
Melckenbeeck et al. BMC Bioinformatics (2019) 20:27
https://doi.org/10.1186/s12859-018-2483-9

SOFTWARE Open Access

Optimising orbit counting of arbitrary
order by equation selection
Ine Melckenbeeck1†, Pieter Audenaert1,2*†, Thomas Van Parys2,3,4, Yves Van De Peer2,3,4,5, Didier Colle1,2

and Mario Pickavet1,2

Abstract

Background: Graphlets are useful for bioinformatics network analysis. Based on the structure of Hočevar and
Demšar’s ORCA algorithm, we have created an orbit counting algorithm, named Jesse. This algorithm, like ORCA, uses
equations to count the orbits, but unlike ORCA it can count graphlets of any order. To do so, it generates the required
internal structures and equations automatically. Many more redundant equations are generated, however, and Jesse’s
running time is highly dependent on which of these equations are used. Therefore, this paper aims to investigate
which equations are most efficient, and which factors have an effect on this efficiency.

Results: With appropriate equation selection, Jesse’s running time may be reduced by a factor of up to 2 in the best
case, compared to using randomly selected equations. Which equations are most efficient depends on the density of
the graph, but barely on the graph type. At low graph density, equations with terms in their right-hand side with few
arguments are more efficient, whereas at high density, equations with terms with many arguments in the right-hand
side are most efficient. At a density between 0.6 and 0.7, both types of equations are about equally efficient.

Conclusions: Our Jesse algorithm became up to a factor 2 more efficient, by automatically selecting the best
equations based on graph density. It was adapted into a Cytoscape App that is freely available from the Cytoscape
App Store to ease application by bioinformaticians.

Keywords: Graph theory, Graphlets, Orbits, Equations, Optimisation, Cytoscape app

Background
The small-scale structure of a graph contains important
information about that graph’s function. Network motifs
[1] are defined as subgraphs of a larger graph that appear
significantly more often in that large graph than would be
expected in a purely random graph with the same num-
ber of nodes and edges. It was found that motifs can
easily be used to distinguish networks of different func-
tions from each other, like genetic transcription networks
from ecosystem food webs [1]. To know whether a certain
subgraph is a motif in a specific explored graph, its ex-
pected number of appearances in random graphs should
be known. This means the subgraph must be counted in
a large number of random graphs [1]. This may be sped

*Correspondence: pieter.audenaert@ugent.be
†Ine Melckenbeeck and Pieter Audenaert have contributed equally.
1Ghent University - imec, IDLab, Technologiepark 15, 9052 Ghent, Belgium
2 Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
Full list of author information is available at the end of the article

up by sampling [2] or parallellisation [3], but the random
graphs are still needed.
It was first proposed in [4] not to restrict interest to

those subgraphs that appear more often than expected.
Instead, PPI networks were analysed by counting all
small connected, induced subgraphs. These subgraphs
are called graphlets. All graphlets on 2 to 5 nodes are
shown in Fig. 1. They are all assigned a unique identifica-
tion number, which can be used to refer to that specific
graphlet (shown under each graphlet in Fig. 1). Originally,
graphlets were restricted to 5 or fewer nodes because of
limitations in computing power. Later research [5, 6] in-
creased that number of nodes. Regardless of the exact
computing power available, the exponentially exploding
number of graphlets enforces the use of some cut-off on
the number of nodes in a graphlet. Therefore, if the term
“all graphlets” is used in this paper, it means “all graphlets
on k or fewer nodes”, with k some arbitrary but fixed
cut-off.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2483-9&domain=pdf
mailto: pieter.audenaert@ugent.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 2 of 13

Figure 1 All graphlets of 2-5 nodes with their original numbering. Within each graphlet, grayscales show the graphlets’ orbits. Orbit numbers are
shown close to a node of that orbit. Figure adapted from [10]

Each graphlet’s nodes can be subdivided into sym-
metrically equivalent sets, called orbits [7]. For example,
consider graphlet 1, the three-node path, in Fig. 1. By
mirroring the graphlet, the two outside nodes can be
swapped, which does not change the graphlet’s structure.
Therefore, these two nodes are contained in the same
orbit. The middle node can never be interchanged with ei-
ther of the outside nodes without changing the graphlet’s
structure. This means that this node is in a different or-
bit. In Fig. 1, the outer nodes of graphlet 1 are coloured
black, whereas the middle node is coloured white, to indi-
cate their respective orbits. Likewise, in all other graphlets
in Fig. 1, the nodes are shaded according to their orbit.
Like graphlets, orbits are numbered. These numbers are
unique across all graphlets, so an orbit number can be
used to identify both the orbit and its graphlet. In Fig. 1,
the number of each orbit is indicated close to one of its
nodes.
When a graphlet is found in an explored graph, it is pos-

sible to determine which graph node is in what orbit of
that graphlet. That orbit is then said to touch that node.
The number of times orbit i touches node v is called v’s ith
graphlet degree [7]. Graphlet degrees are an extension of a
node’s degree, which itself is equivalent to the 0th graphlet
degree, i.e. the graphlet degree of the 2-node graphlet. As
an extension of a graph’s degree distribution, the distribu-
tion of all of the graphlet degrees can be calculated, which
is called the graph’s graphlet degree distribution or GDD.

