
Enabling open and reproducible research

at computer systems conferences

the good, the bad and the ugly

CNRS webinar

Grenoble

March 2017

Grigori Fursin

Chief Scientist, cTuning foundation, France

CTO, dividiti, UK

fursin.net/research

cTuning.org/ae

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 2

• What is computer systems research?

• Major problems in computer systems’ research in the past 15 years

• Artifact Evaluation Initiative

• Good: active community participation with ACM/industrial support

• Bad: software and hardware chaos; highly stochastic behaviour

• Ugly: ad-hoc, non-portable scripts difficult to customize and reuse

• Improving Artifact Evaluation

• Preparing common replication/reproducibility methodology

(new ACM taskforce on reproducibility)

• Introducing community-driven artifact and paper reviewing

• Introducing common workflow framework (Collective Knowledge)

• Introducing simple JSON API and meta for artifacts

• Introducing portable and customizable package manager

• Demonstrating open and reproducible computer systems’ research

• Collaboratively optimizing deep learning across diverse datasets/SW/HW

• Conclusions and call for action!

Seminar outline

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 3

Computer System

Result

Back to basics: what is computer systems’ research?

Users of computer systems (researchers, engineers,

entrepreneurs) want to quickly prototype their algorithms

or develop efficient, reliable and cheap products

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 4

Result

Program

Compilers

Binary and libraries

Hardware,

Simulators

Run-time environment

State of the system Data set

Algorithm

Back to basics: what is computer systems’ research?

Computer systems’ researchers,

software developers and hardware

designers help end-users

improve all characteristics of their tasks

(execution time, power consumption,

numerical instability, size, faults, price …)

guarantee real-time constraints

(bandwidth, QoS, etc)

Storage

Users of computer systems (researchers, engineers,

entrepreneurs) want to quickly prototype their algorithms

or develop efficient, reliable and cheap products

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 5

Result

Program

Compilers

Binary and libraries

Hardware,

Simulators

Run-time environment

State of the system Data set

Algorithm

Two major problems: raising complexity and physical limitations

Storage

Finding efficient, reliable and cheap solution

for end-user tasks is very non-trivial!

Thousands of benchmarks real applications

MPI, OpenMP, TBB, CUDA, OpenCL, StarPU, OmpSs

C,C++,Fortran,Java,Python,assembler

LLVM,GCC,ICC,PGI (hundreds of optimizations)

BLAS,MAGMA,ViennaCL,cuBLAS,clBLAST,cuDNN,

openBLAS, clBLAS

TensorFlow, Caffe, Torch, TensorRT

Infinite number of possible data sets

Linux, Windows, Android, MacOS

heterogeneous, many-core, out-of-order, cache

x86, ARM, PTX, NN, extensions

Numerous architecture and platform simulators

Too many design and optimization choices!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 6

What are you paying for?

Smart and powerful mobile devices

are everywhere (mobile phones, IoT)

Weather prediction;

physics; medicine; finances

Unchanged algorithms may run

only a fraction of peak

performance thus wasting

expensive resources and energy!

Some years later you may get

more efficient algorithms

just before new systems arrives!

Various SW/HW optimizations

may result in

7x speedups, 5x energy savings,

but poor accuracy

2x speedups without

sacrificing accuracy –

enough to enable RT processing

Users expect new platforms to be faster, more energy efficient

more accurate and more reliable – is it true?

New systems require further tedious, ad-hoc and error-prone optimization.

This slows down innovation and development of new products.

M
o

b
il

e
 d

e
v

ic
e

s,
 s

e
n

so
rs

,
Io

T
H

P
C

 p
la

tf
o

rm
s

Many attempts to run DNN,

HOG, Slam algorithms

Supercomputers and data

centers cost millions of $

to build, install and use

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 7

How can we solve these problems?

What did I learn from other sciences that deal with complex systems:

physics, mathematics, chemistry, biology, AI …?

