
GPGU Accelerated Beam Dynamics

Interfacing PyHEADTAIL with SixTrackLib

BE-ABP-HSC

Saturday 5th January, 2019

AUTHOR:

Meghana Madhyastha

SUPERVISORS:

Adrian Oeftiger

Haroon Rafique

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means,
including photocopying, recording, or other electronic or mechanical methods, without the prior written
permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law.

Abstract

Simulations of beam dynamics vastly profit from parallelisation with high performance computing tech-
niques. The two simulation libraries SixTrackLib and PyHEADTAIL are GPGPU accelerated. The former
models non-linear particle tracking while the latter models wakefields and space charge using linear
tracking. In this project the goal is to explore concepts to bridge the gap between the two simulation
codes, thus a potential user can use them as a single simulation code while being abstracted from
the interfacing details. Advanced non-linear particle tracking capability is introduced into PyHEADTAIL
via SixTrackLib. Therefore collective effects such as space charge and wakefield interactions can be
simulated more accurately in view of resonance dynamics and beam instability applications. As an
introductory task wakefield calculations are ported to the GPU in order to reduce total simulation time. A
major part of the project is to interface PyHEADTAIL with SixTrackLib so that a user of PyHEADTAIL
can utilise the non-linear tracking functionality of SixTrackLib via an API in python. This interfacing
mechanism works on both the CPU and GPU and the user has the option to switch between the two.

CERN Openlab Report iii

Contents

Contents iv

List of Figures v

List of Tables v

1 Introduction 1

2 Speeding up Wakefields 3
2.1 Running the master branch . 4
2.2 Wakefield on GPU I: FFT and Inverse FFT . 4
2.3 Wakefield on GPU II: time-domain convolution on the GPU with one-time slicing 5
2.4 Results at a glance . 5

3 Bridging PyHEADTAIL with SixTrackLib 7
3.1 Comparing physical quantities and variables . 7
3.2 Overview . 9
3.3 CASE 1: PYHEADTAIL particles on the CPU . 10

3.3.1 Sequence of events on the CPU . 10
3.3.2 Sequence of events on the GPU . 11

3.4 CASE 2: PYHEADTAIL particles on the GPU . 12
3.4.1 Sequence of events on the CPU . 12
3.4.2 Sequence of events on GPU . 12

Conclusion and Discussions 14

Bibliography 17

CERN Openlab Report iv

List of Figures

2.1 cProfile Results . 6

3.1 PyHEADTAIL-SixTrackLib bridge . 9

List of Tables

2.1 cProfile Log: Master branch Total Simulation Time: 176.09s 4
2.2 cProfile Log: FFT approach Total Simulation Time: 210.56s 4
2.3 cProfile Log: Convolution on GPU Total Simulation Time: 145.93 seconds 5

3.1 Comparison of physical quantities in PyHEADTAIL vs. SixTrackLib 8

CERN Openlab Report v

Chapter 1

Introduction

One of the fundamental guiding principles of CERN is to advance fundamental research in particle
physics and accelerator physics. Particles when accelerated to high enough energies exhibit interesting
properties and interactions. In high energy physics, a beam of particles is accelerated to high energies.
This calls for interesting analyses on these particles to ensure that they behave as they should be. In
order to be able to test new theories and to further deepen understanding of some of these physical
phenomena, one can leverage computing technology to run simulations. For accelerator physics, this is
where beam tracking codes come in. There are many codes that allow physicists to simulate various
aspects of accelerated particle beams. A few examples are PyECloud for electron cloud simulation,
PyORBIT for space charge modelling, MADX, Sixtrack and PTC for particle tracking and design codes to
name a few.

There are a plethora of beam tracking codes written in different languages, with varying design
principles. Moreover, these codes operate under different energy ranges and sometimes different unit
conventions for physical quantities. This is furthermore complicated by the fact that they have different
functionalities which some overlap at times. The users of these codes often need to use functionalities
present in different codes. Thus, as a user, having to use multiple code for different parts of a sample
simulation case can become a complex task because they might not work well together. This necessitates
the development of a unified framework for beam tracking codes which enables interoperability for users.
This is the ultimate and broad final goal this project builds a foundation for. Such a framework would
require consolidation of the individual beam tracking codes which are currently used. In this internship
project, SixTrackLib is interfaced with PyHEADTAIL so that a user of PyHEADTAIL can leverage non-
linear tracking from SixTrackLib. This is described in detail in chapter 3. Such an interface allows users
of PyHEADTAIL to use SixTrackLib.