These graphlet degree distributions themselves are a use-
ful tool for network comparison [7] and identification of
nodes’ function [8].
To calculate a graph’s GDD, it seems at first sight

that all graphlets within that graph need to be found.
However, it was proved in [9] that this is not the case.
They showed that, to calculate a node’s graphlet de-
grees (using graphlets on up to k nodes), a system of
linear equations can be composed from all graphlets
on k − 1 nodes and all common neighbours of up to
k − 2 nodes in the explored graph. Solving this system
of equations then results in the node’s graphlet degrees.
Using equations allows part of the calculation to be done
in advance and reused while counting multiple different
orbits.
The ORCA algorithm (ORbit Counting Algorithm) [9]

is the fastest available algorithm to calculate all nodes’
graphlet degrees. ORCA can count the orbits of graphlets
up to either 4 or 5 nodes and uses such a system of
equations to reduce this to finding graphlets on 3 or 4
nodes, respectively.
The Jesse algorithm, which managed to automatically

generate equations for orbits of arbitrary order, as well
as use them to count those orbits, was described in [5].
To this end, a non-ambiguous, extendable graphlet and
orbit numbering was introduced. This numbering does
not follow the original numbering in Fig. 1, but is con-
structed in an algorithmical, consistent way. Likewise, a

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 3 of 13

novel type of graphlet that represents a specific orbit was
introduced. In these graphlets, a single node is marked,
which singles out that node’s orbit. These so-called or-
bit representatives were used as the nodes of a directed
tree, in which the arcs were the addition of nodes and
edges to these orbit representatives. This tree can then be
used to find orbit representatives on k − 1 nodes within a
graph, after which automatically generated [10] equations
are used to calculate the number of orbits of graphlets
on k nodes.
However, many redundant equations are generated, so

a large linearly dependent system of equations arises.
Originally, the equations used in Jesse were chosen on
a first-come-first-served basis. If Jesse generated more
than 1 equation that could be used to count orbit i,
only the one that was generated first was saved and
used. All other generated equations are just as correct,
though.
Once the system of equations is completed, it can

be straightforwardly solved as its left-hand side, where
graphlet degrees are related to each other, is an upper tri-
angular matrix. However, filling in the right-hand side of
all equations is more time-consuming, as this depends on
the graph’s structure. Therefore, different, but equally cor-
rect sets of equations can be used and have an impact on
Jesse’s running time.
Other techniques to count graphlets have been de-

veloped: ranging from combinatorial counting that
uses graphlets’ symmetries and substructures to count
them without finding any graphlet, which is currently
limited to graphlets on 4 nodes [11], to sampling
techniques that do not count all graphlets but iden-
tify randomly sampled subgraphs [6], or incremental
counting [12].
In this paper, we investigate whether it is possible to

select a set of equations that allows the graphlet de-
grees to be calculated faster than when using other sets,
and whether this set depends on the explored graph’s
properties. First, a number of graph theory terms need
to be defined. A high-level explanation of Jesse’s inter-
nal structure follows. Then, the structure of a graphlet
counting equation is explained, and the variable prop-
erties of equations are identified. With all of these, the
effect of equation selection on Jesse’s speed can be in-
vestigated, accounting for different graph types, orders
and sizes. Finally, the Cytoscape version of Jesse will be
presented.

Formal graph theory definitions
This section is a collection of formal definitions of terms
which will be used later on in the paper. These are formal
definitions for all terms used in this paper, but for more in-
formation on how and why these terms were constructed
we refer to [10].

Definition 1 An undirected graph

G = (V ,E),

where V is the collection of nodes and E is the collection of
edges of G, such that

E ⊆ {{v,w}|(v,w ∈ V ∧ v �= w)}.
Similarly, V (G) and E(G) are used to indicate G’s node

and edge set, respectively. n = |V | is called the graph’s
order, while m = |E| is called its size.

Definition 2 A graph G’s density

D(G) = |E|
(|V |
2

) = 2|E|
|V |(|V | − 1)

.

As it is the graph’s size divided by the maximal size that
graphs of that order can have,

0 ≤ D(G) ≤ 1.

Definition 3 The isomorphisms between two graphs G
and H are the one-to-one functions that map G’s nodes to
H’s nodes, such that their edge sets are mapped onto each
other as well.
Iso(G,H) = {f : V (G) → V (H)|(f is bijective

∧ (∀v,w ∈ V (G) : ({v,w}
∈ E(G) ⇐⇒ {f (v), f (w)} ∈ E(V))))}.

Two graphs are said to be isomorphic if they have at least
one isomorphism.

G � H ⇐⇒ Iso(G,H) �= ∅

Definition 4 The automorphisms of a graph G are the
isomorphisms of G to itself.

Aut(G) = Iso(G,G)

Definition 5 A graph’s nodes have a unique, ordered
index:

Ind(v) = Ind(w) ⇐⇒ v = w.

This index is chosen arbitrarily at graph creation. As a
form of shorthand, we note v < w for Ind(v) < Ind(w).

Definition 6 The induced subgraph on a subset Vs ⊆
V (G) of a graph G’s nodes is the graph formed by Vs and
all edges between those nodes that are present in G.

G[Vs]= (Vs, {{v,w} ∈ E(G) : v,w ∈ Vs})

Definition 7 The number of common neighbours of a
subset Vs ⊆ V (G) of a graph G’s nodes will be noted as
c(Vs).

c(Vs) = |{v ∈ V (G)|(∀w ∈ Vs : {v,w} ∈ E(G))}|
Following [9], c({u, v, ...}) will also be noted as c(u, v, ...).

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 4 of 13

Definition 8 A graphlet G is a connected graph.
Graphlets are assigned an unique numbering, such that the
notation Gi denotes a unique graphlet for each value of
i ∈ N. A k-graphlet is a graphlet with k nodes.

Definition 9 The instances of a graphlet Gi in a graph
H are the induced subgraphs of H that are isomorphic
with Gi.

Definition 10 The automorphism orbit, or orbit in
short, of a node v in a graphlet Gi is the set of nodes to which
v can be mapped by an automorphism of Gi.

