed with diluted OMW at 10 g L−1 COD. 
During the start-up period, the reactor was operated with a 
hydraulic retention time of 30 days. An improvement of the 
removal performance was noticed with time during start-
up, as a result of the progressive enrichment/selection of 
microbial community capable of biodegrading OMW con-
stituents to use them as carbon sources. The biomass, col-
lected from the SBR reactor, was then stepwise acclimatized 
towards high COD content present in the influent waste-
water (OMW) using a batch mode operation with increas-
ing COD concentrations (25 g L−1, 50 g L−1 and 75 g L−1). 
For medium renewal, the aeration pump and the magnetic 
mixer were switched off to allow the suspended activated 
sludge to settle in the reactor (60 min). One hundred mL 
of settled biomass were transferred into 700 mL of diluted 
OMW at 25 g L−1 COD. When the reactor achieved pseudo 
steady-state in terms of effluent COD, settled sludge was 
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consecutively adapted to higher COD concentrations by the 
same procedure. Analyses of COD on OMW samples from 
the SBR plant were carried out periodically.

To monitor the stability of the consortium, the acclima-
tized sludge (100 mL) was used to inoculate 4 successive 
batch reactors at 75 g L−1 COD.

Sampling, isolation and identification of bacterial 
strains

After acclimatization period, OMW samples were with-
drawn at the end of SBR operation cycle and were serially 
diluted (1:10) in sterile physiological saline (0.9% w/v, 
NaCl). A volume of 100 µL from each dilution was evenly 
spread onto the Tryptic soy agar (TSA) plates containing 
10% (v/v) of centrifuged OMW. After 24–48 h of incuba-
tion at 30 °C, colonies with distinct morphological features, 
i.e., color, shape, size, rough or smooth surface were picked 
and purified by repeatable streaking on another agar plate 
of the same culture medium. Liquid cultures of the isolates 
were maintained as frozen stocks at − 80 °C in 20% glycerol.

The diversity of the cultivable bacterial consortium was 
analyzed by amplification of the internal transcribed spacers 
between the 16S and the 23S rRNA genes (ITS-PCR) and 
by 16S rRNA sequencing. Following total genomic DNA 
extraction, the 16S-23S ITS region and the 16S rRNA gene 
were amplified using, respectively, the universal primers 
ITSF/ITSR and 16F27N/16R1525. The amplified 16S rRNA 
fragments were sequenced and compared with those avail-
able at the national center for Biotechnology Information 
(NCBI) database using the BLAST algorithm. The phylo-
genetic tree was then inferred using the neighbour joining 
method (Saitou and Nei 1987) and tree topology was evalu-
ated by performing bootstrap analysis of 1000 data sets using 
MEGA version 6.0 (Tamura et al. 2007).

Assessment of phenol biodegradation capacity 
of the isolates using the Phenotype MicroArray 
technology of Biolog®

The metabolism of OMW phenolics was assessed by means 
of 96-well Microplates. This test was performed on the 
following representative strains of the species: Bacillus 
amyloliquefaciens strain OM48; Klebsiella oxytoca strain 
OM84; Pseudomonas aeruginosa strain OM88; Cellulo-
simicrobium cellulans strain OM79; Lysinibacillus mac-
roids strain OM73; Bacillus cereus strain OM43; Rhodo-
coccus zopfii strain OM33; Bacillus thuringencis strain 
OM60; Rhodococcus pyridinivorans strain OM22; Bacillus 
nealsonii strain OM56; Ochrobactrum tritici strainOM24; 
Ochrobactrum tritici strain OM26; Ochrobactrum haema-
tophilum strain OM14; Bacillus thioparans strain OM9; 
Roseomonas mucosa strain OM18; Kocuria rosea strain 

OM61; Paenibacillus xylanilyticus strain OM8 and Brevi-
bacillus laterosporus strain OM50. Each well was added 
with 100 µL of minimal growth medium having the fol-
lowing composition (w/v):  (NH4)2SO4, 0.625%;  K2HPO4, 
0.25%;  KH2PO4, 0.125%;  MgSO4, 0.05%;  CaCl2, 0.0025%; 
 FeSO4, 0.00025%, yeast extract 0.025%. The initial pH 
value of the medium was adjusted to 7.0 ± 0.1. A volume 
of 50 µL from each carbon sources, i.e., glucose (as con-
trol carbon source) (200 mg L−1 final concentration), OMW 
phenolics (extracted as mentioned in the following Sect. 6) 
(200 mg L−1 final concentration) and glucose plus OMW 
phenolics (200 mg L−1 final concentration each), was then 
applied in triplicate to the wells of the 96 wells microplate. 
Cell suspensions were prepared by transferring bacterial 
colonies from the plate surface with a sterile cotton swab 
to 10 mL of sterile physiological saline (0.85% w/v, NaCl). 
They were then adjusted to achieve a 90% of transmittance 
using a Biolog® turbidimeter. A volume of 100 µL of the 
suspension was transferred into microplate wells. Appro-
priate controls were set up for each isolate by loading the 
cell suspension into the wells (100 µL) without any carbon 
substrate and loading sterilized water instead (50 µL). The 
tetrazolium dye which is reduced to formazan during bacte-
rial respiration (producing a purple color) was used as an 
indicator of cell growth.