PyHEADTAIL is a numerical n-body simulation code for modelling macro-particle beam dynamics
with collective effects of charged beams [4, 2, 6]. It has been written primarily in python but also uses
cython and CUDA. For more information on collective effects, one can refer to [7]. PyHEADTAIL was
started by Dr Kevin Li and extensively developed by Dr Adrian Oeftiger as part of his PhD Thesis [5]. For
more information about PyHEADTAIL and its usage, the reader is referred to [5]. The specific module in
PyHEADTAIL which has been extensively used for the first part of the project is the wakefield. Wakefield
is a collective effect where delayed currents in the accelerator aperture and a trailing electromagnetic

CERN Openlab Report 1

2

field are induced by a charge traveling down a pipe with finite conductivity. PyHEADTAIL supports
parallelisation using the GPU to speed up simulations. It uses a context manager class [3] to switch
between the CPU and GPU usage as a form of modularisation and to ensure that processor specific
details are abstracted from the rest of the source code. Parallelisation over the particles is based on an
object-of-arrays data structure: the coordinates and momenta of each particle correspond to an index
within an array of a length equal to the number of particles.

SixTrackLib is a particle tracking library written primarily in C [1]. SixTrackLib’s development arose
from the need to refactor Sixtrack for reasons of maintainability and to extend its hardware support to
GPU architectures. Sixtrack is a beam tracking code written in fortran with a long and diverse history
of development. SixTrackLib supports GPU parallelisation. Here, parallelisation over the particles is
based on an array-of-objects data structure due to the distributed computing requirements (e.g. on
BOINC): particles are thus separate instances of structs containing the coordinates and momenta values.
SixTrackLib offers advanced non-linear tracking algorithms but lacks a python interface yet.

PyHEADTAIL, although fairly comprehensive and quite extensive in the features it provides, has
some limitations. One limitation is that it only supports linear transverse betatron tracking. The purpose
of simulation codes is to be able to model real physical systems as accurately as possible. Modelling
resonant beam behaviour accurately with PyHEADTAIL’s space charge suite requires non-linear tracking.
SixTrackLib can provide this functionality. The major part of the present project is to provide users with
an API to use SixTrackLib’s non-linear tracking from PyHEADTAIL. This poses a number of challenges;
SixTrackLib is written in C and PyHEADTAIL is written in python, the memory addressing of particles is
quite different and parallelisation is implemented differently according to the data structures.

Chapter 2

Speeding up Wakefields

The first task of the project was to get familiarized with PyHEADTAIL. Simulating a bunch of particles
in a Proton Synchroton machine with wakefields on the GPU was the first task. The simulations were
profiled using cProfile and nvprof to identify bottlenecks. We use the NVIDIA Tesla V100 (16GB) GPU.
Detailed specifications can be viewed at https://www.nvidia.com/en-us/data-center/tesla-v100/.
The following are the simulation parameters:

• Number of macro-particles = 106

• Number of slices for the wakefield = 104

• Number of turns = 104

Each turn consists of 1 transverse (linear) tracking node (i.e. one segment), 1 longitudinal non-linear
tracking node and 1 wakefield interaction node.

The particle beam is sliced by uniform bin slicing (UniformBinSlicer in PyHEADTAIL). The wakefield
effect is generated via a circular broad-band resonator. Before the tracking computations, the particles
are generated on the CPU. Next, the context manager is invoked, the particles are transferred to the
GPU and henceforth the rest of the tracking computations are performed on the GPU.

Profiling is a form of dynamic program analysis that measures the space (memory) or time complexity
of a program, the usage of particular instructions or the frequency and duration of function calls. Profiling
information serves to aid program optimisation. Using nvprof for CUDA GPU profiling and cProfile for
python profiling (from the CPU perspective), the simulations are profiled and bottlenecks are identified.