Orb(Gi, v) = {
w ∈ V (Gi)|

(∃f ∈ Aut(Gi) : f (v) = w
)}

Orbits are assigned a unique numbering, spanning over
all graphlets, such that the notation Orbj can be used to
identify both the orbit and its graphlet.

Definition 11 An orbit representative is a graphlet with
a marked node x.

� = (V ,E, x)

with

x ∈ V ∧ E ⊆ {{v,w}|(v,w ∈ V ∧ v �= w)}
Orbit representatives follow the same numbering as orbits,
such that �i is the orbit representative that corresponds
with Orbi. The marked node of an orbit representative �

will be noted as x(�).

Definition 12 The isomorphisms between two orbit rep-
resentatives � and � are the isomorphisms of � and � ’s
graphlets that map �’s marked node to � ’s marked node.

Iso(�,�) = {f : V (�) → V (�)|(f is bijective
∧ (∀v,w ∈ V (�) : ({v,w}
∈ E(�) ⇐⇒ {f (v), f (w)} ∈ E(�)))

∧ (f (x(�)) = x(�)))}
Two orbit representatives are said to be isomorphic if they
have at least one isomorphism.

� � � ⇐⇒ Iso(�,�) �= ∅

Definition 13 The automorphisms of an orbit represen-
tative � are the isomorphisms of � to itself.

Aut(�) = Iso(�,�)

Definition 14 The induced orbit representative on a
subset Vs ⊆ V (G) of a graph G’s nodes and a marked node
x ∈ Vs is the orbit representative formed by Vs and all

edges between those nodes that are present in G, with x as
the orbit representative’s marked node.

G[Vs, x]= (Vs, {{v,w} ∈ E(G) : v,w ∈ Vs} , x)

Definition 15 The instances of an orbit representative
�i in a graph H are the induced subgraphs of H that are
isomorphic with �i.
An orbit Orbi touches a node v in a graph G if its cor-

responding orbit representative �i has an instance in G in
which v is the marked node.

Definition 16 The ith graphlet degree oi(v) of a node v
in a graph G is the number of times orbit i touches v.

oi(v) = |{S ⊆ V (G) : G[S, v]� �j}|

Once more, we refer the interested reader to [10] for
more information.

Implementation
In this section, the structure of our Jesse program will
be explained in broad strokes. Afterwards, the concept
of equation selection, as well as the factors that can be
used to select equations, are explained. Finally, the dif-
ferent random graph types that were used in testing are
described.

Jesse
Jesse is the program we created to solve the orbit count-
ing problem. It is described in detail in [5], but a short
summary of the technique follows here.
The structure of Jesse’s main search algorithm is simi-

lar to ORCA’s structure: it is a tree-based graphlet search,
followed by filling in and solving a system of equations
relating the graphlet degrees to common neighbours of
the found graphlets. There is one important difference
with ORCA: every required structure can be generated for
graphlets of theoretically unlimited order.
The most important datastructure is the orbit tree.

This tree’s nodes are the orbit representatives and its di-
rected arcs symbolize the addition of a node or edge to
an orbit representative. With this orbit tree, finding in-
stances of orbit representatives within a graph becomes a
tree-walking matching algorithm.
Likewise, the orbit counting equations are generated.

Because these equations relate the graphlet degrees to the
number of common neighbours of orbit representative in-
stances, those common neighbours need to be counted.
This is done before the actual graphlet search, to allow for
maximal re-use of calculations.
Then, the orbit representatives on (k − 1) nodes are

searched with the tree; with each found instance, the cor-
responding equations are filled in with the appropriate
common neighbours. After the orbit search, the system of

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 5 of 13

equations is solved. Interested readers are refered to [5]
for more information.

Equation selection
For each graphlet order, many more equations are gen-
erated than there are orbits that need to be counted. All
of these equations are correct. They form a huge, linearly
dependent, upper triangular system, which can be easily
simplified to a maximal linearly independent system by
discarding all equations but one for each orbit.
As an illustration, here are the 3 possible equations to

count orbit 40.

o40(x) + 4o54(x) =
∑

u,v,t:P6(x,u,v,t)
[c(x,u, v) + c(x,u, t)] (1)

o40(x)+2o57(x)+o59(x)+2o66(x)=
∑

u,v,t:P10(x,u,v,t)
[c(u, t)−1)]

(2)

o40(x) + 4o54(x) + o59(x) + o60(x) + 4o65(x) + 2o66(x)
+ 2o68(x) + 6o70(x) =

∑

u,v,t:P12(x,u,v,t)
[(c(u) − 3) + (c(t) − 3)]

(3)

in which

P6(x,u, v, t) ≡(G[{x,u, v, t}, x]� �6∧{x,u}∈ E(G)∧v < t)
P10(x,u, v, t) ≡ (G[{x,u, v, t}, x]� �10 ∧ {x, v} /∈ E(G)

∧ {t, v} ∈ E(G))

P12(x,u, v, t) ≡ (G[{x,u, v, t}, x]� �12 ∧ {x, v} /∈ E(G)

∧ u < t)
The left-hand side of these equations contains terms re-
lating to different graphlet degrees (order k) of a given
node x; the right-hand side consists of the number of com-
mon neighbours of specific nodes in all instances of some
(k − 1)-orbit representatives. The predicates (Pi) exist
to make sure every instance of �i is accounted for ex-
actly once. How these equations are generated is detailed
in [10].
At first, Jesse saved the first equation that was generated

for each orbit; the equations were generated in ascending
order of the orbit number in the RHS sum. Orbit repre-
sentatives of any order are numbered in such a way that
adding an edge to an orbit representative will always in-
crease its number, which will automatically result in an
upper triangular system of equations [10].
As this selection has a clear bias towards lower densi-

ties in the orbit in the sum, this selection should first be
made more fair. Random selection of which equation is
kept for each orbit should solve this problem. And indeed:

randomly selected equations are about twice as efficient
as the first-come-first-served equations. This proves both
that equation selection has a significant effect on Jesse’s
running time and that the first sets that were used are not
the most efficient. As it is unlikely that random equations
are the most efficient either, which system of equations is
most efficient must be determined.