Inoculated microplates were then incubated at 26 °C in an 
Omnilog Reader/Incubater (Biolog) for 10 days. Microplates 
were read every 15 min with a computer-controlled Micro-
plate reader. At the end of the incubation period, the reduc-
tion of tetrazolium dye was expressed as OmniLog units. To 
compare the utilization of different metabolic compounds, 
the raw data, including the integrated surface area under the 
curve, the maximum value, and the slope, were exported and 
exploited as excel file.

Aerobic treatment of OMW by mixed indigenous 
cultures

The strains previously tested for their phenol biodegrada-
tion ability were mixed and assessed for their capacity to 
treat OMW.

Experiments were conducted in duplicate in 250-
mL Erlenmeyer flasks, containing 50  mL of OMW-
based medium at 75 g L−1 COD and supplemented with 
 (NH4)2SO4,  K2HPO4, and  MgSO4.  7H2O to provide a stoi-
chiometric ratio of dissolved-COD:N:P:Mg of 100:5:1:1. 
The initial pH value of the medium was adjusted to 7.0 ± 0.1.

After sterilization (at 120 °C for 20 min), flasks were 
inoculated with equal volumes of the different mid-exponen-
tial growth phase pre-cultures on Tryptic Soy Broth (TSB) 
medium to obtain a final inoculum size of 5% (v/v).

After 30 days of incubation at 120 rpm and 28 °C, spent 
OMW-based medium was separated from bacterial cells by 
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centrifugation (8000 rpm, 15 min, 4 °C) and then analyzed 
with regard to its COD and phenolics as described in the 
following section.

Analytical methods

Chemical oxygen demand (COD), total suspended solids 
(TSS) and total Nitrogen Kjeldhal (TNK) were determined 
according to Standard Methods for the Examination of Water 
and Wastewater (APHA 1998). The phosphorus content was 
measured colorimetrically using the AFNOR method (1983). 
OMW phenolics were extracted by ethyl acetate method as 
described by Jaouani et al. (2005b) and the total phenolic 
content was assessed by the Folin–Ciocalteu method against 
a gallic acid calibration curve (Swain and Hillis 1959).

Phytotoxicity bioassay

Phytotoxicity was evaluated by measuring the seed ger-
mination index (GI) of tomato (Solanum lycopersicum) as 
described by Ntougias et al. (2012) with slight modifica-
tions. Briefly, 10 tomato seeds were placed in a petri dishes 
lined with a Whatman No. 1 filter paper and were watered 
by the untreated or treated OMW at various dilutions in tap 
water 1/2, 1/4, 1/10, 1/25 and 1/50 (v/v) (or by tap water for 
the control). Petri dishes containing seeds were incubated 
for 5 days in the dark at 25 °C, and then their germination 
index was calculated according to the following equation:

Statistical analysis of data

All experiments in this work were performed in duplicate, 
and mean values were presented. Experimental data were 
statistically analyzed using the one-way analysis of variance 
(ANOVA) followed by a Bonferroni post hoc test using IBM 
SPSS Statistics 21 software package.

Results and discussion

Olive mill wastewater characterization

The OMW analysis was carried out and the average val-
ues of the main parameters are shown in Table 1. OMW is 
characterized by a high level of organic matter expressed in 
term of COD content (75.14 g L−1) and high concentrations 
of total suspend solids (12.07 g L−1). The relatively low 
biodegradability of this effluent is due to its high amount of 

(1)

GI (%) =
number of grown seeds in sample

number of grown seeds in control

×
average sum of root lengths in sample

average sum of root lengths in control
× 100.

total phenolic compounds (3.5 g L−1) and its acidic pH (5.3). 
However, total nitrogen and phosphorus concentrations were 
extremely low, at 0.62 g L−1 and 0.84 g L−1, respectively.

Assessment of the adapted microbial consortium 
stability and process performance

In many cases, biological processes have been proved to 
be effective and cost-efficient in OMW treatment. However, 
the presence of inhibitory compounds in OMW, i.e., lipids, 
tannins and phenolic compounds requires an acclimatization 
period for the microorganisms to increase their tolerance 
to toxicants and to improve their capacity for OMW treat-
ment (Jaouani et al. 2005b; Özgün et al. 2016). High COD 
contents can be tolerated only if the process operates at a 
long hydraulic retention time (HRT) and/or with high recy-
cle ratios. If an adaptation period for the microorganisms is 
performed, the COD reduction achieved by aerobic treat-
ment may be up to 85% with HRT 20–25 days (Paraskeva 
and Diamadopoulos 2006).