Major breakthroughs came from collaborative and reproducible R&D based on

sharing, validation, systematization

and reuse of artifacts and knowledge!

statistical analysis,

data mining,

machine learning

My original background is NOT in computer engineering

but in physics, electronics and machine learning

(first research project in 1994 to develop artificial neural networks chip)

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 8

Result

Idea

cTuning.org (2008-cur) – collaborative, machine learning-based optimization

cTuning1 framework and public portal to

1) share realistic benchmarks and data sets

2) share whole experimental setups

(benchmarking and autotuning)

3) crowdsource empirical optimization

4) collect results in a centralized repository

5) apply machine learning to predict

optimizations

6) involve the community to improve models

• G. Fursin et.al. MILEPOST GCC: Machine learning based self-tuning compiler. 2008, 2011

• G. Fursin. Collective Tuning Initiative: automating and accelerating development and

optimization of computing systems, 2009

Program

Compilers

Binary and libraries

Hardware,

Simulators

Run-time environment

State of the system Data set

Algorithm

Storage

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 9

cTuning.org/ae (2014-cur.) – artifact evaluation at CGO,PPoPP,PACT,SC

“Artifact Evaluation for Publications” (Dagstuhl Perspectives Workshop 15452), 2016,
Bruce R. Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller,
http://drops.dagstuhl.de/opus/volltexte/2016/5762

Numerous publications My personal AE goals

• validate experimental results from

published articles and restore trust

(see ACM TRUST’14 @ PLDI workshop:

cTuning.org/event/acm-trust2014)

• promote artifact sharing (benchmarks,

data sets, tools, models)

• enable fair comparison of results and

techniques

• develop common methodology for

reproducible computer systems’ research

• build upon others’ research

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 10

How Artifact Evaluation (AE) works?

Authors of accepted articles has an

option to submit related material for

an AE committee to be evaluated

http://cTuning.org/ae/submission.html

• Abstract

• Packed artifact (or remote access)

• Artifact Appendix (with a version to

keep track of a methodology)

http://ctuning.org/ae/reviewing.html

Formalized reviewing process

Multiple criteria for artifact evaluation

Artifact ranking:

1. Significantly exceeded expectations

2. Exceeded expectations

3. Met expectations

4. Fell below expectations

5. Significantly fell below expectations

PC members nominate one or two

senior PhD students/engineers

for AE committee

Pool of

reviewers!

Paper with artifacts which

passed evaluation receives

AE badge

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 11

Artifact evaluation timeline

time line

paper

accepted

artifacts

submitted

evaluator

bidding

artifacts

assigned

evaluations

available

evaluations

finalized

artifact

decision

7..12 days

to prepare

artifacts

according to

guidelines:

cTuning.org/

submission.html

2..4 days

for evaluators

to bid on

artifacts

(according

to their

knowledge and

access to

required

SW/HW)

2 days

to assign

artifacts –

ensure at least

3 reviews

per artifact,

reduce risks,

avoid mix ups

minimize

conflicts of

interests

2 weeks

to review

artifacts

according to

guidelines:

cTuning.org/

reviewing.html

3..4 days

for authors to

respond to

reviews and fix

problems

2..3 days

to finalize

reviews

Light communication between

authors and reviewers

is allowed via AE chairs

(to preserve anonymity

of the reviewers)

2..3 days

to add

AE stamp

and AE appendix

to a camera-

ready paper

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 12

Artifact Evaluation: good

Year PPoPP CGO PACT Total Problems Rejected

2015 10 8 18 7 2

2016 12 11 23 4 0

2016 5 5 2 0

2017 14 13 27 7 0

• Strong support from academia, industry and ACM

• Active participation in AE discussion sessions

• Lots of feedback

• Many interesting artifacts!

NOTE: we consider AE a cooperative process and try to help authors fix artifacts

and pass evaluation (particularly if artifacts will be open-sourced)

We use this practical experience (> 70 papers in the past 3 years!)

to continuously improve common experimental methodology

for reproducible computer systems’ research

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 13

In 2016 ACM organized a special taskforce (former AE chairs) to develop

common methodology for artifact sharing and evaluation across all SIGS!

We produced “Result and Artifact Review and Badging” policy:

http://www.acm.org/publications/policies/artifact-review-badging

1) Define terminology

Repeatability (Same team, same experimental setup)

Replicability (Different team, same experimental setup)

Reproducibility (Different team, different experimental setup)

2) Prepare new sets of badges (covering various SIGs)

Artifacts Evaluated – Functional

Artifacts Evaluated – Reusable

Artifacts Available

Results Replicated

Results Reproduced

ACM taskforce on reproducibility

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 14

We introduced Artifact Appendices to describe experiments

Two years ago we introduced Artifact Appendix templates to unify

Artifact submissions and let authors add up to two pages of such

appendices to their camera ready paper:

http://cTuning.org/ae/submission.html

http://cTuning.org/ae/submission_extra.html

The idea is to help readers better understand what was evaluated

and let them reproduce published research and build upon it.