Equations’ properties
There are many possible linearly independent sets of
equations (16 possible sets for 4-graphlets, 1.5 ∗ 1015
sets for 5-graphlets and 3.5 ∗ 10182 for 6-graphlets),
which makes finding an optimal set of equations hard.
Therefore, some global criteria for equation selec-
tion must be used to try and find a heuristic that
makes the algorithm faster, and to possibly identify the
reason why some equations are more efficient than
others.
Equations 1-3 illustrate the different properties

equations can have. The number of terms in the left-hand
side ranges from 2 in Eq. (1) to 4 in Eq. (2) to 8 in Eq. (3).
The orbit in the sum in the right-hand side is orbit 6 from
graphlet 4 in Eq. (1), orbit 10 from graphlet 6 in Eq. (2)
and orbit 12 from graphlet 7 in Eq. (3). The number of
different c(...) terms within the sum in the right-hand
side is 1 in Eq. (2) and 2 in Eqs. (1) and (3). Note that the
total number of terms is much higher, but depends on the
prevalence of the orbit in the RHS sum within the ex-
plored graph. For the purpose of equation selection, only
properties that can be calculated without prior knowl-
edge of the graph will be considered. Finally, the number
of arguments of each of these c(...) terms (i.e. the number
of nodes whose common neighbours are counted) is 3
in Eq. (1), 2 in Eq. (2) and 1 in Eq. (3). As a shorthand,
LHS and RHS will be used to denote the left-hand side
and right-hand side of an equation, respectively, for the
remainder of this paper.
The left-hand side can be safely ignored because each

orbit will only be linked to denser orbits. Therefore, the
system of equations will automatically be an upper trian-
gular matrix, without any need for decomposition. The
time needed to solve any single equation will therefore be
O(nOrb,k), in which nOrb,k is the number of different or-
bits of k-graphlets. The time to compose this equation will
be O(oi(x)) with oi an graphlet degree of some (k − 1)-
graphlet, assuming all instances of �i have been found. As
oi(x) � nOrb,k in most graphs for at least one oi, most
effort will be needed to calculate the right-hand side of
the equations. That leaves three properties: the orbit over
whose instances the sum is made; the number of terms
within the sum, by which the number of explicitly writ-
ten c(...) terms is meant – not the total number of terms
if the sum is expanded, which depends on the explored
graph; and the number of arguments of the terms in the

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 6 of 13

right-hand side, which means the number of nodes that
are enumerated within the parentheses of each c(...) term.
Two of these properties, however, are related. Remem-

ber that an equation needs to be selected for each orbit,
so the lowest numbered orbit in the left-hand-side of the
equation is fixed. If this is fixed, though, the orbit in
the RHS sum completely determines the number of ar-
guments of the terms in the right-hand side: the number
of arguments of the terms will exactly be the number of
edges that must be added to the orbit in the RHS sum to
create the lowest numbered orbit in the LHS. In the previ-
ous example, orbit 40 has 3 more edges than orbit 6, so the
number of arguments of the terms in the RHS of Eq. (1)
must be 3. Orbit 40 has only 1 edge more than orbit 12, so
the terms in the RHS of Eq. (3) must have 1 argument. As
such, if the size of the orbit representative in the RHS sum
increases, the number of arguments of the RHS terms will
stay the same or decrease. Maximising the size of the orbit
representative in the RHS sumwill therefore minimise the
number of arguments of the RHS terms, and vice versa.
On the other hand, the number of terms in the right-

hand-side of the equation is dependent on the symmetry
of the orbit representative in the sum, and of the specific
nodes in each term. While these are of course related to
the orbit representative, that relation is not straightfor-
wardly characterised. Therefore, the effect of this factor
will need to be calculated separately.

Random graphs used for testing
Three types of random graphs were used for this research:
Erdős-Rényi graphs, Barabási-Albert graphs and geomet-
ric graphs. A short explanation of how these graphs are
generated follows here.

Erdős-Rényi graphs
Erdős-Rényi graphs [13], or ER graphs for short, are true
random graphs. Given a certain number of nodes and
edges, a random graph is generated that has exactly this
order and degree. Every possible edge has the same prob-
ability to exist, making the chance that any pair of nodes
is connected a constant.
These graphs are generated by first creating a graphwith

the desired number of nodes but no edges, then randomly
adding edges one by one, uniformly selecting a random
unconnected pair of nodes for each edge.

Barabási-Albert graphs
In Barabási-Albert graphs [14], shortened to BA graphs,
edges are preferentially connected to high-degree nodes.
The values needed to generate a Barabási-Albert graph are
its order and starting degree of each node δ (equal to half
the average degree of the graph). Barabási-Albert graphs
are scale-free graphs, meaning that the degree distribution
of a Barabási-Albert graph follows a power law.

These graphs are generated starting from a connected
graph with order equal to the starting degree. Any con-
nected graph can be used as starting point; here, a com-
plete graph was chosen to be able to get high-density
BA graphs. Then, δ different nodes are randomly drawn
from the present nodes, in which each node’s chance to be
drawn is proportional to its degree. A new node is added,
connected to these nodes. This is repeated until the graph
has the required order.