Several investigations have been done on the biologi-
cal treatment of OMW. Nevertheless, most of these studies 
deal with treating OMW after making considerable dilutions 
or proceeding pretreatment steps. In the present study, an 
attempt to gradually acclimatize the microbial consortium to 
higher concentrations of OMW by successive stepwise trans-
fers from medium having a COD concentration of 10 g L−1 
to one containing 75 g L−1 was carried out, as described 
in “Material and Methods”. To confirm the stability of the 
aerobic microbial consortium, the acclimatized consortium 
was used to successively inoculate new batches containing a 
COD concentration of 75 g L−1. Similar COD removal effi-
ciencies have been achieved (about 60%) after 30 day HRT, 
indicating the presence of a stable microbial consortium 
(Fig. 1). In the same line, Benitez et al. (1997) investigated 
the aerobic treatment of OMW in a completely mixed batch 
activated sludge reactor following microorganism acclimati-
zation. The yielded maximum COD removal efficiency was 
found to be in the range of 58–68% for corresponding initial 
CODs of 98–65 g L−1.

Table 1  Physicochemical characteristics of the olive mill wastewa-
ter (OMW) used in this study (mean values of two separate analy-
sis ± standard deviation)

Parameters Data

pH (25 °C) 5.3
COD (g L−1) 75.14 ± 1.21
Total suspended solids (TSS) (g L−1) 12.07 ± 0.05
Total phenols (g L−1) 3.50 ± 0.08
Total nitrogen kjeldhal (TNK) (g L−1) 0.62 ± 0.04
Phosphorus (g L−1) 0.84 ± 0.10
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We have to mention here that SBR may be considered as 
a potentially promising solution for OMW treatment, since 
high removal rates as high as 1.5 g COD L−1 D−1 have been 
achieved without any prior treatment or dilution.

Bacterial community structure

According to colony and cell morphologies, 91 different cul-
tivable bacterial strains were isolated from OMW samples 
after acclimatization period.

The diversity of this collection was analyzed by amplifi-
cation of the ITSs between the 16S and the 23S rRNA genes 
(ITS-PCR) followed by 16S rRNA sequencing. ITS-PCR 
showed a high level of diversity among the isolated strains 
with the detection of 22 distinct haplotypes. Each ITS-type 
was composed by 1 up to 5 reproducible bands showing 
an apparent molecular weight ranging from 200 to about 
900 bp. Haplotypes C and B were the most represented in 
the collection and were demonstrated, respectively, in 9 and 
8 isolates (Table 2). Molecular identification of the isolates 
was performed by sequencing the 16S rRNA gene of rep-
resentative isolates of each haplotype group and comparing 
the generated sequences to those available in the GenBank 
database using BLAST algorithm.

From the phylogenetic analysis shown in Fig.  2 and 
Table 3, it was possible to discriminate three major phyla of 
bacteria, i.e., Firmicutes with the highest number of species 
(57.1%), Proteobacteria (35.2%) and Actinobacteria (7.7%). 
These phyla have been reported to be commonly abundant 
in wastewater biological treatment systems (Yadav et al. 
2014). Firmicutes were as well identified as the predominant 
bacteria involved in the decomposition of olive mill waste 

to generate substrates directly utilized by methanogenic 
Archaea during anaerobic digestion (Rincòn et al. 2008). 
Nevertheless, Proteobacteria was the most dominant phylum 
detected in the natural microbiota of OMW from different 
olive tree varieties (Tsiamis et al. 2012). The dominance 
of Firmicutes in this work is probably due to the acclima-
tization of activated sludge to OMW that may promote the 
occurrence of particular phyla of species more resistant to 
recalcitrant compounds.