We did not receive complaints about our appendices and many

researchers decided to add them to their camera ready papers

(see http://cTuning.org/ae/artifacts.html).

Similar AE appendices are now used by other conferences

(SC,RTSS):
http://sc17.supercomputing.org/submitters/technical-

papers/reproducibility-initiatives-for-technical-papers/artifact-description-

paper-title

We are now trying to unify Artifact Appendices across all SIGs

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 15

Artifact Evaluation: bad

• too many artifacts to evaluate – need to somehow scale AE while keeping the

quality (41 evaluators, ~120 reviews to handle during 2.5 weeks)

• difficult to find evaluators with appropriate skills and access

to proprietary SW and rare HW

• very intense schedule and not enough time for rebuttals

• communication between authors and reviewers via AE chairs is a bottleneck

time line

paper

accepted

artifacts

submitted

evaluator

bidding

artifacts

assigned

evaluations

available

evaluations

finalized

artifact

decision

7..12 days 2..4 days 2 days 2 weeks 3..4 days 2..3 days 2..3 days

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 16

New option of open artifact evaluation!

time line

paper

accepted

artifacts

submitted

evaluator

bidding

artifacts

assigned

evaluations

available

evaluations

finalized

artifact

decision

7..12 days 2..4 days 2 days 2 weeks 3..4 days 2..3 days 2..3 days

Introduce two evaluation options: private and public

a) traditional evaluation for private artifacts (for example, from industry, though less and less common)

time line

paper

accepted

artifacts

submitted

AE chairs announce

XSEDE/GRID5000/etc

AE chairs announce

public artifacts at

XSEDE/GRID5000/etc

AE chairs monitor open

artifacts are evaluated

AE chairs monitor open

discussions until

artifacts are evaluated

artifact

decision

any time 1..2 days from a few days to 2 weeks 3..4 days 2..3 days

b) open evaluation of public and open-source artifacts (if already avialable at

GitHub, BitBucket, GitLab with “discussion mechanisms” during submission…)

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 17

Trying open artifact and paper evaluation

At CGO/PPoPP’17, we have sent out requests to validate several open-source artifacts to the public

mailing lists from the conferences, network of excellence, supercomputer centers, etc.

We found evaluators willing to help and having an access to rare hardware or supercomputers

as well as required software and proprietary benchmarks

Authors quickly fixed issues and answered research questions while AE chairs steered the discussion!

GRID5000 users participated in open evaluation of a PPoPP’17 artifact:

https://github.com/thu-pacman/self-checkpoint/issues/1

See other public evaluation examples:

cTuning.org/ae/artifacts.html

We validated open reviewing of publications via Reddit at ADAPT’16:

http://adapt-workshop.org

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 18

Artifact Evaluation: what can possibly be ugly ;) ?

Algorithm

Program

Compilers

Binary and libraries

Hardware,

Simulators

Run-time environment

State of the system Data set

Algorithm

Storage

Result

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 19

Ugly: no common experimental methodology and SW/HW chaos

• difficult (sometimes impossible) to reproduce

empirical results across ever changing

software and hardware stack

(highly stochastic behavior)

• everyone uses their own ad-hoc scripts to

prepare and run experiments with many

hardwired paths

• practically impossible to customize and reuse

artifacts (for example, try another compiler,

library, data set)

• practically impossible to run on another OS

or platform

• no common API and meta information for

shared artifacts and results

(benchmarks, data sets, tools)
Result

Algorithm

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 3.7

LLVM 2.9

LLVM 3.0

Phoenix

MVS 2013

XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprofprof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

predictive

scheduling

algorithm-

level

TBB

MKL

ATLAS

program-

level

function-

level

Codelet

loop-level

hardware

counters

IPA

polyhedral

transformations

LTO

pass

reordering

per phase

reconfiguration

frequency

bandwidth

HDD size
TLB

memory size

execution time

GCC 5.2

LLVM 3.4

SVM

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 7.x

SimpleScalar

algorithm precision

Joint CGO/PPoPP Distinguished Artifact Award

Xiuxia Zhang1, Guangming Tan1, Shuangbai Xue1, Jiajia Li2, Mingyu Chen1

1 Chinese Academy of Sciences 2 Georgia Institute of Technology

February 2017

for

“Demystifying GPU Microarchitecture
to Tune SGEMM Performance”

