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Background

 Non-contact ACL injuries are common in competitive-
level sports, such as basketball, with movements of rapid 
decelerations and pivoting. Many athletes are subjected to 
injurious mechanisms and forces that could potentially cause 
ACL injury. Proper neuromuscular control can potentially avert 
ACL injury occurrence. This case study demonstrates:

• The neuromuscular control and biomechanical factors 
that averted a potentially career-altering ACL injury for 
a high-level athlete.

• That a dynamic valgus collapse of the knee is a vital 
characteristic in ACL injury. 

Introduction

During an exceptional season in which a starting National 
Basketball Association (NBA) point guard demonstrated 
remarkable skill on the court (averaging 30.1 points per 
game, 6.7 assists per game, and 5.4 rebounds per game), won 
the league MVP title, and assisted his team to the 2016 NBA 
Playoffs, the said player experienced a potentially tragic injury 
at the close of the 2nd quarter during Game 4 of the opening 
round series. Moments prior to the injury, an opposing player, 
rushing down the court, tripped and slid across the fl oor, 
leaving a wet residue of sweat on the playing surface. This 

residue was directly in the path of the starting point guard 
who was moving at a fast pace down the court in an attempt 
to take a defensive position and prevent an opposing score in 
the remaining seconds of the half. The player the point guard 
was defending pulled up to shoot, leading the point guard to 
plant his left leg on the slick surface in an attempted rapid 
deceleration. Immediately, the point guard lost traction causing 
his left foot to slide out distally from his body. The resultant 
attempt to hinder the fall with his right leg caused him to incur 
a right knee injury as he collapsed to the court.

With any high-force knee injury (especially those of rapid 
deceleration, twisting, and planting as observed frequently 
in basketball), an anterior cruciate ligament (ACL) or medial 
collateral ligament (MCL) injury is a reasonable diagnosis to 
assess. Partial MCL tears (Grade II) are painful, but heal well 
in the extra-articular environment as clotted blood forms a 
fi brous network for mending the ligamentous tissue [1]. Even 
a complete MCL tear (Grade III) can be surgically repaired due 
to its robust healing potential secondary to the ability of the 
fi brous clot to form post-surgery [2]. In contrast, the ACL is 
housed inside of the synovial cavity of the knee, which prevents 
the establishment of a blood clot due to the regular turnover of 
the synovium and leaves the ACL without a fi brous network 
with which to commence healing [3]. Typically, therapies for 
ACL-injured athletes playing at competitive levels of sport 
require ACL reconstruction to restore biomechanical integrity 

Summary
Non-contact anterior cruciate ligament (ACL) injuries occur with rapid decelerations and pivoting. A 

recent injury to a high-level National Basketball Association (NBA) player demonstrated neuromuscular 
control and injury-sparing mechanisms that resulted in only minor ligament injury to the medial 
collateral ligament. We analyzed biomechanical mechanisms via publically available orthogonal 2-D 
video to demonstrate how this potential ACL injury was averted. Analysis of the knee injury mechanism 
demonstrated that the NBA player experienced low ground reaction force, high sagittal plane fl exion, and 
maintenance of frontal plane stability with neuromuscular control. The outcome of these factors inhibited 
dynamic valgus collapse of the knee throughout the fall, avoiding ACL injury – a potentially career-altering 
injury. Many athletes, professional and recreational, will be subjected to similar mechanisms of injury 
and will have improved outcomes if they can successfully utilize preventive strategies of neuromuscular 
control to limit injury mechanisms.
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of the knee. This reconstruction is invasive and requires 
approximately 6 to 12 months of intensive rehabilitation [4], 
following the surgery, but persistent limb asymmetries can 
be observed even two years after the incident [5,6] Even after 
successful ACL reconstruction, it is reported that over 50% 
of young athletes do not return to the same level of play [7]. 
Furthermore, even following successful ACL reconstruction, 
early onset osteoarthritis of the knee is prevalent within 
as great as 90% of patients within 10-15 years leading to 
decreased quality of life and performance [8-10]. This type of 
injury would certainly be a hindrance both to the career of a 
young, starting NBA point guard and to the probability of his 
team executing a successful playoff run.