In the present study, Firmicutes were represented 
exclusively by members of the order Bacillales and more 
specifically were dominated by the families Bacillaceae 
characterized by the genera Bacillus and Lysinibacillus 
and Paenibacillacae characterized by the genera Breviba-
cillus and Paenibacillus. The Bacillus genus encompassed 
34 isolates represented by B. amyloliquefaciens (11 iso-
lates), B. cereus (8 isolates), B. nealsonii (7 isolates), B. 
thioparans (4 isolates), B. thuringiensis (3 isolates) and 
B. subtilis (1 isolate). Bacillus species i.e., B. cereus, B. 
thuringiensis and B. amyloliquefaciens were also the main 
autochthonous bacterial biota in soil amended by OMW 
(Naclerio et al. 2010). This was not surprising, since sev-
eral Bacillus sp. have been reported as capable of using 
lipids and tannins as sole carbon and energy sources 
(Ertuğrul et al. 2007; Mondal et al. 2001). Naclerio et al. 
(2010) reported as well that endospores of Bacillus species 
isolated from OMW-amended soil exhibit a high biodeg-
radation potential towards OMW phenolic compounds. In 
fact, according to Henriques and Moran (2000), the nucle-
oid in the spore core is surrounded by several protective 
layers that enable the spores to resist external physical and 

Fig. 1  COD removal during 
repetitive batch experiments 
carried out at 75 g L−1 COD. 
Each batch run was for 30 days
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chemical insults and in part determine their exceptional 
longevity in the environment.

The genus Lysinibacillus was characterized by only a 
single specie- Lysinibacillus macroids (6 isolates). Lysini-
bacillus sp. were found to be catabolically versatile with the 
aptitude to use a wide range of unusual substrates includ-
ing ethanediol, organophosphorus pesticide malathion, sul-
fonated azo dyes, fomesafen and dibenzothiophene (Babiak 
et al. 2011; Saratale et al. 2013; Singh et al. 2012).

Paenibacillacae was represented by Brevibacillus latero-
sporus (6 isolates) and Paenibacillus xylanilyticus (6 iso-
lates). Though Brevibacillus laterosporus strains have been 
recognized as eco-friendly, few studies revealed their use 
in bioremediation. These species have been recently inves-
tigated especially in azo dye degradation and textile efflu-
ent treatment (Kurade et al. 2016). Isolates belonging to the 
genus Paenibacillus have been reported to be distinguishable 
from other aerobic spore-forming species by their ability to 
grow optimally in 100% (v/v) OMW (Aguilera et al. 2001). 
These species could have strong biotechnological potential, 
since they have been recognized as capable to degrade and 
to metabolize a wide spectrum of aliphatic and aromatic 
organic pollutants as well as several azo dyes (Johnson et al. 
2016; Nawahwi et al. 2013).

Among the phylum Proteobacteria, bacterial species 
belonging to the class Alphaproteobacteria were the most 
prominent accounting for 78.1% of Proteobacteria spe-
cies, followed by Gammaproteobacteria (21.9%). The Alp-
haproteobacteria were represented by genera Roseomonas 
and Ochrobactrum, while the Gammaproteobacteria were 
represented by genera Pseudomonas and Klebsiella. Mem-
bers of Alphaproteobacteria have been reported to degrade 
several aromatic substrates. More specifically, Ochrobac-
trum species possess a broad range of metabolic activities 
for several petroleum hydrocarbons, insecticides and bromi-
nated flame retardants (e.g., tetrabromobisphenol A) (Abra-
ham and Silambarasan 2016; Bezzaa et al. 2015; Zu et al. 
2014), while Roseomonas species were proved to process 
hydrocarbon-degrading abilities (Jain et al. 2010).

The Gammaproteobacteria are a very diverse group char-
acterized by their ability to degrade hydrocarbons, lignin and 
lignin-related phenolic compounds (Fang et al. 2012; Kostka 
et al. 2011). In our study, the Gamma subclass of proteo-
bacteria was represented only by Klebsiella oxytoca (6 iso-
lates) and Pseudomonas aeruginosa (1 isolate). These spe-
cies have been frequently reported as versatile toxic organic 
compound degraders, and may constitute good candidates 
for bioremediation processes. In fact, Ammar et al. (2005) 
showed that indigenous Klebsiella oxytoca strains exhibit 

Table 2  ITS Haplotype diversity of groups of OMW isolates

ITS haplotype Number of ITS 
bands

Size of ITS bands (bp) Strains

A 1 300 OM64–OM67–OM69–OM71–OM74–OM73
B 1 350 OM44–OM43–OM45–OM62–OM70–OM76–OM77–OM75
C 1 400 OM17–OM30–OM16–OM26–OM25–OM27–OM23–OM24–OM32
D 1 500 OM88
E 1 600 OM31–OM14–OM28–OM89–OM15–OM29
F 1 900 OM61
G 2 300–400 OM60–OM59–OM55
H 2 350–500 OM42–OM41–OM11–OM72
I 2 300–500 OM12–OM58– OM56–OM13–OM57
J 2 500–600 OM47–OM49–OM51–OM52–OM53–OM50
K 2 400–600 OM33
L 2 600–700 OM22–OM1–OM21–OM20
M 3 200–300–500 OM40–OM10
N 3 300–400–500 OM46–OM48–OM54–OM78–OM81
O 3 350–450–500 OM82–OM84–OM87–OM90–OM91–OM86
P 3 300–500–700 OM7–OM35–OM34
Q 3 500–700–900 OM79
R 4 250–350–500–600 OM37–OM18–OM6
S 4 300–500–600–650 OM65–OM68–OM66–OM80–OM83–OM85
T 5 500–550–600–700–800 OM3–OM36–OM5–OM8–OM19–OM38
U 5 400–550–700–800–850 OM2–OM39–OM9–OM4
V 5 300–550–600–700–900 OM63
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important biodegradation capacities towards several mono-
meric aromatic compounds of OMW (i.e., gentisic, proto-
catechuic, p-hydroxybenzoic, benzoic, vanillic and ferulic 
acids), while Hasan and Jabeen (2015) showed that Pseu-
domonas aeruginosa is capable to degrade up to 400 mg L−1 
phenol through an ortho-cleavage pathway.

