Testing A Flood Mask Correction Method Of Optical Satellite Imagery Over Irrigated Agricultural Areas

Emmanouil Michail¹, Anastasia Moumtzidou¹, Ilias Gialampoukidis¹, Konstantinos Avgerinakis¹, Maria Gabriella Scarpino²; Stefanos Vrochidis¹, Guido Vingione², Ioannis Kompatsiaris¹, Kamal Labbassi³, Massimo Menenti⁴, Fatima-ezzahra Elghandour³

Information ¹Information Technologies Institute / Centre for Research and Technology Hellas, Thessaloniki, **Technologies** Greece Institute

²Serco S.p.A., Rome, Italy

³Chouaib Doukkali University (CDU), El Jadida, Morocco

⁴Delft University of Technology, Delft, Netherlands

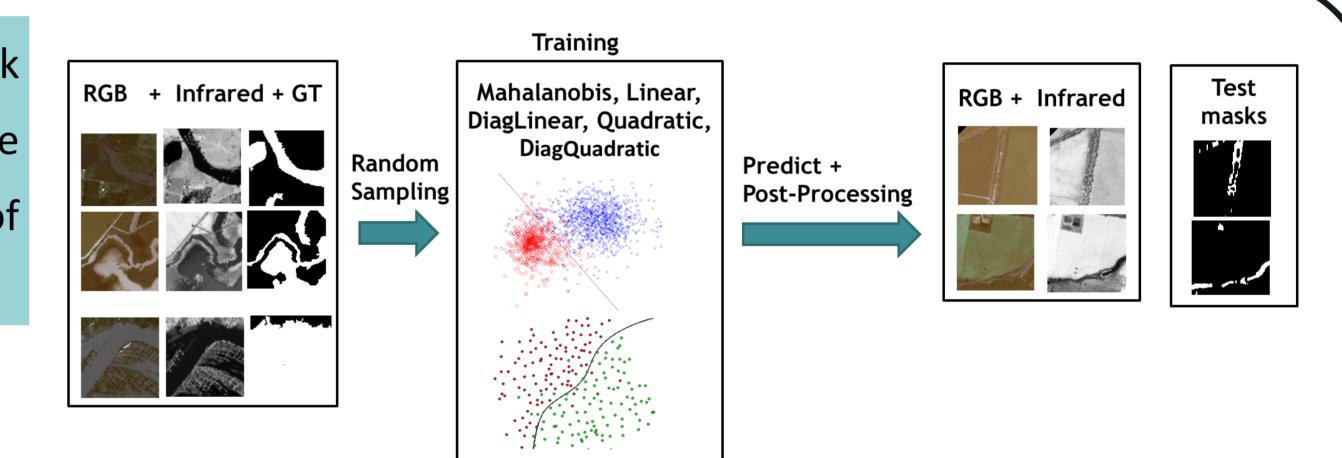
Introduction

- Disaster prediction from satellite sources have captured the interest of the computer scientific community in the last decade
- Identifying flooded areas from Earth Observation (EO) satellite images aids in:
 - damaged areas monitoring
 - effective response of civil protection agencies during disasters
- EO satellite images are valuable sources in disaster cases due to their unobtrusive and abundant nature
- Description of a method for change detection on surface water bodies that classifies satellite image pixels as a flooded area or not
- Application to the detection of changes of surface water bodies, based on water volumes data in a Moroccan Demonstration Area (H2020-MOSES)

Methodology _

Overview: Combination of Mahalanobis distance-based classification for flood mask creation and morphological post-processing for flood mask correction so as to separate flood from non-flood areas inside satellite image by utilizing the discriminative ability of the variance of the color and the infrared values of the satellite image pixels.

- **Data**: Satellite images of 4 colour-channels, (R, G, B, Near-Infrared (NI))
- **Procedure**:
 - Random selection of pixels from training dataset
 - Representation of each pixel with 4-dimensional feature vector (R, G, B, NI) \bullet
 - Classification framework using discriminant analysis technique •



- Apply post-processing morphological operations on masks to remove erroneous areas:
 - Global filter eliminating flood-denoted pixels that as a whole did not
- Input: 4-dimensional feature vector and label (0,1) signifying water existence
- Training using different discriminant functions (e.g. linear, Mahalanobis)
- Output: binary mask with 1 for flooded pixels and 0 for non-flooded.
- Evaluate classification framework on testing set of images