In the rest of the section, the profiling results of wakefield simulations are displayed and analysed.
First, the simulations (particle tracking and wakefield) are run with the master branch of PyHEADTAIL.
This is then compared to a recent pull request 1 aimed at making the central convolution part of the
wakefield interaction more efficient. Finally, it is compared to my pull request 2 which is the result of the
first task in the internship. In this branch, convolution and all other wakefield calculations are done on the
GPU, implemented in a custom kernel.

1https://github.com/PyCOMPLETE/PyHEADTAIL/pull/82
2https://github.com/megh1241/PyHEADTAIL/commit/c914a7dc92489fc511d31b691f3ca75b8b087acc

CERN Openlab Report 3

https://www.nvidia.com/en-us/data-center/tesla-v100/
https://github.com/PyCOMPLETE/PyHEADTAIL/pull/82
https://github.com/megh1241/PyHEADTAIL/commit/c914a7dc92489fc511d31b691f3ca75b8b087acc

4

2.1 Running the master branch

Wakefield calculations for a beam of particles with parameters mentioned above were run and profiled
with the current PyHEADTAIL master branch3. Table 2.1 shows the results of cProfile. Here, ’ncalls’ is
the number of times a function is called.

ncalls(sec) cumulative time(sec) filename:lineno(function)

10000 111.203 wakes.py:119(track)

2070033 25.309 gpuarray.py:162(__init__)

20000 6.518 gpu_wrap.py:780(convolve)

Table 2.1: cProfile Log: Master branch
Total Simulation Time: 176.09s

For more detailed logs, one can refer to my repository4.

2.2 Wakefield on GPU I: FFT and Inverse FFT

This experiment will involve a modified version of the wakefield where a part of the computations are
carried out on the GPU. Specifically, convolution of the wake function with the slice centroid positions
is done on the GPU by computing a Fourier transform of each of them, multiplying these and then
computing the inverse Fourier transform of the result. This has already been implemented using the
cuFFT library (CUDA’s library for performing Fast Fourier Transforms) in a PyHEADTAIL pull request5.

ncalls(sec) cumulative time(sec) filename:lineno(function)

10000 199.872 wakes.py:119(track)

2070033 43.434 gpuarray.py:162(__init__)

20000 41.344 gpu_wrap.py:780(convolve)

20045 22.585 cufft.py:206(cufftPlanMany)

Table 2.2: cProfile Log: FFT approach
Total Simulation Time: 210.56s

As we can see from the above table, convolve takes 43.4 seconds which is an increase from 6.5
seconds on the master branch. The reason for this is that the time taken to set up cuFFT is an additional
cost. For small arrays (array lengths of the order 104), the FFT approach does not offer significant
improvements in terms of time taken to run the simulations and rather slows down the total simulation
time.

3https://github.com/PyCOMPLETE/PyHEADTAIL/commit/f9c94b19398148f7bf3d9c6c96adc96b930990b9
4https://github.com/megh1241/CERN2018
5https://github.com/PyCOMPLETE/PyHEADTAIL/pull/82

https://github.com/PyCOMPLETE/PyHEADTAIL/commit /f9c94b19398148f7bf3d9c6c96adc96b930990b9
https://github.com/megh1241/CERN2018
https://github.com/PyCOMPLETE/PyHEADTAIL/pull/82

5

2.3 Wakefield on GPU II: time-domain convolution on the GPU
with one-time slicing

The simulations were profiled, this time using regular time-domain convolution on the GPU. For imple-
mentation details please refer to the github commit6.

ncalls(sec) cumulative time(sec) filename:lineno(function)

10000 78.637 wakes.py:119(track)

2070033 20.504 gpuarray.py:162(__init__)

20000 1.150 gpu_wrap.py:780(convolve)

Table 2.3: cProfile Log: Convolution on GPU
Total Simulation Time: 145.93 seconds

We see here that we achieve a speedup of around 20% in terms of time taken for the entire simulation
to occur.