Actinobacteria were represented entirely by members of 
the order Actinomycetales and more specifically were domi-
nated by the genus Rhodococcus (5 isolates) followed by 
Kocuria rosea (1 isolate) and Cellulosimicrobium cellulans 
(1 isolate). According to Ventura et al. (2007), the presence 
of Actinobacteria was associated to an efficient degradation 
of complex organic materials. Rhodococcus species were 
described as able to degrade and/or convert a wide range of 
recalcitrant compounds, including aliphatic, monoaromatic-, 
and polyaromatic hydrocarbons (Kotake et al. 2016; Yang 
et al. 2014), n-alkanes (Cappelletti et al. 2015), phenols (He 
et al. 2014), chlorophenols (Hou et al. 2016), sulphonated 
azo dyes (Heiss et al. 2006), as well as xenobiotic com-
pounds (Khairy et al. 2015) making them suitable in bio-
catalytic and bioremediation applications. The tolerance of 
Rhodococcus sp. is associated with their genomic plasticity 
coding for multiple efflux pumps, combined with a highly 
versatile metabolism that enables species of this genus to 
survive under extreme environmental conditions (de Car-
valho et al. 2014).

In conclusion, these strains, which have been suggested to 
be major degraders of several recalcitrant compounds, may 
constitute potential candidates for bioremediation and can 
be useful for biotechnological applications.

OMW phenolics biodegradation by the isolated 
strains

Considering the complex composition of OMW, it was dif-
ficult to ascertain precisely whether the isolated bacteria 
strains could grow only on the aromatic part of the effluent 
or on other easily biodegradable compounds present in this 
wastewater. To confirm the aromatic nucleus degradation 
ability of these isolates, the Biolog Phenotype Microar-
ray technology was used as an alternative method for rapid 
assessment of OMW phenolics biodegradation. To the best 
of our knowledge, this is the first study done using this tool 
to evaluate the ability of microorganisms to utilize phe-
nolic compounds. This technology measures the respiration 
of cells as a function of time in thousands of microwells 
simultaneously, and thus allows easier comparison of kinetic 
plots. For each kinetic curve, key biological information 
such as the area under the curve, the maximum value, and 
the slope are calculated on the basis of the raw data points.

In this study, bacterial respiration kinetics were con-
ducted in the presence of OMW phenolics and glucose, 

alone or in combination to characterize substrate utilization 
by the isolated strains. The integrated surface area under 
the time course kinetic curves (AUC) that reflects the meta-
bolic activity of the bacterial strains was extracted from the 
software and exploited as excel file (Fig. 3). The respiration 
kinetics varied considerably according to the different sub-
strates and bacterial species tested. Interestingly, the respi-
ration curves for all strains indicated positive reactions on 
OMW phenolics, but their respective areas were substan-
tially different. Such result is expected, since the acclimati-
zation of these strains to high OMW concentrations would 
induce phenolics-degrading enzymes and alleviate inhibi-
tion effects to some extent. In the same line, Aissam et al. 
(2007) and Kumar et al. (2013) reported that phenolic com-
pounds were biodegraded much more readily with phenol-
acclimatized microorganisms rather than non-acclimatized 
ones. The highest respiration rates on OMW phenolics were 
recorded for Pseudomonas aeruginosa strain OM88, Lysini-
bacillus macroids strain OM73 and Bacillus amyloliquefa-
ciens strains OM48, while the least respiration rates were 
observed for Ochrobactrum haematophilum strain OM14, 
Paenibacillus xylanilyticus strain OM8, Rhodococcus pyri-
dinivorans strain OM22, Kocuria rosea strain OM61, Bacil-
lus thuringencis strain OM60, Brevibacillus laterosporus 
strain OM50, Roseomonas mucosa strain OM18, Bacillus 
cereus strain OM43 and Bacillus thioparans strain OM9.