Geometric graphs
Geometric graphs [15] are characterised by the fact that
their nodes have a spatial position. This position might
be in any number of dimensions (D). Pairs of nodes
that are within a certain threshold distance of each
other are connected. This threshold distance is a pa-
rameter that is determined at the start of the graph
generation.
To generate these graphs, all needed nodes are posi-

tioned randomly within a D-dimensional cube of unit
size. When each node is connected, it is connected to
the present nodes within the threshold distance from that
node. Note: for some experiments, in particular those in
which the speed of Jesse is plotted as a function of a graph’s
density, the nodes were distributed in a D-dimensional
torus instead, so coordinate 1 on any axis is equal to co-
ordinate 0. Most of the time, D = 3 in the following
experiments.

Results
Effect of equation selection
The effects of equation selection were striking. In
a first test, graphlets of 4, 5, 6 and 7 nodes were
counted in Erdős-Rényi graphs with 50 nodes and 500
edges. Five selections of equations were used: random
equations, equations with the fewest possible right-hand
side terms, equations with the most possible right-hand
side terms, equations with right-hand side terms with the
fewest possible arguments and equations with right-hand
side terms with the most possible arguments. The result
of these measurements can be seen in Table 1.
The number of arguments has a large influence on

Jesse’s running time – up to almost a factor 2 – but se-
lecting equations based on the number of terms does not
seem to influence Jesse’s running time. Therefore, in all
further experiments, equations will be selected based on
the number of arguments in each RHS term.

Cause
All possible c(...) terms, i.e. the number of common neigh-
bours of all sets of up to k − 2 nodes, are calculated
before the graphlets are searched. Then, these are stored
in a hash map with the arguments of each term as the
key. When calculating the equations’ right-hand sides, the
c(...) terms are looked up from there. As the equations’

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 7 of 13

Table 1 The running time of Jesse with different equations in ER graphs of order 50 and size 500, for graphlets of different orders

Random equations Fewer RHS terms More RHS terms RHS terms with fewer arguments RHS terms with more arguments

4 0.018 ± 0.004 0.017 ± 0.004 0.017 ± 0.004 0.017 ± 0.004 0.015 ± 0.003

5 0.32 ± 0.02 0.32 ± 0.01 0.30 ± 0.02 0.22 ± 0.01 0.36 ± 0.01

6 11.0 ± 0.3 10.9 ± 0.2 10.5 ± 0.3 6.9 ± 0.2 15.6 ± 1.4

7 283 ± 13 278 ± 20 279 ± 20 180 ± 3 380 ± 7

All measurements were repeated 20 times. The average and standard deviation of the resulting running times is shown

right-hand side consists completely of a sum of these
terms, this is the most logical place to start looking for the
determining factor that influences the speed.
In Jesse, unlike in ORCA, all possible c(...) terms are

stored in a single hash map. In ORCA, these are saved
in multiple hash maps, a different hash map for each set
size (i.e. the number of arguments of the RHS terms). So
all common neighbours of 2 nodes are saved in a map,
the common neighbours of 3 nodes in another, and so
forth. To test whether this approach made a significant
difference in running time, Jesse was temporarily adapted
to save the c(...) terms in different maps. However, sav-
ing them in different maps did not make the algorithm
run significantly faster than saving them in the same map.
This indicates that the time difference between looking
up small sets of nodes and large sets is not related to
hash tables that possibly have too many collisions to be
used well.
Secondly, Jesse was adapted to only use the hash codes

of the sets of nodes as keys in the hash map. Note that
in Java, hash maps can distinguish between different key
objects with the same hash code. To do so, the entire key
objects must be compared. Explicitly using the hash codes
of the arguments of the c(...) terms as keys disabled the

comparison of those lists. While this did speed up the al-
gorithm with all sets of equations – in exchange for wrong
results in large graphs because of hash collisions – it did
not remove the speed difference. This indicates that the
longer runtime of Jesse when looking up terms with more
arguments is not due to the repeated comparison of longer
lists to each other, although comparing lists has an effect
on Jesse’s overall speed.
The two previous tests suggest that the time per lookup

in the hash table is not too different between small and
large sets of arguments. Therefore, the logical next step
was to log the number of lookups that were used in runs
with different equation sets. And indeed, there was a large
difference in the number of lookups done between the
best and worst sets of equations. Jesse was run with differ-
ent sets of equations (random, right-hand side terms with
fewest arguments and with most arguments) for different
graphlet orders (5 and 6) on different graph types (Erdős-
Rényi, Barabási-Albert and geometric) of different orders
(50 to 200 nodes) and sizes (average degree 16 to 24). In
all of these cases we recorded the time needed to calcu-
late the graphlet degrees, as well as the number of lookups
done. All of the generated data together can be seen
in Fig. 2.

Figure 2 All datapoints from all runs of the speed vs number of lookups test. The datapoints are in grayscale, according to the set of equations that
was used to generate them. On the x axis: the number of lookups done, on the y axis: the running time in seconds. The datapoints were fitted with a
power trend line of f (x) = 7.72 ∗ 10−8x1.03

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 8 of 13

Even though all of these data points come from differ-
ent graph types, with different orders and sizes; differ-
ent graphlet orders; and equations that were selected in
different ways, a power law fits them surprisingly well.
Therefore, it seems safe to assume that the lookups are
the largest cause of the speed difference between differ-
ent sets of equations. However, the fit is a power law with
an exponent that is close to, but different from 1. This
may be due to other effects than lookups becoming more
important at higher or lower density. The data points
are coloured according to the used equations (Fig. 2), so
it can also be seen that the datapoints made with the
most efficient equations tend to be under the fitted line,
whereas the datapoints using the least efficient equations
are above the fitted line. This indicates that, apart from
the number of lookups, there must be other factors mak-
ing these equations more efficient. However, the num-
ber of lookups is clearly the most important factor for
Jesse’s speed and looks like the most promising factor to
optimize.