2.4 Results at a glance

In the previous sections, the profiling results pertaining to a single simulation case were displayed and
analyzed. It is also useful to see a comparison across simulation cases. That is, it is useful to observe
how the new implementation compares with the current master branch as can be seen in Figure 2.1. It is
clear that we obtain a decrease in simulation times, both for the entire tracking time and for the individual
wake functions. To be precise, we see a relative performance gain (in terms of time taken to execute) by
17% in the overall simulation of a bunch of particles on the PS with wakefields and 29.2% gain in the
time taken for the computation of the wakefields only, given the convolution array length of 104 slices.

6https://github.com/megh1241/PyHEADTAIL/commit/c914a7dc92489fc511d31b691f3ca75b8b087acc

https://github.com/megh1241/PyHEADTAIL/commit/c914a7dc92489fc511d31b691f3ca75b8b087acc

6

Figure 2.1: cProfile Results

Chapter 3

Bridging PyHEADTAIL with
SixTrackLib

As briefly mentioned in the previous sections, SixTrackLib provides non-linear tracking. PyHEADTAIL is
used to simulate collective effects. However, the simulations would be more accurate with non-linear
tracking.

SixTrackLib has a format for storing particles in a structure called st_Blocks. This structure stores
pointers to the particle attributes in a non trivial way. They store pointers which themselves contain
pointers to the actual location of the particle attributes. In the current setup, these particle buffers must
be created on the CPU.

3.1 Comparing physical quantities and variables

There are differences in naming physical quantities in PyHEADTAIL and SixTrackLib. The identification
of variables are shown in Table 3.1. While SixTrackLib allows each macro-particle to have an individual
Lorentz βi , PyHEADTAIL assumes a rigid beam in paraxial approximation. Hence all macro-particles
assume the beam restframe Lorentz β. With this assumption, the longitudinal coordinate s −βct (with s

the path length around the accelerator and t the independent time parameter) becomes the same in both
codes. Positions in the horizontal plane x and the vertical plane y are measured in meters in both codes.
Transverse momenta are defined by x ′ = Px /p0 where Px denotes the canonically conjugate momentum
to x and p0 = mβγc the total momentum (introducing the Lorentz γ, the mass m of the particle and the
speed of light c). Note that under the above approximations, p0 is the same for all particles and equal to
the restframe momentum. Hence, the horizontal momenta px and xp denote the same quantity in both
codes (and likewise for the vertical plane).

CERN Openlab Report 7

8

SixTrackLib PyHEADTAIL

particle_id id

q0 charge

mass0 mass

beta0 beta

gamma0 gamma

p0c p0*c

x x

px xp

y y

py yp

delta dp

sigma z

psigma
(E −E0)

β0p0c

rpp
P

P0

rvv
β

β0

Table 3.1: Comparison of physical quantities in PyHEADTAIL vs. SixTrackLib

9

3.2 Overview

Figure 3.1 shows a block diagram to visualize the basic interfacing prototype.

Figure 3.1: PyHEADTAIL-SixTrackLib bridge

The first step is creation of a particle bunch in PyHEADTAIL (not shown in the figure). Every
particle bunch in PyHEADTAIL has a dictionary containing position and momentum information about the
particles. This information is stored in a dictionary format and is called coord_momenta_dict. It can be
procured via a function call on a Particles object in PyHEADTAIL. The position and momentum arrays
are then passed to the interface method "particle_coordinates_sixtrack". This uses ctypes to convert
the momenta and position attributes to ctypes pointers which are then passed to the C function "run" in
SixTrackLib_gsoc18/studies/study10/sample_fodo.c. This in turn calls the SixTrackLib tracking function
Track_particles_on_CUDA.

10

We investigate two cases:

• CASE 1: PYHEADTAIL particle on the CPU
SixTrackLib particle buffers are created. Particle coordinates from pyheadtail are transferred to the
particle buffers using ctypes, call "st_Track_particles_on_CUDA" in SixTrackLib which essentially
takes these particle buffers, transfers them to the device and performs a memory remapping. Once
the tracking has finished, the buffers are once again transferred to a CPU array and returned.