Based on respiration behavior on OMW phenolics as glu-
cose co-substrates, it was possible to discriminate 3 distinct 
groups. Group I includes strains having lower respiration rates 
(statistically significant at p ≤ 0.05) in the presence of OMW 
phenolics and glucose compared to glucose alone (i.e., Bacil-
lus nealsonii strain OM56; Ochrobactrum tritici strain OM24; 
Ochrobactrum tritici strain OM26; Ochrobactrum haemat-
ophilum strain OM14; Bacillus thioparans strain OM9; Roseo-
monas mucosa strain OM18; Paenibacillus xylanilyticus strain 
OM8). For these strains, glucose appeared to be more preferen-
tially used as it supported higher respiration rates than OMW 
phenolics alone. These results indicate that OMW phenolic 
acids had a negative effect on growth of the latter strains. The 
inhibitory effect of phenolic compounds may be explained by 
adsorption to cell membranes, interaction with cell enzymes, 
carbohydrates and proteins by hydrogen bonding and metal 
ion deprivation (Scalbert 2012). However, Group II encom-
passes strains that demonstrated tolerance to the presence 
of OMW phenolics, since their respiration rates were quite 
similar whatever the substrate used. As for the rest of strains 
(Group III), the respiration rates were significantly stimulated 
(p < 0.05) by the mixture of glucose and OMW phenolics (i.e., 
Bacillus amyloliquefaciens strain OM48; Klebsiella oxytoca 
strain OM84; Pseudomonas aeruginosa strain OM88; Cel-
lulosimicrobium cellulans strain OM79; Lysinibacillus mac-
roids strain OM73; Bacillus cereus strain OM43; Rhodococ-
cus zopfii strain OM33; Bacillus thuringencis strain OM60; 
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Rhodococcus pyridinivorans strain OM22). Microorganisms 
in nature show the preference for simple carbon sources such 
as glucose, and unless it is completely exhausted, the com-
plex carbon sources like aromatic compounds are not degraded 
(Collier et al. 1996). This phenomenon of carbon catabolic 
repression has been shown to occur in several microorgan-
isms, while in the present study, strains of Group III seem 
to be able to co-metabolize both OMW phenolic compounds 
and glucose. A similar trend was observed for Pseudomonas 
putida when grown on an aromatic compound and glucose 
(Collier et al. 1996).

When the respiration rate was examined on each substrate 
separately, different behaviors were seen among strains of 
Group III. The species Bacillus thuringencis strain OM60 
and Rhodococcus pyridinivorans strain OM22 showed 
higher respiration rates on glucose compared to OMW phe-
nolics alone, which is explained by the fact that glucose 
is an easily biodegradable compound, whereas phenolics 
are not. However, the strains Bacillus cereus strain OM43, 
Rhodococcus zopfii strain OM33 and Lysinibacillus mac-
roids strain OM73 utilize with almost equal efficiency both 
glucose and phenolics. The remaining strains (i.e., Bacillus 
amyloliquefaciens strain OM48; Klebsiella oxytoca strain 
OM84; Pseudomonas aeruginosa strain OM88; Cellulosimi-
crobium cellulans strain OM79) were able to utilize pheno-
lics more efficiently than glucose, since higher respiration 
rates were recorded in the presence of OMW phenolics as 
sole carbon sources. According to Basu and Phale (2006), 
the low utilization of glucose may be attributed to the regula-
tion of glucose metabolizing enzymes and/or to the transport 
process. The unusual carbon source preference by the latter 
strains provides opportunities for bioremediation of aromatic 
compounds even in the presence of simple carbon substrates 
in the environment.

These findings suggest that most of bacterial strains 
isolated from OMW can be promising for effectively treat-
ing wastewaters containing phenolic compounds and their 
derivatives.

Aerobic treatment of OMW using indigenous 
bacterial mixed cultures

The native bacteria always display a good adaptability to the 
natural environment. Accordingly, it is a cost-effective and 
highly efficient method to reuse the above isolated indig-
enous microorganisms for organic matter and phenolics 

removal from OMW. Several biodegradation studies have 
focused on the use of defined single microorganisms, while 
the present research attempts to treat OMW using mixed 
bacterial consortium.