However, by a series of fortunate injury-sparing 
mechanisms for this potentially ACL-injurious incident, the 
point guard in question only demonstrated a Grade I MCL 
sprain diagnosed via MRI. Grade I means that the ligament 
was stretched, but not torn. The team stated that he would be 
re-evaluated two weeks post injury. During this re-evaluation, 
the team physicians would determine whether the player was 
capable of returning to play without likelihood of causing 
further harm or injury to his knee. The point guard was 
sidelined for a total of 15 days and missed four playoff games 
prior to receiving permission from team physicians to return to 
the court. Although he could not contribute to his team’s playoff 
run during a brief two week period, both team and player were 
assured he was not undertaking the intensive physical therapy 
and surgical reconstruction of his right knee. Such aggressive 
treatment would equate to the defi nitive sidelining of the point 
guard until at least the mid-point of the 2016-2017 basketball 
season.

Methods

From both a biomechanical and neuro-mechanical 
viewpoint, 2-D video can be analyzed for determining 
mechanism of injury(11) as well as the factors that spared the 
starting point guard from an ACL rupture (Figure 1) [12]. The 
2-D video utilized for analysis in this case study was obtained 
from publically available video from ESPN. Two orthogonal 
views of the injury were available for more accurate kinematic 
analysis. Kinematic assessment was performed on the included 
images (Figure 2) and performed on Image J 1.50i (National 
Institutes of Health, Bethesda, MD). Measures not possible 
with the available images were performed by observation.

Results

The most prevalent mechanisms of ACL injury entail 1) 
high ground reaction force; 2) valgus collapse; 3) planted foot 
(often fl at-footed); and 4) the knee near full extension [12,13]. 
An analysis of the orthogonal 2-D video of the present (Figure 
2) injury mechanism indicates that 1) the player slipped on the 
left foot causing the body weight to shift to the right leg; 2) 
the right leg was already fl exed at nearly 90 degrees, which 
lowered the respective amount of force that was propagated 
through the ACL (as the ACL is primarily loaded between 0-30° 
of knee fl exion and is generally unloaded above 45° of knee 
fl exion) [14]; 3) he experienced low ground reaction force due to 

slippage of the left foot on the wet court, while the right leg was 
still positioned laterally away from the body in an orientation 
that prevented it from successfully absorbing all the body’s 
weight; 4) both legs continued to bear force distribution as the 
player fell; 5) his neuromuscular system maintained frontal 
plane stability of the knee, which caused internal rotation 
at the hip, but inhibited dynamic valgus collapse of the knee 
throughout the fall. Kinematic assessment demonstrated an 
initial sagittal plane knee fl exion of 105.7° that ended at 115.3° 
and frontal plane knee valgus of 6.2° that progressed to 13.1°. 
Transverse plane hip and knee angles were not possible with an 
absence of an overhead view, but observation demonstrates a 
large internal hip rotation and minimal knee internal rotation.

Discussion

The biomechanical construct of the knee allows for ab-/
adduction in the coronal plane, fl exion/extension in the 
sagittal plane, and internal/external rotation in the transverse 
plane. The knee has both extra- and intracapsular ligamentous 
structures to limit undesirable motion that could lead to 
injury. The MCL passively limits knee abduction and the 
lateral collateral ligament passively limits knee adduction. 
Further passive restraints of knee motion include the ACL, the 
posterior cruciate ligament (limiting posterior translation of 
the tibia in relation to the femur) and the knee capsule. Beyond 
ligamentous stability, the screw-home mechanism of the knee 
provides mechanical restraint to knee mobility. The screw-
home mechanism is provided by a combination of asymmetric 
femoral condyles and muscular activation, effectively limiting 
the internal/external rotation of the knee at or near full 
extension [15,16]. The result of the screw-home mechanism is 
increased stability during contact with the ground as internal/
external rotation is limited. These multiple passive structures 
and mechanism exist to limit undesired motion at the knee 
joint, especially during weight-bearing.