• CASE 2: PYHEADTAIL particle on the GPU
Empty particle buffers still have to be created on the CPU because there is currently no API
available to directly create store the attributes in the structured memory format on the GPU. Thus,
one should create an empty particle buffer and transfer it to "st_Track_particles_on_CUDA" in
SixTrackLib. Along with this a pointer to the gpuarray containing particle coordinates is passed from
PyHEADTAIL. In "st_Track_particles_on_CUDA" the contents of the gpuarray pointer are copied to
a structured buffer on the device. One must create a custom CUDA kernel for the memory copy.

These steps are better understood with sample pseudocode.

3.3 CASE 1: PYHEADTAIL particles on the CPU

The sequence of functions that are called on the CPU and GPU are described below. The source code
containing these functions can be viewed on github1.

3.3.1 Sequence of events on the CPU

The following occurs in "run" in sample_fodo.c.

1. Create st_Blocks* particles_buffer

2. st_Particles* particles = st_Blocks_add_particles(Set particles→ x , particles→ px,etc)

3. call st_Blocks_serialize. This results in structured memory with a double level of pointer indirection.

4. Call "st_Track_particles_on_CUDA" passing particles_buffer which is on the CPU.

1 bool __host__ NS(Track_particles_on_CUDA) (
2 i n t const num_of_blocks ,
3 i n t const num_threads_per_block ,
4 SIXTRL_UINT64_T const num_of_turns , NS(Blocks) * SIXTRL_RESTRICT p a r t i c l e s _ b u f f e r ,
5 NS(Blocks) * SIXTRL_RESTRICT beam_elements ,
6 NS(Blocks) * SIXTRL_RESTRICT elem_by_elem_buffer)

1https://github.com/rdemaria/SixTrackLib_gsoc18/tree/master/studies/study10

https://github.com/rdemaria/SixTrackLib_gsoc18/tree/master/studies/study10

11

3.3.2 Sequence of events on the GPU

The source code containing these functions can be viewed at another github repository 2. The following
occurs in st_Track_particles_on_CUDA.

1. Transfer contents from structured particles_buffer to the host buffer.

1 h o s t _ p a r t i c l e s _ d a t a _ b u f f e r = NS(Blocks_get_data_begin) (p a r t i c l e s _ b u f f e r)

2. The CUDA buffer is created on the GPU and the contents of the host buffer are transferred to this
CUDA buffer.

1 CUDAMalloc ((vo id * *)&CUDA_part ic les_data_buffer , p a r t i c l e s _ b u f f e r _ s i z e) ;
2 CUDAMemcpy(CUDA_part ic les_data_buffer , hos t_pa r t i c l es_da ta_bu f f e r , p a r t i c l e s _ b u f f e r _ s i z e

, CUDAMemcpyHostToDevice) ;

3. Memory is remapped to make a structure out of the device buffer.

1 Track_remap_ser ia l ized_b locks_buf fer <<< num_of_blocks , num_threads_per_block >>>

4. The FODO is computed.

1 Track_part ic les_kernel_CUDA <<< num_of_blocks , num_threads_per_block >>>(num_of_turns ,
CUDA_part ic les_data_buffer , CUDA_beam_elements_data_buffer ,
CUDA_elem_by_elem_data_buffer , CUDA_success_flag) ;

5. The buffer contents now on the CUDA buffer are copied back into the host buffer.

1 CUDAMemcpy(hos t_pa r t i c l es_da ta_bu f f e r , CUDA_part ic les_data_buffer , p a r t i c l e s _ b u f f e r _ s i z e
, CUDAMemcpyDeviceToHost) ;

6. The contents of this buffer are unserialized on the GPU.

1 NS(B locks_unse r i a l i ze) (p a r t i c l e s _ b u f f e r , h o s t _ p a r t i c l e s _ d a t a _ b u f f e r)

2https://github.com/martinschwinzerl/SixTrackLib/blob/master/SixTrackLib/CUDA/details/CUDA_env.cu

https://github.com/martinschwinzerl/SixTrackLib/blob/master/SixTrackLib/CUDA/details/CUDA_env.cu

12

3.4 CASE 2: PYHEADTAIL particles on the GPU

The sequence of functions that are called on the CPU and GPU are described below. The newly
introduced actions by me to avoid the GPU-CPU-GPU transfer of the particles data are indicated in red.