The cTuning foundation and
NVIDIA are pleased to present

Awarding distinguished artifacts –not enough!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 21

Result

VM

Using Virtual Machines and Docker

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 3.7

LLVM 2.9

LLVM 3.0

Phoenix

MVS 2013

XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprofprof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

predictive

scheduling

algorithm-

level

TBB

MKL

ATLAS

program-

level

function-

level

Codelet

loop-level

hardware

counters

IPA

polyhedral

transformations

LTO

pass

reordering

per phase

reconfiguration

bandwidth

HDD size
TLB

memory size

execution time

GCC 5.2

LLVM 3.4

SVM

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 7.x

SimpleScalar

algorithm precision

VM or Docker images

good at hiding complexity

but they do not solve

major problems

in computer systems’ research

Docker is useful to archive artifacts

while hiding all underlying complexity!

However Docker does not address many other

issues vital for open and collaborative

computer systems’ research, i.e. how to

1) work with a native user SW/HW environment

2) customize and reuse artifacts and workflows

3) capture run-time state

4) deal with hardware dependencies

5) deal with proprietary benchmarks and tools

6) automate validation of experiments

Images are also often too large in size!

Need portable and customizable

workflow framework suitable

for computer systems research!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 22

Some attempts to clean up this mess in computer systems’ R&D

Result

Algorithm

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 3.7

LLVM 2.9

LLVM 3.0

Phoenix

MVS 2013

XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprofprof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

predictive

scheduling

algorithm-

level

TBB

MKL

ATLAS

program-

level

function-

level

Codelet

loop-level

hardware

counters

IPA

polyhedral

transformations

LTO

pass

reordering

per phase

reconfiguration

frequency

bandwidth

HDD size
TLB

memory size

execution time

GCC 5.2

LLVM 3.4

SVM

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 7.x

SimpleScalar

algorithm precision

Better package managers

apt; yum; spack;

pip ; homebrew …

Smart build tools

cmake; easybuild …

Multi-versioning

spack; easybuild; virtualenv …

Third-party resources

cKnowledge.org/reproducibility

Numerous online projects

But we want to systematize our local artifacts

without being locked up on third-party

web services or learn complex GUI

Missing: portable and customizable workflow

framework suitable for computer systems’ research!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 23

Open-source Collective Knowledge Framework (2015-cur.)

Result

Algorithm

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 3.7

LLVM 2.9

LLVM 3.0

Phoenix

MVS 2013

XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprofprof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

predictive

scheduling

algorithm-

level

TBB

MKL

ATLAS

program-

level

function-

level

Codelet

loop-level

hardware

counters

IPA

polyhedral

transformations

LTO

pass

reordering

per phase

reconfiguration

frequency

bandwidth

HDD size
TLB

memory size

execution time

GCC 5.2

LLVM 3.4

SVM

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 7.x

SimpleScalar

algorithm precision

cKnowledge.org ; github.com/ctuning/ck

Eventually we didn’t have a choices but to use all

our experience and develop portable and

customizable workflow framework

for computer systems’ research:

1) organize your artifacts (programs, data sets,

tools, scripts) as customizable and reusable

components with JSON API and meta data

2) assemble portable and customizable

workflows with JSON API from shared artifacts

as LEGO ™

3) integrate portable package and environment

manager which can detect multiple versions

of required software or installed one across

Linux, MacOS, Windows and Android

4) integrate web server to show interactive

reports (locally!) or exchange data when

crowdsourcing experiments

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 24

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

Idea

Noticed during AE: all projects have similar structure

Data setState of the system

image corner detection

matmul OpenCL

compression

neural network CUDA

Ad-hoc scripts to

compile and run a

program…

Have some

common meta:

which datasets

can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data

sets with some ad-hoc

scripts to find them,

extract features, etc

Have some

(common)

meta:

filename, size,

width, height,

colors, …

Ad-hoc scripts to set

up environment for

a given and possibly

proprietary compiler

Have some

common meta:

compilation,

linking and

optimization

flags

Create project directory

Ad-hoc dirs and

scripts to record

and analyze

experiments

cvs speedups

txt hardware counters

xls table with graph

Have some

common meta:

features,

characteristics,

optimizations

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 25

image corner detection

matmul OpenCL

compression

neural network CUDA

meta.json

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

meta.json

meta.json

meta.json

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

Collective Knowledge: organize and share artifacts as reusable components

data UID and alias

cvs speedups

txt hardware counters

xls table with graph

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 26

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

Collective Knowledge: organize and share your artifacts as reusable components

data UID and alias

JSON

input

JSON

input

JSON

input

JSON

input

JSON

output

JSON

output

JSON

output

JSON

output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

ck <function> <module>:<data UID> @input.json

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 27

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

Collective Knowledge: organize and share your artifacts as reusable components

data UID and alias

JSON

input

JSON

output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

Connect into workflows as LEGO™

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 28

Local repository structure (with internal UID and meta)!

program

soft

image corner detection

matmul OpenCL

compression

neural network CUDA

gcc 5.2

llvm 3.6

icc 2015

dataset image-jpeg-0001

bzip2-0006

video-raw-1280x1024

…

…

…

…

…

…

module program

soft

dataset

…

…

…

/ module UID and alias / data UID or alias / .cm / meta.json
CK

local
project

repo

experiment …

…

…

…

…

Both code (with API) and data (with meta) inside repository

Can be referenced and cross-linked via CID (similar to DOI):

module UOA : data UOA

Local files –

no locks up on

third-party

web services

No complex GUI

Can be shared

via GIT/SVN/etc

Can be easily

indexed via

ElasticSearch to

speed up search

Can be easily

connected to

Python-based

predictive

analytics

(sklearn-kit)

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 29

Provide customizable and SW/HW independent access to tools

CLBLast

OpenBLAS

LLVM 3.8

GCC 7.0

CUDA 8.0 cuBLAS “Black box”

“big data”

database

Hardwired

experiment

scripts /

cmake

Ad-hoc

scripts to

process CSV,

XLS, TXT, etc.Caffe OpenCL

Caffe CUDA

Caffe CPU

JS
O

N
 A

P
I

(i
n

p
u

t)

JS
O

N
 A

P
I

(i
n

p
u

t)

Source files and auxiliary scriptsSource files and auxiliary scripts

CK program entry (ck list program)CK program entry (ck list program)

$ ck pull repo:ck-autotuning
$ ck compile program:cbench-automotive-susan –speed
$ ck run program:cbench-automotive-susan
$ ck run program:caffe

Implement SW/HW independent, reusable

and shareable CK modules with unified CMD

and JSON API for various experimental

scenarios (such as program module)

.cm/meta.json – describes soft dependencies ,
data sets, and how to compile and run this program
.cm/meta.json – describes soft dependencies ,
data sets, and how to compile and run this program

Read

program

meta

Detect all software

dependencies; ask user if

multiple versions exists

Prepare

environment

Compile

program

Run

program

JS
O

N
 A

P
I

(o
u

tp
u

t)

JS
O

N
 A

P
I

(o
u

tp
u

t)

CK program module
Use program entries to describe a given program

in meta.json and store sources (if needed)

Ad-hoc experimental workflows

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 30

local / env / 03ca0be16962f471 / env.sh
Tags: compiler,cuda,v8.0

local / env / 03ca0be16962f471 / env.sh
Tags: compiler,cuda,v8.0

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

Soft entries in CK describe how

to detect if a given software is

already installed, how to set up

all its environment including

all paths (to binaries, libraries,

include, aux tools, etc),

and how to detect its version.

$ ck detect soft --tags=compiler,cuda$ ck detect soft --tags=compiler,cuda

$ ck detect soft:compiler.gcc$ ck detect soft:compiler.gcc

$ ck detect soft:compiler.llvm --target_os=android19-arm$ ck detect soft:compiler.llvm --target_os=android19-arm

$ ck list soft:compiler*$ ck list soft:compiler*

$ ck detect soft:lib.cublas$ ck detect soft:lib.cublas

Env entries are created in CK local

repo for all found software

instances together with their meta

and an auto-generated environment

script env.sh (on Linux) or env.bat

(on Windows).