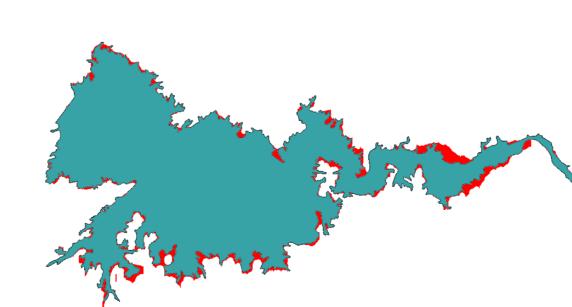
surpass the 5% of the image size (considered as misclassified)

- Local filter eliminating small flooded areas (10 pixels).
- Application of image dilation and erosion around pixel and surrounding area to eliminate small non-flooded areas inside flooded area & preserve larger.

Experiments

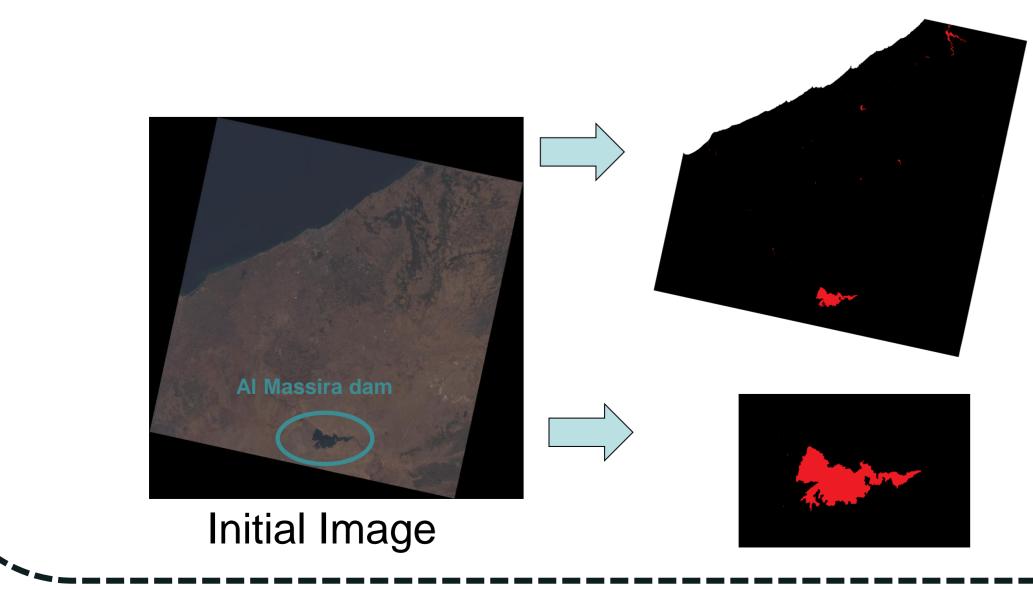
- Training dataset:
- MediaEval 2017 Training Annotated Dataset
 - (http://www.multimediaeval.org/mediaeval2017/multimediasatellite/)
- Testing dataset:
 - 1 LandSat7 image and 4 LandSat8 images
 - Water volumes data refer to the Al Massira dam located in Morocco
- Discriminant functions evaluated for training model:
 - linear, diagonal linear, quadratic, diagonal quadratic, Mahalanobis
- Evaluation measure: $accuracy = \frac{number \ of \ pixels \ recognized \ correctly}{tatal target}$ total number of pixels
- Accuracy measured on 1) full image and 2) on dam and surrounding area

_ Mean Accuracy						
÷		Linear	Diagonal Linear	Quadratic	Diagonal Quadratic	Mahalanobis
Full Image	Mask before post-processing	56.268	45.846	50.179	34.846	51.156
	Mask after post-processing	56.178	45.699	51.817	36.931	53.057
Dam Region	Mask before post-processing	73.460	73.843	87.435	59.513	87.758
	Mask after post-processing	73.254	73.336	88.961	62.206	89.087



normal dam limits water overflow detected using the proposed method

Alert: Dam overflown!



Full Image Mask

Dam Area Mask

Outcome

Generally post-processing operations improve the mean accuracy Mean accuracy of full image is low as annotation refers to dam area

Mahalanobis outperforms other methods

Future work

Build and evaluate a deep representation scheme that leverages both texture and deep features in an effort to detect water bodies from space.

Contacts

Maria Gabriella Scarpino Gabriella.Scarpino@serco.com Ilias Gialampoukidis <u>heliasgj@iti.gr</u>

European Commission

