

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

Available online at: <u>http://www.iajps.com</u>

Research Article

PREVALENCE OF DYSLIPIDEMIA

¹Tariq Fahad Hakami, ²Khaled Ali Hakami, ³Osama Mohammed Jabbari, ⁴Ismail Abdullah Mohmmed Juraybi, ⁵Mohammed Yahya Mohammed Mojammami, ⁶Abdulrahman Yahya Ali Jabbari, ⁶Awsam Mohammed Shawish Hakami

¹Medical Intern at Jazan University, Jazan , Tar8of@hotmail.com, Mobile number : +966560770087, Box number : 45142., ²Student in Faculty of Medicine at Jazan University, Address : Jazan, Email : khaled.a1415@gmail.com, Mobile number : +966556266420, Box number : 45142, ³Student in faculty of Medicine at Jazan University, Address : Jazan , mail : osama0177@icloud.com, Mobile number : +966550184007, Box number : 45142, ⁴Student in Faculty of Medicine at Jazan University, Address : Jazan , Email : smaojuraybi@hotmail.com, Mobile number : +966599927628, Box number : 45142, Affiliation : ⁵Student in Faculty of Medicine at Jazan University, Address : Jazan , Email : Momo_ksa@hotmail.com, Mobile number : +966509378774, Box number : 45142, ⁶Medical Intern at Jazan University, Address : Jazan , Email : dahhoomee1@hotmail.com, Mobile number : +966590987488, Box number : 45142, ⁶Student in Faculty of Medicine at Jazan university, Address : Jazan , Email : awsem14@gmail.com, Mobile number : +966564656601, Box number : 45142.

Abstract

Background: Obesity is a chronic health problem that is associated with several diseases and conditions including dyslipidemia. Dyslipidemia is the disruption of body lipids, which in turn associated with the development of several disease including cardiovascular diseases. Obesity prevalence is increasing and as a result dyslipidemia is rising. Aim: To assess the prevalence of dyslipidemia among obese patients.

Methods: This present study included 250 individuals, 150 of them were obese and 10 were non-obese. The parameters of dyslipidemia were investigated for all participants.

Results: The present study included 2 groups of participants, 40% were non-obese individuals and 60% were obese patients. There were significant differences (P-value <0.05) regarding total cholesterol, LDL, HDL and triglycerides among the two groups. Also there were significant differences among the two groups regarding different types of dyslipidemia.

Conclusion: The prevalence of dyslipidemia was high among obese patients and the most common type of dyslipidemia was hypercholesterolemia.

Keywords: Dyslipidemia, prevalence of dyslipidemia, Obese patients, Types of dyslipidemia.

Corresponding author:

Tariq Fahad Hakami,

Medical intern at Jazan university, Jazan, <u>*Tar8of@hotmail.com, Mobile number: +966560770087, Box number: 45142.*</u>

Please cite this article in press Tariq Fahad Hakami et al., **Prevalence of Dyslipidemia.,** Indo Am. J. P. Sci, 2019; 06(01).

INTRODUCTION:

Obesity is an independent risk factor for several diseases including type 2 diabetes mellitus, dyslipidemia, and coronary artery diseases [1]. Body mass index (BMI) is the most beneficial measurement of obesity, normal weight individuals has BMI of range of 18.5-24.9, overweight individuals have BMI of 25-30, whereas obese individuals have BMI above 30 [1]. The prevalence of obesity in several Saudi study was reported to be in the range of 13%-50% [2-6]. Dyslipidemia is lipids disruption [7], it acts as a risk factor for several chronic diseases which result in morbidity and mortality around the world [8-10], such as type 2 diabetes [11,12], stroke development [13], and artherosclerosis [14]. Dyslipidemia prevalence differs according to cultural characteristics of the population, socioeconomics and ethnicity [15]. The prevalence of dyslipidemia is raising globally. Hyperdyslipidemia is the most dyslipidemias that involves increase in the level of cholesterol and /or triglycerides, or low level The global prevalence of of HDL[16-18]. dyslipidemia was estimated to range from 2.7% to 51.9% [19-21]. Dyslipidemia became apparent in Saudi Arabia as result of changes in lifestyle, dietary and sociodemographics recently [22]. The prevalence in Saudi Arabia was reported to be ranges from 20%-44% [15]. The present study was conducted to assess the prevalence of dyslipidemia among obese individuals.