The degradation ability of the indigenous bacterial 
mixed cultures has been examined using OMW at 75 g L−1 
COD. The reconstituted bacterial consortium showed COD 
and phenolics removal efficiencies of up to 61% and 64%, 
respectively, which are comparable to those obtained with 
acclimatized activated sludge (Fig. 4). Although both culti-
vable and non-cultivable microorganisms take part in deg-
radation, our results suggest that cultivable bacteria play the 
major role in OMW biodegradation. As a general rule, it 
appeared that the combination of a wider range of bacterial 
species with a broader enzymatic profile has a greater ability 
to degrade mixed pollutants in OMW. Several studies have 
utilized bacterial consortia for bioremediation of OMW and 
some promising results have been obtained with consortia 
originated from activated sludge (Benitez et al. 1997), com-
mercial communities (Ranalli 1992), wastewaters and soil 
samples (Zouari and Ellouz 1996). For instance, Zouari and 
Ellouz (1996) reported COD removal rate of 50% and deg-
radation of almost all of the simple aromatics in undiluted 
OMW with reconstituted bacterial mixtures, while Benitez 
et al. (1997) showed up to 58–84% removal efficiency for 
corresponding initial CODs of 98–20 g L−1 as well as an 
intense reduction in the total phenolic content (up to 90%) 
and a complete removal of some simple phenolics.

In conclusion, our research study succeeded in establish-
ing a stable cultivable bacterial consortium that may be used 
for bioremediation of OMW or similar phenolics-rich waste-
waters. Despite experiments being performed at the Erlen-
meyer scale and under sterile conditions, they can provide 
a good insight into the efficiency of the novel reconstituted 
bacterial consortium on OMW treatment. Further research 
on the scale-up of this consortium at bioreactor scale is 
required to ascertain whether the results achieved by the 
current study can be turned into viable process.

Phytotoxicity assessment

The impact of biotreatment with the reconstituted bacte-
rial consortium in decreasing the concomitant OMW tox-
icity was determined through germination assays using 
tomato seeds. The test was performed on different treated 
and untreated OMW (at 75 g L−1 COD) dilutions, i.e., 1/1, 
1/2, 1/4, 1/10, 1/25 and 1/50. Results of the study showed 
that phytotoxicity of treated and untreated OMW decreased 
significantly following dilution (Fig. 5). Indeed, no germi-
nation was registered for the dilution 1/2 (v/v), 1/4 (v/v) 
and when undiluted OMW was used. The seeds watered 
with treated and untreated OMW germinated only when the 
dilution exceeded 1/10 (v/v). Similarly, several researchers 

Fig. 2  Phylogenetic tree based on the 16S rRNA gene of representa-
tive isolates of each haplotype group (A–V) and reference sequences 
from GenBank (http://www.ncbi.nlm.nih. gov/genbank). Phyloge-
netic relationships among taxa were evaluated by performing boot-
strap analysis of 1000 data sets using MEGA version 6.0. Numbers 
in parentheses represent the sequences accession numbers. Bar, 0.02 
changes per nucleotide position
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Table 3  Table summarizing phylogenetic affiliations of the isolates

Phylum Class Order Suborder Family Genus Species Isolates

Proteobacteria Alpha-proteo-
bacteria

Rhodospirillales Acetobacte-
raceae

Roseomonas Roseomonas 
mucosa

OM37, OM18, 
OM6, OM11, 
OM42, 
OM41, 
OM72

Rhizobiales Brucellaceae Ochrobactrum Ochrobactrum 
haematophi-
lum

OM35, OM34, 
OM14, 
OM31, 
OM28, 
OM89, 
OM15, 
OM29, OM7

Ochrobactrum 
tritici

OM25, OM24, 
OM23, 
OM27, 
OM26, 
OM16, 
OM30, 
OM17, 
OM32

Gamma proteo-
bacteria

Pseudomon-
adales

Pseudomona-
daceae

Pseudomonas Pseudomonas 
aeruginosa

OM88

Enterobacteri-
ales

Enterobacteria-
cea

Klebsiella Klebsiella 
oxytoca

OM82, OM84, 
OM87, 
OM90, 
OM91, 
OM86

Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus OM44, OM43, 
OM45, 
OM62, 
OM70, 
OM76, 
OM77, 
OM75

Bacillus 
amyloliquefa-
ciens

OM46, OM65, 
OM68, 
OM66, 
OM80, 
OM83, 
OM85, 
OM48, 
OM54, 
OM78, 
OM81

Bacillus neal-
sonii

OM12, OM58, 
OM56, 
OM13, 
OM57, 
OM10, 
OM40

Bacillus thi-
oparans

OM2, OM9, 
OM39, OM4

Bacillus 
thuringencis

OM60, OM59, 
OM55

Bacillus subtilis OM63



Table 3  (continued)