3.4.1 Sequence of events on the CPU

The following occurs in "run" in sample_fodo.c.

1. Create st_Blocks* particles_buffer

2. st_Particles* particles = st_Blocks_add_particles(Set particles→ x , particles→ px,etc)

3. call st_Blocks_serialize. This results in structured memory with a double level of pointer indirection.

4. Call "st_Track_particles_on_CUDA" passing particles_buffer which is on the CPU. We note line 7 is
the extra parameter (which is different from the CPU particle case)

1 bool __host__ NS(Track_particles_on_CUDA) (
2 i n t const num_of_blocks ,
3 i n t const num_threads_per_block ,
4 SIXTRL_UINT64_T const num_of_turns , NS(Blocks) * SIXTRL_RESTRICT p a r t i c l e s _ b u f f e r ,
5 NS(Blocks) * SIXTRL_RESTRICT beam_elements ,
6 NS(Blocks) * SIXTRL_RESTRICT elem_by_elem_buffer) ,
7 double * p y h e a d t a i l _ p t r []

3.4.2 Sequence of events on GPU

The source code containing these functions can be viewed on another github repository3. The following
occurs in st_Track_particles_on_CUDA.

1. Transfer contents from structured particles_buffer to the host buffer.

1 h o s t _ p a r t i c l e s _ d a t a _ b u f f e r = NS(Blocks_get_data_begin) (p a r t i c l e s _ b u f f e r)

2. The CUDA buffer is created on the GPU and the contents of the host buffer are transferred to this
CUDA buffer.

1 CUDAMalloc ((vo id * *)&CUDA_part ic les_data_buffer , p a r t i c l e s _ b u f f e r _ s i z e) ;
2 CUDAMemcpy(CUDA_part ic les_data_buffer , hos t_pa r t i c l es_da ta_bu f f e r , p a r t i c l e s _ b u f f e r _ s i z e

, CUDAMemcpyHostToDevice) ;

3. Memory is remapped to make a structure out of the device buffer.

1 Track_remap_ser ia l ized_b locks_buf fer <<< num_of_blocks , num_threads_per_block >>>

3https://github.com/martinschwinzerl/SixTrackLib/blob/master/SixTrackLib/CUDA/details/CUDA_env.cu

https://github.com/martinschwinzerl/SixTrackLib/blob/master/SixTrackLib/CUDA/details/CUDA_env.cu

13

4. The particle buffer on the gpu is copied from pyheadtail to SixTrackLib buffer

1 Copy_buf fer_pyheadta i l_SixTrackL ib <<<num_of_blocks , num_threads_per_block >>>(
CUDA_part ic les_data_buffer , pyhead ta i l _p t r , CUDA_success_flag)

5. The FODO is computed.

1 Track_part ic les_kernel_CUDA <<< num_of_blocks , num_threads_per_block >>>(num_of_turns ,
CUDA_part ic les_data_buffer , CUDA_beam_elements_data_buffer ,
CUDA_elem_by_elem_data_buffer , CUDA_success_flag) ;

6. The particle buffer is copied from SixTrackLib buffer on gpu to pyheadtail buffer on gpu

1 Copy_bu f f e r_pyhead ta i l _s i x t r ack l i b <<<num_of_blocks , num_threads_per_block >>>(
CUDA_part ic les_data_buffer , pyhead ta i l _p t r , CUDA_success_flag)

The source code for the above two copy kernels is given below.

• Copy_buffer_pyheadtail_SixTrackLib

1 __global__ vo id Copy_buf fer_pyheadta i l_S ixTrackL ib (
2 unsigned char * _ _ r e s t r i c t _ _ p a r t i c l e s _ d a t a _ b u f f e r ,
3 double * _ _ r e s t r i c t _ _ p y _ p a r t i c l e s _ b u f f e r [] ,
4 i n t 6 4 _ t * _ _ r e s t r i c t _ _ p t r_success_ f lag
5) {
6 NS(Blocks) p a r t i c l e s _ b u f f e r ;
7 NS(Blocks_preset) (&p a r t i c l e s _ b u f f e r) ;
8 NS(Blocks_unser ia l i ze_wi thout_remapping) (&p a r t i c l e s _ b u f f e r ,

p a r t i c l e s _ d a t a _ b u f f e r) ;
9

10 NS(B lock In fo) * p t r _ i n f o = NS(Blocks_get_b lock_ in fos_begin) (&p a r t i c l e s _ b u f f e r) ;
11 NS(P a r t i c l e s) * p a r t i c l e s = NS(B locks_ge t_pa r t i c l es) (p t r _ i n f o) ;
12 s i z e _ t num_of_par t ic les = NS(Par t i c l es_ge t_num_par t i c l es) (p a r t i c l e s) ;
13