SUBJECTS AND METHODS:

The study was conducted in jazan city between the period from September 2018 to November 2018. This study included two groups of individuals, 100 healthy individuals and 150 obese patients. Exclusion criteria of obese patients included suffering of renal or thyroid diseases, being on steroid therapy, alcoholic and smokers as well as postmenopausal women. Routine physical examination was performed for all participants and several parameters were assessed including, Total cholesterol, LDL, HDL and triglycerides.

STATISTICAL ANALYSIS:

SPSS program version 16.0 was used to analyze data. Results were represented as frequencies and percent for qualitative data and standard deviation for quantitative data. P-value at <0.05 was considered statistically significant. **RESULTS:**

The present study included 250 participants, who were divided into 2 groups the non-obese group and obese group, non-obese group included 100 (40%) individuals, while obese group included 150 (60%) patients, figure1, there was equal ratio of males and females in this study 1:1. The age range of participants was 30-65 years old. Total cholesterol, LDL, HDL and triglycerides were assessed in individuals in this study, the mean \pm SD of each parameter is shown in table 1. The mean \pm SD of total cholesterol in non obese participants was 190±15.2mg/dl, while in obese individuals it was 245 \pm 16.5 mg/dl (P-value=0.02). The mean \pm SD of LDL in non obese persons and obese patients was 115.7 ± 6.4 mg/dl and 170.3 ± 9.7 mg/dl respectively (P-value=0.01). The mean \pm SD of HDL level for non-obese individuals was 112.9± 4.2mg/dl and for obese patients was $162.7 \pm 4.8 \text{ mg/dl}$ (P-value=0.014). The mean \pm SD of Triglycerides for non-obese and obese participants was 110 ± 4.2 mg/dl and 160 ± 5.6 mg/dl respectively (P-value=0.021). The distribution of participants in both groups regarding the 4 parameters according to dyslipidemia prevalence is shown in table2. There were significant differences between the two groups regarding the prevalence of dyslipidemia according to the 4 different parameters levels.

Fig1: Prevalence of obesity among participants

Parameters	Non-obese	Obese	P-value
	Mean \pm SD	Mean \pm SD	
Total cholesterol (mg/dl)	190±15.2	245±16.5	0.02
LDL (mg/dl)	115.7±6.4	170.3±9.7	0.01
HDL (mg/dl)	112.9±4.2	162.7±4.8	0.014
Triglycerids (mg/dl)	110±4.2	160±5.6	0.021

Table2: Distribution of participants regarding the level of the 4 parameters in the two groups according to prevalence of dyslipidemia

Variables	Obese (150)	Non-Obese (100)	P-value
	N (%)	N (%)	
Total cholesterol (TC)			0.01
<200 mg/dl	30(20%)	60(60%)	
>200 mg/dl	120(80%)	40(40%)	
LDL			0.02
<100 mg/dl	28(18.7%)	56(56%)	
>100 mg/dl	122(81.3%)	44(44%)	
*HDL			0.01
Low	90(60%)	66(66%)	
Normal/ High	60(30%)	34(34%)	
Triglyceride			0.01
<150 mg/dl	40(26.7%)	75(75%)	
>150 mg/dl	110(73.3%)	25(25%)	

* HDL considered low in case of<40mg/dl in men and <50mg/dl in women.

DISCUSSION:

In the current study the prevalence of obesity was 60% among 250 participants. This percent was in agreement with that reported in a previous Saudi study [23], where the obesity prevalence was 60%. while another Saudi study [5] reported lower percent where the prevalence ranged from 34%-40%. The prevalence of obesity among Kuwaiti students was found 19.8% [7]. In this study, the mean levels of total cholesterol, LDL, HDL and triglycerides were significantly higher in obese patients than in nonobese individuals. These findings were in agreement with several previous studies, one Saudi study [23] reported that the mean levels of cholesterol, LDL and triglycerides were higher in obese patients than normal persons, another study [24] reported the increase in cholesterol and LDL in obese patients than non-obese ones. Two previous studies [1,25] reported increase in the triglycerides level among obese patients than non-obese individuals. There are several types of dyslipidemia, hyperchloesterolimea which involves the elevation of cholesterol level more than 200mg/dl or elevation of LDL level more than 100 mg/dl, whereas the other type called hypertriglyceridemia involves the elevation of triglycerides level more than 150 mg/dl and low HDL level which is referred when HDL level is less than 50mg/dl in females and 40 mg/dl in males. The presence of more than one abnormal lipid component refers to mixed hyperdyslipidemia [26]. In the current study, there were significant differences among the two groups regarding the level of cholesterol >200mg/dl, LDL>100 mg/dl, triglycerides> 150mg/dl as well as Low HDL. The prevalence of dyslipidemia ranged from 60% to 81.3%. Our study showed that the most common type of dyslipidemia was hypercholesterolimea among obese patients, where there were 80% and 81.3% of obese patients had total cholesterol level >200 mg/dl and LDL level >100 mg/dl respectively, which refers presence of hypercholesterolimea. Moreover, our study showed that in obese patients there were increases in total cholesterol, LDL and triglycerides, whereas the lower HDL was more common in non-obese individuals. In a previous Saudi study [23] the prevalence of dyslipidemia among obese individuals ranged from 55.6% to77.78%, showing lower prevalence than our study, with higher prevalence of hypertriglyceridemia which was in contrast to our findings, but the author reported that total cholesterol. LDL and triglyceride elevation was more associated with obese patients, whereas low HDL was associated with non-obese individuals which was in agreement with our results. Chinese study [27] reported higher prevalence of hypertriglyceridemia and low HDL, whereas in Kuwaiti study [28] it was found that 75% of adults

attending the lipid clinics were suffering either hyperlipidemia or hypertriglyceridemia. A study from India [29] it was found that total cholesterol, LDL and triglycerides were significantly higher among individuals with high BMI than those with normal BMI which was in agreement with our study, whereas in contrast to our findings, the previous Indian study [29] showed that HDL didn't differ significantly among the two groups.

CONCLUSION:

The prevalence of dyslipidemia among obese individuals was high. All types of dyslipidemia were associated with obesity, whereas low HDL was associated with normal individuals, the most common type of dyslipidemia was hypercholesterolemia.

REFERENCES:

- Jacob BS, Balachandran J, Paul B. A Study on Prevalence of Dyslipidemia in Obese Patients in a teaching hospital in Kerala. Scholars Journal of Applied Medical Sciences. 2014;2(2b):642-6.
- Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA et al. Obesity in Saudi Arabia. Saudi Med J;2005:26(5): 824-9
- 3. Hazzaa HM. Rising trends in BMI of Saudi adolescents: evidence from three cross sectional studies. Asia Pac J Clin Nutr;2007:16: 462–6
- 4. Alhyas L, McKay A, Balasanthiran A and Majedd A. Prevalences of overweight, obesity, hyperglycemia, hypertension and dyslipidemia in the Gulf: systematic review. JRSM Short Rep;2011:2(7): 5.
- 5. Saeed AA. Anthropometric predictors of dyslipidemia among adults in Saudi Arabia. Epidemiology Biostatistics and Public Health;2013:10(1):e8733-1-11.
- James PT, Rigby N, Leach R, International Obesity Task Force. The obesity epidemic, metabolic syndrome and future prevention strategies. European Journal of Cardiovascular Prevention & Rehabilitation. 2004 Feb;11(1):3-8.
- AlMajed HT, AlAttar AT, Sadek AA, AlMuaili TA, AlMutairi OA, Shaghouli AS, AlTorah WA. Prevalence of dyslipidemia and obesity among college students in Kuwait. Alexandria Journal of Medicine. 2011;47(1).