Reason for higher equation efficiency
In previous sections, it was illustrated that the equation
set that results in the smallest number of lookups of com-
mon neighbours will be the most efficient set. However,
we did not yet offer an explanation of why the equations
with RHS terms with the fewest number of terms tend
to be the ones with the fewest lookups in about all used
graphs.
Recall that, for a fixed lowest numbered left-hand side

orbit, the number of arguments of the RHS terms is
directly related to the number of edges in the orbit repre-
sentative over which the sum in the RHS is made. Terms
with fewer arguments mean denser graphlets, which ap-
pear less frequently in a relatively sparse graph. In an
ER graph, the expected number of instances of each or-
bit representative can even be calculated analytically fairly
easily. In an ER graph G with n nodes and m edges,
an orbit representative � with k nodes and e edges
will appear

e−1∏

i=0

m − i
(n
2
) − i

∗
(k2)−1∏

i=e

(n
2
) − m − i
(n
2
) − i

∗
(
n
k

)
∗ S

times, with S = k!
|Aut(�)| . If k � m and k � n, this

reduces to

(D(G))e ∗ (1 − D(G))(
k
2)−e ∗

(
n
k

)
∗ S,

in which D(G) is G’s density.
Leaving all other variables constant, the number of in-

stances of a specific orbit representative increases as a
function of e at density D(G) < 0.5, stays constant at
D(G) = 0.5 and decreases with increasing e atD(G) > 0.5.

If the number of lookups determines the speed of the
algorithm, the same behaviour is expected from the algo-
rithm’s speed.
To test this assumption, the running speed of Jesse

counting 5-graphlets was measured in ER, BA and GEO
graphs with densities going from 0.1 to 0.9. This was
repeated for graphs of order 50, 100, 150 and 200.
Each experiment was repeated 20 times. The choice
for 5-graphlets was made because 5-graphlets have
enough effect of equation selection, but still can be
counted quickly enough to do these repetitions in rea-
sonable time. Jesse’s speed was measured with 3 sets
of equations: random equations, equations with RHS
terms with fewer arguments and equations with RHS
terms with more arguments. The result can be seen in
Figs. 3 and 4.
While the exact shape of the curves is slightly different

between the different graph types that were used, some
common trends can be discerned. It can clearly be seen
that the running time of the equations with RHS terms
with fewer arguments increases with increasing density,
whereas the running time of the equations with RHS
terms with more arguments decreases with increasing
density.
At a density around 0.7, the equations with RHS terms

with more arguments become more efficient than the
equations with RHS terms with fewer arguments. This is
especially notable because this point is dependent on nei-
ther the graph type, nor the graph order. Across all tested
graphs, the crossover point remains constant.
At minimal density, the running time reached by

equations with RHS terms with fewer arguments is re-
duced by a factor 2 compared to randomly selected
equations. At low density and low order, the difference
in running time decreases again, because the total num-
ber of graphlets decreases. Therefore, the relative amount
of time used by the tree-walking graphlet search, which
is independent of the equations, becomes larger with re-
spect to the time spent looking up common neighbours.
At maximal density, the running time of equations with
RHS terms with more arguments is about 10% shorter
than the running time with randomly selected equations.
Because of the longer running time at high density, the
absolute difference in running time is larger for denser
graphlets.
For almost all graphs, the running time with random

equations is close to the average of the running time
of equations with RHS terms with more arguments and
RHS terms with fewer arguments. At medium density,
they are sometimes less efficient than either (for in-
stance in geometric graphs around a density of 0.6). That
seems to indicate that in these graphs, medium density
graphlets are less common than both low and high density
graphlets.

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 9 of 13

Figure 3 The running time of Jesse, counting 5-graphlets in ER, BA and GEO graphs of different orders and densities. Three different sets of
equations were tested: randomly chosen equations, equations with RHS terms with fewer arguments and equations with RHS terms with more
arguments. All experiments were repeated 20 times. The error bars show the standard deviation of all runs

Application to biological networks
Jesse was also benchmarked on two biological inter-
action networks from the IntAct database [16]: the
diabetes network (169 nodes, 429 edges) and the affi-
nomics network (1117 nodes, 2432 edges). The orbits
of 6-graphlets were counted. Three versions of equation
selection were used: the first-come-first-served equation
selection that Jesse used before actual equation selec-
tion was implemented, random equations and equations
with RHS terms with the fewest possible arguments. The
choice for RHS terms with few arguments was made be-
cause these networks have a low density (0.031 and 0.0065,

respectively). The speed of these runs can be seen in
Table 2.
As can be seen, the original equations used by Jesse

perform worst in both cases. In the diabetes network,
changing to equations with short RHS terms reduces
the running time by a factor of 2. The difference in the
affinomics network is much less pronounced, but still
present. At the extremely low density of the affinomics
network, graphlets on 6 nodes become rare, which re-
duces the difference equations can make. The same ef-
fect can be seen in the random graphs on 50 nodes
in Fig. 4.

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 10 of 13

Figure 4 The relative running time of Jesse, counting 5-graphlets in ER, BA and GEO graphs of different orders and densities. The speed of equations
with RHS terms with more or fewer arguments relative to random equations is shown, as compared to the running time with random equations. All
experiments were repeated 20 times. The error bars show the standard deviation of all runs

Discussion
Jesse is openly available at https://github.com/biointec/
jesse as a Java command line tool. Equation selection
is now implemented: Jesse will automatically select the

Table 2 The running time of Jesse counting orbits of 6-graphlets
with different equations in biological interaction networks

Network Old equations Random equations Few arguments

Diabetes 5.25 s 3.86 s 2.45 s

Affinomics 2.90 s 2.77 s 2.34 s

The old equations are those that were used with Jesse before equation selection
was implemented

most appropriate set of equations.When analysing graphs
with density below 0.7, equations with RHS terms with
fewer arguments will be used; for graphs with a den-
sity above 0.7, equations with RHS terms with more
arguments will be used. It is possible to select other
equations, however. This might be useful in disconnected
graphs in which every connected component has a den-
sity above 0.7, but the entire graph has a density below 0.7,
for instance.