Package entries describe how to

install a given software if it is not

installed (using install.sh script on

Linux host or install.bat on

Windows host).

$ ck install package:caffemodel-bvlc-googlenet$ ck install package:caffemodel-bvlc-googlenet

$ ck install package:imagenet-2012-val$ ck install package:imagenet-2012-val

$ ck install package:lib-caffe-bvlc-master-cuda$ ck install package:lib-caffe-bvlc-master-cuda

$ ck list package:*caffemodel*$ ck list package:*caffemodel*

L
o

ca
l C

K
 r

ep
o

L
o

ca
l C

K
 r

ep
o

Portable and customizable package manager in the CK

$ ck search soft --tags=blas$ ck search soft --tags=blas

$ ck show env$ ck show env

$ ck show env –tags=cublas$ ck show env –tags=cublas

$ ck rm env:* –tags=cublas$ ck rm env:* –tags=cublas

$ ck search package –tags=caffe$ ck search package –tags=caffe

Works on Linux, Windows, MacOS, Android

Detects multiple versions of various software

Builds missing software

Extended by the community
github.com/ctuning/ck-env

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 31

Customizable and reusable workflows with JSON API as LEGO™

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

Chaining CK modules to an experimental pipeline via JSON API to quickly prototype research ideas

Public modular auto-tuning and machine

learning repository and buildbot

Unified

web services Interdisciplinary crowd

Choose

exploration

strategy

Select choices (program,

data set, compiler, flags,

opts, hardware design …)

Compile

program

or kernel

Run

program

or kernel

Perform

statistical

analysis

Apply

Pareto

filter

Model and

predict choices

and behavior

Reduce

complexity

Shared scenarios from past research

…

Expose and unify information needed for performance

analysis and optimization combined with data mining!

Optimizing/modeling behavior b

of any object in the CK (program, library function, kernel, …)

as a function of design and optimization choices c, features f

and run-time state s

b = B(c , f , s)
… … … …

Flattened JSON vectors

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 32

Gradually add JSON specification (depends on research scenario)

Autotuning and machine learning specification:

{

"characteristics":{
"execution times": ["10.3","10.1","13.3"],
"code size": "131938", ...},

"choices":{
"os":"linux", "os version":"2.6.32-5-amd64",
"compiler":"gcc", "compiler version":"4.6.3",
"compiler_flags":"-O3 -fno-if-conversion",
"platform":{"processor":"intel xeon e5520",

"l2":"8192“, ...}, ...},
"features":{

"semantic features": {"number_of_bb": "24", ...},
"hardware counters": {"cpi": "1.4" ...}, ... }

"state":{
"frequency":"2.27", ...}

}

CK flattened JSON key

##characteristics#execution_times@1

"flattened_json_key”:{
"type": "text”|"integer" | “float" | "dict" | "list”

| "uid",
"characteristic": "yes" | "no",
"feature": "yes" | "no",
"state": "yes" | "no",
"has_choice": "yes“ | "no",
"choices": [list of strings if categorical

choice],
"explore_start": "start number if numerical

range",
"explore_stop": "stop number if numerical

range",
"explore_step": "step if numerical range",
"can_be_omitted" : "yes" | "no"
...

}

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 33

• "Collective Mind: Towards practical and collaborative autotuning“,

Journal of Scientific Programming 22 (4), 2014

http://hal.inria.fr/hal-01054763

• “Collective Mind, Part II: Towards Performance- and Cost-Aware

Software Engineering as a Natural Science”, CPC 2015, London, UK

http://arxiv.org/abs/1506.06256

• Android application to crowdsource autotuning across mobile devices:

https://play.google.com/store/apps/details?id=openscience.crowdsource.experiments

• “Collective Knowledge: towards R&D sustainability”, DATE 2016, Dresden, Germany

http://bit.ly/ck-date16

• “Optimizing convolutional neural networks on embedded platforms with OpenCL”,

IWOCL 2016, Amsterdam

http://dl.acm.org/citation.cfm?id=2909449

The community now use CK to collaboratively tackle old problems

Crowdsource performance analysis and optimization, machine-learning,

run-time adaptation across diverse workloads and hardware provided

by volunteers
$ sudo pip install ck

$ ck pull repo:ck-crowdtuning

$ ck crowdtune program --gcc

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 34

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Execution time:

10 sec.