- World Health Organization, "Quantifying Selected Major Risks to Health," World Health Organization, Geneva, 2002
- 9. Smith G. Epidemiology of dyslipidemia and economic burden on the healthcare system. American journal of managed care. 2007 Jun 1;13(3):S68.
- Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. Jama. 2000 Jul 19;284(3):311-8.
- 11. Jayarama N and Lakshmaiah MR. Prevalence and pattern of dyslipidemia in type 2 diabetes mellitus patients in a rural tertiary care centre, southern India. Glob. J. Med. Public Health;2012:1:24–27
- 12. Zhou X, Zhang W, Liu X and Li Y. Interrelationship between diabetes and periodontitis: Role of hyperlipidemia. Arch. Oral. Biol;2014:60:667–674.
- Djelilovic-Vranic J, Alajbegovic A, Zelija-Asimi V, Niksic M, Tiric-Campara M and Salcic S. Predilection role diabetes mellitus and dyslipidemia in the onset of ischemic stroke. Med. Arch;2013:67:120–123.
- 14. Snehalatha C, Nanditha A, Shetty AS and Ramachandran A. Hyper-triglyceridaemia either in isolation or in combination with abdominal obesity is strongly associated with atherogenic dyslipidaemia in Asian Indians. Diabetes Res. Clin. Pract;2011:94:140–145.
- 15. Al-Kaabba AF, Al-Hamdan NA, El Tahir A, Abdalla AM, Saeed AA, Hamza MA. Prevalence and correlates of dyslipidemia among adults in Saudi Arabia: results from a national survey. Open Journal of Endocrine and Metabolic Diseases. 2012 Nov 19;2(04):89.
- 16. Gundogan K, Bayram F, Capak M, Tanriverdi F, Karaman A, Ozturk A, Altunbas H, Go¨ kce C, Kalkan A, Yazici C. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity and dyslipidemia. Metab Syndr Relat Disord 2009;7(5):427–34.
- Halpern A, Mancini MC, Magalha[~] es ME, Fisberg M, Radominski MC, Bertolami MC, Bertolami A, de Melo ME, Zanella MT, Queiroz MS, Nery M. Metabolic syndrome, dyslipidemia,

hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr 2010;18(2):55–9.

- Tailor AM, Peeters PH, Norat T, Vineis P, Romaguera D. An update on the prevalence of the metabolic syndrome in children and adolescents. Int J Pediatr Obes 2010;5(3):202– 13.
- Saadi H, Carruthers SG, Nagelkerke N et al. Preva- lence of Diabetes Mellitus and Its Complications in a population-Based Sample in Al-Ain, United Arab Emirates. Diabetes Research and Clinical Practice;2007:78(3):369-377
- Al-Moosa S, Allin S, Jemiai N, Al-Lawati J and Mossialos E. Diabetes and Urbanization in the Omani Population: An Analysis of National Survey Data. Population Health Metrics;2006:4(5): 5.
- 21. Grabauskas V, Miseviciene I, Klumbiene J, Petke-viciene J, Milasauskiene Z, Plieskiene A et al. Prevalence of Dyslipidemias among Lithuanian Rural Population (CINDI Program). Medicina (Kaunas);2009:39(12): 1215-1222.
- 22. WHO. Country Cooperation Strategy for WHO and Saudi Arabia 2006-2011;2012:http://www.who.int/countryfocus/coo peration_strategy/ccs_sau_en.pdf
- Algayed HK, Alharbi FM, Almutairi TS, Alaskar MS, Rammal AF, Alrahili MM. Prevalence of Dyslipidemia in Obese Patients in Saudi Arabia. Egyptian Journal of Hospital Medicine. 2017 Nov 22;69(8).
- 24. James PT, Rigby N and Leach R. International Obesity Task Force; The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil;2004:11(1): 3-8.
- 25. Lemieux I, Almeras N, Mauriege P, Blanchet C, Dewailly E, Bergeron J et al. Prevalence of hypertriglyceridemic waist in Quebec Health Survey: association with atherogenic risk factors. Can J Cardiol;2002:18(7): 725-732.
- 26. Sangsawang T and Sriwijitkamol A. Type of dyslipidemia and achievement of the LDL-cholesterol goal in chronic kidney disease patients at the University Hospital. Vascular Health and Risk Management;2015:11 563–567.

- 27. Qi L, Ding X, Tang W, Li Q, Mao D, Wang Y. Prevalence and risk factors associated with dyslipidemia in Chongqing, China. International journal of environmental research and public health. 2015 Oct 26;12(10):13455-65.
- Akanji AO. Diabetic dyslipidaemia in Kuwait. Medical principles and practice. 2002;11(Suppl. 2):47-55.
- 29. Ranganathan S, Krishnan TU, Radhakrishnan S. Comparison of dyslipidemia among the normal-BMI and high-BMI group of people of rural Tamil Nadu. Medical Journal of Dr. DY Patil University. 2015 Mar 1;8(2):149.