14 memcpy(NS(Pa r t i c l es_ge t_x) (p a r t i c l e s) ,
15 p y _ p a r t i c l e s _ b u f f e r [0] ,
16 num_of_par t ic les * s i z e o f (double)
17) ;
18 memcpy(NS(Par t i c l es_ge t_px) (p a r t i c l e s) ,
19 p y _ p a r t i c l e s _ b u f f e r [1] ,
20 num_of_par t ic les * s i z e o f (double)) ;
21 }

14

• Copy_buffer_SixTrackLib_pyheadtail

1 __global__ vo id Copy_buf fer_SixTrackL ib_pyheadta i l (
2 unsigned char * _ _ r e s t r i c t _ _ p a r t i c l e s _ d a t a _ b u f f e r ,
3 double * _ _ r e s t r i c t _ _ p y _ p a r t i c l e s _ b u f f e r [] ,
4 i n t 6 4 _ t * _ _ r e s t r i c t _ _ p t r_success_ f lag
5) {
6 NS(Blocks) p a r t i c l e s _ b u f f e r ;
7 NS(Blocks_preset) (&p a r t i c l e s _ b u f f e r) ;
8 NS(Blocks_unser ia l i ze_wi thout_remapping) (&p a r t i c l e s _ b u f f e r ,

p a r t i c l e s _ d a t a _ b u f f e r) ;
9

10 NS(B lock In fo) * p t r _ i n f o = NS(Blocks_get_b lock_ in fos_begin) (&p a r t i c l e s _ b u f f e r) ;
11 NS(P a r t i c l e s) * p a r t i c l e s = NS(B locks_ge t_pa r t i c l es) (p t r _ i n f o) ;
12 s i z e _ t num_of_par t ic les = NS(Par t i c l es_ge t_num_par t i c l es) (p a r t i c l e s) ;
13 memcpy(p y _ p a r t i c l e s _ b u f f e r [0] , NS(Par t i c les_ge t_cons t_x) (p a r t i c l e s) ,
14 num_of_par t ic les * s i z e o f (double)
15) ;
16 memcpy(p y _ p a r t i c l e s _ b u f f e r [1] , NS(Par t i c les_ge t_cons t_px) (p a r t i c l e s) ,
17 num_of_par t ic les * s i z e o f (double)

Conclusion and Discussions

In the first part of this internship, the wakefield computations of PyHEADTAIL have successfully been
ported to the GPU. Specifically, a custom kernel has been implemented with a speed-up of the wakefield
computation by 29.2% for 104 slices. This involves fixing constant slice positions at the beginning of the
simulation.

During profiling of PyHEADTAIL’s wakefield and linear transverse tracking simulations, I observed that
the overall GPU throughput is only around 10% for my numerical values. There seem to be at least three
ingredients responsible for this finding, they are briefly discussed in order of descending impact.

First of all, the transverse tracking consumes quite some time as most of the instructions are in python:
correspondingly, there is considerable overhead on the creation of PyCUDA’s GPUArray instances as
well as every single instruction such as a +b triggers a kernel call. For a more efficient GPU utilisation,
the inner loop statements of the transverse tracking should be carried out in a single kernel. In order to
avoid duplicate code for the implemented physics, a similar macro embedding set-up as implemented in
SixTrackLib could be devised.

Secondly, functions which are part of the CUDA Thrust library show up with quite some impact in
the profiling results. They are related to the slicing algorithm used in the wakefields. This part could be
investigated more carefully for potential bottlenecks, as the Thrust library is addressed via the ctypes
library.