Reproducibility of experimental results as a side effect

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 35

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Variation of experimental results:

10 ± 5 secs.

Reproducibility of experimental results as a side effect

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 36

Execution time (sec.)

D
is

tr
ib

u
ti

o
n

Unexpected behavior - expose to the community including experts

to explain, find missing feature and add to the system

Reproducibility of experimental results as a side effect

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 37

Execution time (sec.)

D
is

tr
ib

u
ti

o
n

Class A Class B

2400MHz CPU Frequency 800MHz

Unexpected behavior - expose to the community including experts

to explain, find missing feature and add to the system

Reproducibility of experimental results as a side effect

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 38

Gradually extend/fix shared workflows by the community during AE

•Init pipeline

•Detected system information

•Initialize parameters

•Prepare dataset

•Clean program

•Prepare compiler flags

•Use compiler profiling

•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning

•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)

•Use Alchemist plugin (currently for GCC)

•Compile program

•Get objdump and md5sum (if supported)

•Use OpenME for fine-grain program analysis and online tuning (build & run)

•Use 'Intel VTune Amplifier' to collect hardware counters

•Use 'perf' to collect hardware counters

•Set frequency (in Unix, if supported)

•Get system state before execution

•Run program

•Check output for correctness (use dataset UID to save different outputs)

•Finish OpenME

•Misc info

•Observed characteristics

•Observed statistical characteristics

•Finalize pipeline

We’ve shared and continuously extend our

experimental workflow for autotuning:

http://github.com/ctuning/ck-autotuning

http://cknowledge.org/repo

http://github.com/ctuning

• Hundreds of benchmarks/kernels/codelets

(CPU, OpenMP, OpenCL, CUDA)

• Thousands of data sets

• Wrappers around all main tools and libs

• Optimization description of major compilers

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 39

Distinguished CGO’17 artifact in Collective Knowledge format

Highest ranked artifact at CGO’17 turned out to be implemented

using Collective Knowledge Framework

"Software Prefetching for Indirect Memory Accesses",
Sam Ainsworth and Timothy M. Jones

https://github.com/SamAinsworth/reproduce-cgo2017-paper

It take advantage of a portable package manager

to install required LLVM for either x86 or ARM platforms,

automatically build LLVM plugins,

run empirical experiments on a user machine via CK workflow,

compare speedups with pre-recorded results by authors,

and prepare interactive report

See PDF with Artifact Evaluation Appendix:
http://ctuning.org/ae/resources/paper-with-distinguished-ck-artifact-and-ae-appendix-cgo2017.pdf

See snapshot of an interactive CK dashboard:
https://github.com/SamAinsworth/reproduce-cgo2017-paper/files/618737/ck-aarch64-dashboard.pdf

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 40

Collective Knowledge mini-tutorials

Create repository: ck add repo:my_new_project

Add new module: ck add my_new_project:module:my_module

Add new data for this module: ck add my_new_project:my_module:my_data @@dict

{“tags”:”cool”,”data”}

Add dummy function to module: ck add_action my_module –func=my_func

Test dummy function: ck my_func my_module --param1=var1

List my_module data: ck list my_module

Find data by tags: ck search my_module –tags=cool

Archive repository: ck zip repo:my_new_project

Pull existing repo from GitHub: ck pull repo:ck-autotuning

List modules from this repo: ck list ck-autotuning:module:*

Compile program (using GCC): ck compile program: cbench-automotive-susan --speed

Run program: ck run program: cbench-automotive-susan

Start server for crowdsourcing: ck start web

View interactive articles: ck browser http://localhost:3344

http://cKnowledge.org

https://github.com/ctuning/ck/wiki

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 41

CK demo: workflow to collaboratively optimizing DNN

• “Deep” (multi-layered) neural networks that take advantage of

structure in digital signals (e.g. images).

• State-of-the-art for applications in automotive, robotics,

healthcare, entertainment (e.g. image classification).

• Commonly trained on workstations or clusters with GPGPUs.

• Increasingly deployed on mobile and embedded systems.

Difficult and time consuming to build and optimize

due to multiple programming models, multiple objectives

(performance, energy, accuracy, memory footprint)

and continuously evolving hardware

particularly with constrained resources (sensors, IoT)

Perfect use case for Collective Knowledge Framework!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 42

Deploying DNNs on resource-constrained platforms

• Can we deploy a DNN to achieve desired performance

(rate and accuracy of recognition) on a given platform?