Phylum Class Order Suborder Family Genus Species Isolates

Lysinibacillus Lysinibacillus 
macroids

OM64, OM67, 
OM69, 
OM71, 
OM74, 
OM73

Paenibacillacea Brevibacillus Brevibacillus 
laterosporus

OM47, OM49, 
OM51, 
OM52, 
OM53, 
OM50

Paenibacillus 
xylanilyticus

OM3, OM36, 
OM5, OM8, 
OM19, 
OM38

Actinobacteria Actinobacteri-
dae

Actinomycetales Micrococcineae Micrococcaceae Kocuria Kocuria rosea OM61
Promicromono-

sporaceae
Cellulosimicro-

bium
Cellulosimicro-

bium cellulans
OM79

Corynebacte-
rineae

Nocardiaceae Rhodococcus Rhodococcus 
pyridinivorans

OM1, OM21, 
OM20, 
OM22

Rhodococcus 
zopfii

OM33

Fig. 3  Comparison of Area Under the Respiration Curve (AUC) data 
from the Biolog bacterial phenotypic microarray. Group I: (OM56) 
Bacillus nealsonii strain OM56; (OM24) Ochrobactrum tritici strain 
OM24; (OM26) Ochrobactrum tritici strain OM26; (OM14) Ochro-
bactrum haematophilum strain OM14; (OM9) Bacillus thioparans 
strain OM9; (OM18) Roseomonas mucosa strain OM18; (OM8) 
Paenibacillus xylanilyticus strain OM8; Group II: (OM61) Kocuria 
rosea strain OM61; (OM50) Brevibacillus laterosporus strain OM50; 

Group III: (OM48) Bacillus amyloliquefaciens strain OM48; (OM84) 
Klebsiella oxytoca strain OM84; (OM88) Pseudomonas aeruginosa 
strain OM88; (OM79) Cellulosimicrobium cellulans strain OM79; 
(OM73) Lysinibacillus macroids strain OM73; (OM43) Bacil-
lus cereus strain OM43; (OM33) Rhodococcus zopfii strain OM33; 
(OM60) Bacillus thuringencis strain OM60; (OM22) Rhodococcus 
pyridinivorans strain OM22



have previously reported the strong prohibition of seeds and 
seedling growth in the presence of high concentration of 
OMW (Daâssi et al. 2014; Komilis et al. 2005). The germi-
nation index increased proportionally with the increase of 
dilution ratio as maximum percentages were registered at 
1/50 (v/v) treated and untreated OMW. This decrease in the 
phytotoxicity of untreated OMW could be attributed to the 
reduction in the levels of phenols, salinity and other phy-
totoxic compounds following dilution (Rusan et al. 2015). 
Treated OMW showed a significant improvement in tomato 
seeds GIs compared to the untreated OMW at the same 

dilution ratios. Specifically, the GI achieved up to 110% at 
the dilution of 1/50 (v/v) which is significantly higher than 
that found in untreated OMW and in tap water (p < 0.05). 
This is mainly attributed to the lower amounts of phenolic 
compounds in treated OMW and to the significant amounts 
of nutrients that may promote seed germination and primary 
root elongation of tomato seedlings (Mekki et al. 2017). The 
phytotoxicity effect of treated OMW is expected to be much 
lower in the field as later stages of growth are less sensitive 
to salinity and other stress conditions and owing to the buffer 
capacity of the soil. Accordingly, lower OMW dilution ratios 
might be applied to enhance the economic viability and envi-
ronmental sustainability of irrigated agriculture.

Although the COD content of the treated OMW far 
exceeds the limits imposed by the Tunisian standards for 
the reuse of treated wastewater for irrigation (INNORPI, NT 
106.03, 1989), the treated OMW seemed to possess good 
fertilization properties.

Conclusions

In this study, the performance and microbial feature of the 
biomass in the SBR treating OMW were investigated. After 
acclimatization of the activated sludge to high OMW con-
centrations, the average COD removal efficiency reached up 
to 60%. Microbial analysis of the biomass showed the pres-
ence of a core set of bacterial species with phenol degrading 
properties that could be used for bioremediation purposes. 
Interestingly, the reconstituted bacterial consortium was 
found to possess comparable OMW bioremediation poten-
tial to that of acclimatized activated sludge. According to 
phytotoxicity assays, the treated OMW may be applied on 
agricultural soils, but it requires dilution to reduce further 

Fig. 4  Average of phenolics and COD removal efficiencies of OMW 
at 75 g L−1 COD by the reconstituted bacterial consortium (RC) and 
acclimatized activated sludge (AS). Data are presented as mean val-
ues from duplicate experiments. a, b Means without a common letter 
differ (p < 0.05)

Fig. 5  Effect of OMW dilution 
and treatment with the recon-
stituted bacterial consortium 
on germination index of S. 
lycopersicum seeds. Untreated 
OMW (UOMW), treated OMW 
(TOMW), number under the 
slash indicates the dilution ratio. 
Data are presented as mean val-
ues from duplicate experiments. 
a–e Means without a common 
letter differ (p < 0.05)
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the residual phytotoxic compounds. In all, this study pro-
vided preliminary but important data on a novel bacterial 
consortium that could be used for treatment of phenolics-
contaminated wastewaters.
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