The Jesse Cytoscape app
For ease of use, all of Jesse was integrated in a Cytoscape
app. This app, named Jesse, can be found on the Cytoscape

https://github.com/biointec/jesse
https://github.com/biointec/jesse

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 11 of 13

App store here: http://apps.cytoscape.org/apps/jesse. The
interface of this app can be seen in Fig. 5.
It adds a new tab to Cytoscape’s control panel, named

Jesse. In this tab, the box titled Search Options, marked
with the character A in Fig. 5, contains the most basic
options for orbit counting. The largest order of graphlets
whose orbits need to be counted can be selected here,
as well as any opened Cytoscape network, in which the
orbits will be counted. A checkbox can be ticked to com-
pute the graphlet degrees of only the nodes that are
selected in the network view, otherwise the graphlet de-
grees of all nodes in the network are calculated. If the
selected order is between 3 and 7 (included), then no
other options are needed. Just pushing the Run button,
character D in Fig. 5, at the bottom of the control panel
is enough.
If the order of graphlets that need to be counted is

greater than 7, no standard files for orbit counting are in-
cluded with Jesse. They can, however, be generated for any
order using the File Generation box, character B in Fig. 5.
Files for both orbit numbering and the used search tree
need to be generated and saved. Once they are generated,
the files for a given graphlet order can be used anytime the
Jesse app is used, without generating them again. Choos-
ing generated files can be done in the File Options box,
character C in Fig. 5.
When the algorithm has finished running, the Results

panel, character E in Fig. 5, appears on the right-hand
side of the Cytoscape window. There, a table showing
each node’s graphlet degrees can be seen. Clicking on a
node’s name will highlight it in the network view; con-
versely, highlighting a node in the network will show its
graphlet degrees. This allows quick inspection of a specific
node’s graphlet degrees. Clicking on an orbit’s number
in the table header will open a new network showing a
visualisation of that orbit representative in a direct and
intuitive way.
The used system of equations, as well as the results

table, can be exported using the buttons at the bottom of
the Results panel, character F in Fig. 5. The equations can
be saved in pdf format or as plain text, TeX code or png,
the results in a text file. Each line of the text file starts
with the name of a node, followed by the graphlet degrees
ordered by orbit number, separated by tabs. This allows
post-processing of these data with any other tools the user
may have at their disposal.

Future work
The sets of equations that were tested in this paper were
selected based on global criteria. They weremeant tomin-
imise the number of lookups that have to be done without
prior knowlegde of the explored graph’s structure. Espe-
cially in graphs with amore complicated small-scale struc-
ture than the ones that were tested here, it is possible that

the prevalence of a certain orbit representative does not
depend solely on its density. Therefore, even in a sparse
graph, it may be possible that a certain sparse graphlet
appears less often than a dense graphlet. Then, selecting
equations based on the RHS term number of arguments
will not result in the best equation set.
If the number of orbit representatives of order k − 1

is counted before applying the equations, as opposed to
applying the equations during counting, the number of
lookups may be calculated for each equation. For ev-
ery orbit, the equation that will need the fewest lookups
can then be chosen. However, then the instances should
be saved, because the instances need to be filled in the
equations, which in itself causes an overhead.
As the orbits are counted for every node separately, it

may be entirely possible that the best equations are dif-
ferent from node to node in a single graph. Therefore,
an additional speedup might be achieved by tailoring the
equations to every node. It remains to be seen whether
this difference is significant and outweighs the effort
needed to calculate which equations to use.

Conclusion
With the addition of equation selection, the bioinformat-
ics network analysis tool Jesse has been significantly sped
up. Which equations are most efficient to use is mostly
dependent on the graph’s density and less on the exact
type of graph that is used. At low graph density, equations
with right-hand side terms with fewer arguments are most
efficient, being up to twice as fast as random equations
and four times faster than equations with right-hand
side terms with more arguments. At a density above 0.7,
equations with right-hand side terms with more argu-
ments become more efficient, reaching a running time
reduction of about 10% compared to random equations at
extremely high density. The number of terms in equations’
right hand side has no significant effect on the algorithm’s
running time.
The difference in running time when using different sets

of equations can be attributed to the vastly different total
number of terms that make up the equations’ right hand
sides. These terms need to be looked up in a hash table,
and the number of lookups needed has the dominant
effect on the different running time between equations.
This knowledge was implemented into Jesse: it now au-

tomatically selects a system of equations based on the
given graph’s density. When its density is lower than 0.7,
the equations with the right-hand side terms with the
fewest arguments are chosen, when its density is higher
than 0.7 those with the right-hand side terms with the
most arguments are chosen. A Cytoscape App for Jesse
was created, which combines Jesse’s functionality with
Cytoscape’s user-friendly interface and can be down-
loaded from the Cytoscape App Store.

http://apps.cytoscape.org/apps/jesse

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 12 of 13

a

b e

f

c

d

Figure 5 The Jesse interface in Cytoscape. a Search Options panel, with basic options (graphlet order, search network, only count graphlets for
selected nodes). b File Options panel, used to select orbit and tree files for graphlets of order greater than 7. c File Generation panel, used to
generate orbit and tree files for graphlets of order greater than 7. d Run button to start the algorithm. e Results panel, where the graphlet degrees of
each node can be seen. Selecting a node in the network view will also select it in the results panel, and vice versa, as indicated by the arrow. Clicking
on a column header will visualise the corresponding orbit. f Buttons to save the used equations and computed graphlet degrees

Availability and requirements
Jesse as a command line tool is freely available at Github
(https://github.com/biointec/jesse). It is implemented
in Java, therefore it is platform-independent. It needs
JRE 1.8.
As a Cytoscape App, Jesse can be downloaded from

the Cytoscape App Store (http://apps.cytoscape.org/apps/
jesse) and needs Cytoscape 3.x.