Figure 1: Common mechanism of ACL injury.
Figure reproduced from Hewett, TE, et al. Biomechanical measures of 
neuromuscular control and valgus loading of the knee predict anterior cruciate 
ligament injury risk in female athletes: A prospective study. Am J Sports Med. 
2005;33(4):492-501. Used with permission, Sage Publications. 
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As an intracapsular ligament in the femoral notch, the ACL 
originates on the medial side of the lateral femoral condyle and 
attaches near the intercondyloid eminence of the tibia, often 
blending with the anterior horn of the lateral meniscus. With 
these points of attachment, the ACL passively limits not only 
the anterior translation of the tibia in relation to the femur, 
but can also limit knee abduction and internal rotation [17]. 
These same three planar motions all preload the ligament for 
injury [18,19], although they preload the ligament in varying 
degrees. Increased knee abduction leads to an increase in knee 
abduction moment, which has demonstrated high sensitivity 
and specifi city for ACL injury risk [13]. Interestingly, both in 
sim and in vitro testing has demonstrated that knee abduction 
signifi cantly loads the ACL to strain levels that are not suffi cient 
to compromise the MCL [19,20]. In addition, with anterior 
tibial translation and internal rotation, the ACL strain reaches 
levels higher than the MCL [20]. Furthermore, combined 
torsional loading has a greater biomechanical infl uence than 
single plane motion [21,22]. In regard to knee fl exion, sagittal 
plane loading in isolation cannot cause ACL injury [23], 
and the ACL is unloaded above 50° of fl exion [14,24]. With 

sagittal plan loading unable to cause ACL injury, multiple 
biomechanical reports have determined that dynamic valgus 
collapse (combined or coupled motion) of the knee is a major 
contributor to ACL rupture as this motion rapidly loads the ACL 
and increases knee abduction moment (Figure 1) [12,19,25,26]. 

Beyond passive restraints of the knee, the neuromuscular 
system is vital to providing both refl exive and feedforward 
signaling to the active muscle restraints of joint stabilization. 
The contractile and elastic musculature is the preferred 
tissue to inhibit injurious forces to the passive ligamentous 
structures and joint capsule. The major musculature of the 
knee (quadriceps and hamstrings) allow for fl exion and 
extension of the joint. Whereas the hamstrings are agonists 
to the ACL and will spare anterior tibial translation, the 
quadriceps are antagonistic and will increase anterior tibial 
translation and further extend the knee [13]. In addition to 
providing knee fl exion, the medial and lateral insertions of 
both the hamstrings and gastrocnemii allow for stabilization 
of knee ab-/adduction and internal/external rotation. If the 
active muscular restraints can maintain normal alignment of 

 

Figure 2: Posterior and lateral views of case report knee injury. Successive frames are from top to bottom. Used by permission, NBA.
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the joint structures during motion, a dynamic valgus collapse 
(coupled knee abduction, internal rotation, and anterior tibial 
translation) of the knee can be avoided, sparing the ACL from 
a traumatic rupture [22]. Multiple reports have demonstrated 
that preventive interventions employing biofeedback, clinician 
feedback, and neuromuscular training can successfully reduce 
the incidence of ACL injury by targeting the above mentioned 
mechanisms [27-32]. 

Given the potential injurious situation the NBA point guard 
in question was subjected to, it is apparent that beyond the 
unmodifi able factors (i.e. slipping on the fl oor), he employed 
protective mechanisms to prevent rupture of the ACL. These 
included 1) distribution of forces across both legs; 2) high fl exion 
of the knee with likely inhibition of quadriceps contraction; 
and 3) neuromuscular control to maintain ab-/adduction 
stability and internal/external rotation of the right knee which 
allowed for internal rotation to occur at the hip. The kinematic 
angles measured demonstrated an absence of dynamic valgus 
knee collapse with associated sparing knee fl exion angle. These 
neuromuscular responses reduced knee abduction, anterior 
tibial translation, and internal tibial rotation, signifi cantly 
reducing his risk for sustaining an ACL injury.

Learning Points

• Although the forces generated and biomechanical 
mechanisms created a susceptible opportunity for an 
ACL injury in this NBA point guard, both unmodifi able 
(e.g. slippery fl oor) and modifi able factors (potential 
activation of hamstring musculature to inhibit dynamic 
valgus collapse of the knee) contributed to only a minor 
Grade I sprain of the MCL.

• The relatively minor MCL injury spared this extremely 
high-value point guard from a disastrous end to his 
otherwise highly successful basketball season. Many 
athletes, professional and recreational, will be subjected 
to similar mechanisms of injury and will have improved 
outcomes if they can successfully utilize neuromuscular 
control to limit the injury mechanisms.

•  This “close call” of an averted ACL injury reinforces 
the need for early preventive neuromuscular training 
strategies [27,29,32], to continue to limit the incidence 
of ACL injuries.
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