Finally, from the nvprof logs it becomes obvious that some of PyHEADTAIL’s pmath calculations such
as pow are not very efficient on the GPU as they consume quite some time in the profiling results.

Nevertheless, the GPU results still run considerably faster than PyHEADTAIL on the CPU.
In the second part of the internship, the tracking of a FODO cell in SixTrackLib has been integrated

into PyHEADTAIL. The concepts explored demonstrate how the advanced non-linear tracking capabilities
of SixTrackLib can be integrated into PyHEADTAIL. This enables simulations to cover simultaneously
collective effects and non-linear tracking on both CPU and GPU architectures.

In order to fully integrate SixTrackLib into PyHEADTAIL, there are a few considerations to be made.
Currently, the memory structure in both codes is very different. By unifying the particle memory description
in both codes one could avoid costly memory copies which can be quite inefficient.

In order to make use of memory striding, PyHEADTAIL’s coordinate and momentum arrays are more
useful on a single computing device (GPU), while SixTrackLib’s single particle instances with coordinate
and momentum attributes are more suited for the distributed computing context it is often employed in.
For our purposes, a new initialisation of SixTrackLib’s particle structures could be benefitial, where the
respective attributes just point to continuous entries in PyHEADTAIL’s allocated particle position and
momentum arrays.

CERN Openlab Report 15

16

The basic goal behind the present project is to explore approaches to interface PyHEADTAIL and
SixTrackLib. Based on such an interface, a user of PyHEADTAIL should be able to use the SixTrackLib
functionality in a simulation script seamlessly without understanding the implementation details of
SixTrackLib. We achieved a step towards this by being able to run the FODO lattice within SixTrackLib
from a PyHEADTAIL script. A natural next step after the present project would be to extend this
functionality to a general machine layout, making use of the foreseen availability of a SixTrackLib-MADX
interface.

Bibliography

[1] Riccardo de Maria et al. CERN SixTrackLIB: a 6D single particle symplectic tracking code for the
computation of the trajectories of individual relativistic charged particles in circular accelerators.
https: // github. com/ rdemaria/ sixtracklib/ , 2017. 2

[2] Kevin Li et al. Code Development for Collective Effects. In ICFA Advanced Beam Dynamics Workshop
on High-Intensity and High-Brightness Hadron Beams (HB 2016), page WEAM3X01, 2016. 1

[3] Stefan Hegglin. Simulating Collective Effects on GPUs. Master’s thesis, D-MATH/D-PHYS Dep., ETH
Zürich, 2016. 2

[4] Kevin Li and Adrian Oeftiger et al. CERN PyHEADTAIL: numerical n-body simulation code for simu-
lating macro-particle beam dynamics with collective effects. https: // github. com/ PyCOMPLETE/
PyHEADTAIL/ , 2014. 1

[5] Adrian Oeftiger. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines.
PhD thesis, Ecole Polytechnique Federale de Lausanne. 1

[6] Adrian Oeftiger, Steven Hancock, and Giovanni Rumolo. Space charge mitigation with longitud-
inally hollow bunches. In ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-
Brightness Hadron Beams (HB 2016), page MOPR026, 2016. 1

[7] Frank Zimmermann. Introduction to Collective Effects in Particle Accelerators. ICFA Beam Dyn.
Newslett., 69:8–17, 2016. 1

CERN Openlab Report 17

https://github.com/rdemaria/sixtracklib/
https://github.com/PyCOMPLETE/PyHEADTAIL/
https://github.com/PyCOMPLETE/PyHEADTAIL/

	Contents
	List of Figures
	List of Tables
	Introduction
	Speeding up Wakefields
	Running the master branch
	Wakefield on GPU I: FFT and Inverse FFT
	Wakefield on GPU II: time-domain convolution on the GPU with one-time slicing
	Results at a glance

	Bridging PyHEADTAIL with SixTrackLib
	Comparing physical quantities and variables
	Overview
	CASE 1: PYHEADTAIL particles on the CPU
	Sequence of events on the CPU
	Sequence of events on the GPU

	CASE 2: PYHEADTAIL particles on the GPU
	Sequence of events on the CPU
	Sequence of events on GPU

	Conclusion and Discussions
	Bibliography