Abbreviations
BA: Barabási-Albert (random graph); ER: Erdős-Rényi (random graph) GDD:
Graphlet degree distribution; GEO: Geometric (random graph); LHS: Left-hand
Side (of an equation); RHS: Right-hand Side (of an equation)

Acknowledgements
The authors wish to thank their respective funders and institutions.

Funding
This research was funded by Ghent University – imec and the European Union
Seventh Framework Programme (FP7/2007-2013) – European Research
Council Advanced Grant Agreement 322739-DOUBLEUP.

Availability of data andmaterials
Jesse as a command line tool is freely available at Github (https://github.com/
biointec/jesse). It is implemented in Java, therefore it is platform-independent.
It needs JRE 1.8.

As a Cytoscape App, Jesse can be downloaded from the Cytoscape App Store
(http://apps.cytoscape.org/apps/jesse) and needs Cytoscape 3.x.
The random graphs used to test Jesse were generated by Jesse itself. The used
biological networks are available from https://www.ebi.ac.uk/intact/
downloads.

Authors’ contributions
IM, PA, YVDP, MP and DC conceived the methods. IM and TVP designed and
programmed the algorithms. IM performed the experiments and analysed the
data. IM wrote the manuscript. All authors read, revised and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Ghent University - imec, IDLab, Technologiepark 15, 9052 Ghent, Belgium. 2

Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium. 3Department

https://github.com/biointec/jesse
http://apps.cytoscape.org/apps/jesse
http://apps.cytoscape.org/apps/jesse
https://github.com/biointec/jesse
https://github.com/biointec/jesse
http://apps.cytoscape.org/apps/jesse
https://www.ebi.ac.uk/intact/downloads
https://www.ebi.ac.uk/intact/downloads

Melckenbeeck et al. BMC Bioinformatics (2019) 20:27 Page 13 of 13

of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
4Department of Plant Biotechnology and Bioinformatics, Ghent University,
Technologiepark 927, 9052 Ghent, Belgium. 5Department of Biochemistry,
Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.

Received: 20 June 2018 Accepted: 9 November 2018

References
1. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network

motifs: simple building blocks of complex networks. Science (New York,
N.Y.) 2002;298(5594):824–7.

2. Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection.
Bioinformatics (Oxford, England). 2006;22(9):1152–3.

3. Lin W, Xiao X, Xie X, Li X-lL. Network motif discovery: A GPU approach.
In: 2015 IEEE31st InternationalConference on Data Engineering. IEEE; 2015.
p. 831–42.

4. Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or
geometric? Bioinformatics (Oxford, England). 2004;20(18):3508–15.

5. Melckenbeeck I, Audenaert P, Colle D, Pickavet M. Efficiently counting all
orbits of graphlets of any order in a graph using autogenerated
equations. Bioinformatics (Oxford, England). 2017;34(1372):758.

6. Hasan A, Chung PC, Hayes W. Graphettes: Constant-time determination
of graphlet and orbit identity including (possibly disconnected) graphlets
up to size 8. PLoS ONE. 2017;12(8):1–12.

7. Pržulj N. Biological network comparison using graphlet degree
distribution. Bioinformatics (Oxford, England). 2007;23(2):177–83.

8. Milenković T, Pržulj N. Uncovering biological network function via
graphlet degree signatures. Cancer Informat. 2008;6:257–73.

9. Hočevar T, Demšar J. A combinatorial approach to graphlet counting.
Bioinformatics (Oxford, England). 2014;30(4):559–65.

10. Melckenbeeck I, Audenaert P, Michoel T, Colle D, Pickavet M. An
Algorithm to Automatically Generate the Combinatorial Orbit Counting
Equations. PLoS ONE. 2016;11(1):1–19.

11. Pinar A, Seshadhri C, Vishal V. ESCAPE: Efficiently Counting All 5-Vertex
Subgraphs. In: Proceedings of the 26th International Conference on
World Wide Web Switzerland: International World Wide Web Conferences
Steering Committee Republic and Canton of Geneva; 2017. p. 1431–40.

12. Cannoodt R, Ruyssinck J, Ramon J, De Preter K, Saeys Y. IncGraph:
Incremental graphlet counting for topology optimisation. PLoS ONE.
2018;13(4):1–11.

13. Erdős P, Rényi A. On random graphs I. Publ Math. 1959;6:290–7.
14. Barabási A-L, Albert R, Jeong H. Mean-field theory for scale-free random

networks. Physica A Stat Mech Appl. 1999;272:173–87.
15. Díaz J, Penrose MD, Petit J, Serna M. Convergence Theorems for Some

Layout Measures on Random Lattice and Random Geometric Graphs.
Comb Probab Comput. 2000;9(6):489–511.

16. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F,
Campbell NH, Chavali G, Chen C, Del-Toro N, Duesbury M, Dumousseau M,
Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J,
Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M,
Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B,
Stutz A, Tognolli M, Van Roey K, Cesareni G, Hermjakob H. The MIntAct
project - IntAct as a common curation platform for 11 molecular
interaction databases. Nucleic Acids Res. 2014;42(D1):358–63.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Formal graph theory definitions

	Implementation
	Jesse
	Equation selection
	Equations' properties

	Random graphs used for testing
	Erdos-Rényi graphs
	Barabási-Albert graphs
	Geometric graphs

	Results
	Effect of equation selection
	Cause
	Reason for higher equation efficiency

	Application to biological networks

	Discussion
	The Jesse Cytoscape app
	Future work

	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