• Can we identify or build such a platform under given

constraints such as those on power, memory, price?

• If all else fails, can we design (autotune) another DNN

(topology) by trading off performance, accuracy and costs?

NVIDIA Drive PX2 ~ 250 Watts ~ $15,000 (early

development boards)

~ $1,000 per unit?

? < 10 Watts < $100

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 43

Customizable CK workflow to collaborative co-design DNN

We collaborate with General Motors and ARM to develop open-source

CK-based tools to collaboratively evaluate and optimize various DNN engines

and models across diverse platforms and datasets

cKnowledge.org/ai

cKnowledge.org/repo

Download Android app to participate in collaborative evaluation

and optimization of DNN using your mobile device and CK web-service:
http://cknowledge.org/android-apps.html

CK portable workflow systems and package manager allows users to run DNN

experiments on Windows, Linux, MacOS, Android!

$ ck pull repo --url=http://github.com/dividiti/ck-caffe

$ ck install package:lib-caffe-bvlc-master-cpu-universal

$ ck install package:lib-caffe-bvlc-opencl-viennacl-universal --target_os=android21-arm64

$ ck run program:caffe-classification

$ firefox http://cKnowledge.org/repo

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 44

• Collective Knowledge approach helps fight SW/HW chaos

• CK is also changing the mentality of computer systems’ researchers:

• sharing artifacts as customizable and reusable components with JSON API

• sharing customizable and portable experimental workflows

• building a repository of representative benchmarks and data sets

• crowdsourcing experiments and sharing negative/unexpected results

• collaboratively improving reproducibility of empirical experiments

• using data mining (statistical analysis and machine learning) to predict

efficient software optimizations and hardware designs

• collaboratively improving prediction models and finding missing features

• formulating and solving important real-world problems

• CK brings closer together industry and academia (common research

methodology, reproducible experiments, validated techniques)

cKnowledge.org: from ad-hoc computer systems’ research to data science

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 45

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x
GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.1

Phoenix

MVS XLC

Open64

Jikes

Testarossa

OpenMP

MPI

HMPP

OpenCL

CUDA

gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

scheduling

algorithm-level

TBB

MKL

ATLASprogram-level

function-level

Codelet

loop-level
hardware

counters

IPA

polyhedral

transformations

LTO

threads

process pass reordering

run-time adaptation

per phase

reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

coresprocessors

threads

power consumption

execution time reliability

Current state of computer engineering

likwid

Classification,

predictive

modeling

Optimal

solutions

Systematization and unification

of collective knowledge

(big data)

“crowd”

The community

Task, idea

Result

Quick, non-reproducible hack?

Ad-hoc heuristic?

Quick publication?

Waste of expensive resources

and energy?

Collaboratively optimize shared

programs and data sets across

diverse hardware

Extrapolate shared knowledge to build fast, energy efficient, reliable and cheap

computer systems to boost innovation in science and technology!

Collective

Knowledge

open RDK

and repository

cKnowledge.org: enable open & reproducible computer systems’ research!

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 46

Help us improve artifact evaluation!

We need your feedback - remember that new AE procedures

may affect you at the future conferences

• AE steering committee: http://cTuning.org/ae/committee.html

• Mailing list: https://groups.google.com/forum/#!forum/collective-knowledge

Feel free to reuse and improve our Artifact Evaluation procedures

and Artifact Appendices:

http://cTuning.org/ae https://github.com/ctuning/ck-artifact-evaluation

Extra resources

• ACM Result and Artifact Review and Badging policy:

http://www.acm.org/publications/policies/artifact-review-badging

• Community driven artifact evaluation and paper reviewing:

http://dl.acm.org/citation.cfm?doid=2618137.2618142

Grigori Fursin “Enabling open and reproducible research at computer systems' conferences (cKnowledge.org)” 47

Questions, comments, collaborations?

Many new exciting opportunities for collaboration
Artifact sharing, customizable and portable workflows, experiment crowdsourcing,

collaborative deep learning optimization, public repositores of knowledge, adaptive systems

Contact: Grigori.Fursin@cTuning.org

Acknowledgments

