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1 Summary

The aim of this deliverable is to dig deeper into open technical and research challenges in terms
of personal data processing and sharing transparency, and compliance checking.

Towards this end, we pay particular attention to: (i) compliance checking over SPECIAL’s
policies in Chapter 1 ; (ii) how we can leverage existing distributed ledgers in order to cater for
the desired data processing and sharing requirements in Chapter 2; (iii) how we can leverage the
Big Data Europe engine for semantic data processing on large-scale RDF data in Chapter 3; and
(iv) the guarantees in term of non-repudiation that could be provided by existing fair exchange
protocols in Chapter 4.

This deliverable builds upon technical requirements from D1.7: Policy, transparency and
compliance guidelines V2, the SPECIAL policy language which is described in D2.1: Policy
Language V1, and the SPECIAL transparency and compliance framework presented in Deliver-
able D2.7: Transparency Framework V2.
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Chapter 1

Compliance Checking

In this chapter we illustrate a complete and tractable algorithm for compliance checking of
SPECIAL’s policies. The algorithm can be used indifferently for ex-ante as well as ex-post
compliance checking.1 The policy language PL introduced in D2.4 has been extended in or-
der to import external OWL2-EL vocabularies defining domain specific information such as
data/purpose/recipient categories. This is needed to support some of the features introduced in
the second version of SPECIAL’s vocabularies (cf. D2.5). We use a novel and specifically tai-
lored procedure which processes PL policies and OWL2-EL external vocabularies separately.
The chapter includes also a consistency checking algorithm for policies, useful for policy vali-
dation.

1 Introduction

Recall that in SPECIAL policies are encoded using a fragment of OWL2 2-DL and the main
policy-related reasoning tasks are reduced to subsumption and concept consistency checking.
Such tasks include - among others:

• permission checking: given an operation request, decide whether it is permitted;

• compliance checking: does a policy P1 fulfill all the restrictions requested by policy P2?
(Policy comparison);

• policy validation: e.g. is the policy contradictory? Does a policy update strengthen or
relax the previous policy?

Compliance checking is the predominant task in this project: the data usage policies of the
industrial partners must be compared both with a (partial) formalisation of the GDPR itself, and
with the consent to the usage of personal data granted by each of the data subjects whose data
are collected and processed by the company (that is called data controller in the GDPR). The
number of data subjects (and their policies) can be as large as the number of customers of a
major communication service provider. Moreover, in the absence of explicit consent, some data
cannot be stored, even temporarily; so some of the project’s use cases consist in checking storage

1The only difference is that in ex-ante checking the policy P0 fed to the algorithm represents a processing action
that the data controller is about to execute, while in ex-post checking P0 represents an action that has been executed
in the past.

H2020-ICT-2016-2017 : ICT-18-2016
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permissions against a stream of incoming data points, at the rate of hundreds of thousands
per minute. Then one of the crucial project tasks is the development of scalable reasoning
procedures for reasoning in the policy fragment of OWL2.

The policy languagePL introduced in D2.4 provides limited means to specify policy-related
categories of data, purposes, recipients and legal basis – essentially, PL allows only to struc-
ture a simple taxonomy of (possibly disjoint) concept names [15]. However, several application
contexts may require more expressiveness in order to associate, for instance, parental consent
to vulnerable users or social security purposes to union or member state authorizations. Conse-
quently, we extend the SPECIAL’s policy language by allowing to import external vocabularies
defined in OWL2-EL. Our choice fell on this OWL2 profile for the following reasons:

• differently from other profiles, it provides qualified existential restrictions that are essen-
tial to specify properties like the ones described above;

• it is a tractable fragment of OWL2-DL that encompasses high-performance reasoners such
as ELK [22].

However, we could not take any advantage from specifically optimized reasoners if we adopted
a naive methodology that simply merges in a monolithic knowledge base PL structural spec-
ifications with external vocabularies. Conversely, we present a novel approach that enhances
import-by-query (IBQ) techniques [20] in order to combine a fast structural subsumption algo-
rithm for PL with the state-of-art OWL2-EL reasoner ELK.

In this chapter we illustrate the resulting OWL2-DL fragment and introduce the IBQ-based
algorithm for scalable compliance checking. We introduce also a consistency checking algo-
rithm for identifying contradictions in the policies (which is useful for validation purposes).

In the following we adopt the logical notation for description logics (DL for short), because
it is way more compact than the alternative syntax for OWL, like XML syntax, Manchester
syntax, et cetera. The following table shows the correspondence between the notation used in
the other deliverables and the symbols used here:

ObjectUnionOf(C1 . . . Cn) C1 t . . . t Cn

ObjectIntersectionOf(C1 . . . Cn) C1 u . . . u Cn

ObjectSomeValueFrom(AttrC) ∃Attr .C
DatatypeSomeValueFrom(Attr

DatatypeRestriction(xsd : integer [x, y](Attr)
xsd : mininclusive x
xsd : maxinclusive y))

SubClassOf(C1 C2) C1 v C2

DisjointClasses(C1 C2) disj(C1, C2)
FunctionalObjectProperty(Attr) func(Attr)
ObjectPropertyRange(Attr C) range(Attr , C)
owl : Nothing ⊥

H2020-ICT-2016-2017 : ICT-18-2016
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2 The general structure of policies

We extend the logic PL presented in D2.4 so that the specification of a policy can make
use of SPECIAL’s vocabularies defined in the OWL2-EL profile (see www.w3.org/TR/owl2-
profiles for a detailed description). First, we consider a dedicated signature ΣS of data and
object properties used to specify the structural attributes of a policy such as spl :hasData and
spl :hasProcessing defined in the Appendix of D2.1. The resulting logic PL | OWL2-EL is
captured by the following definition.

Definition 1 (Policy logic PL |OWL2-EL ) A PL|OWL2-EL knowledge baseK = Km∪Ke

consists of a main knowledge base Km and a external one Ke. The main ontology Km contains
axioms of the following kinds:

• func(R) where R is a object or datatype property in ΣS;

• range(S,A) where S is a object property in ΣS and A a concept name.

Ke is a OWL2-EL knowledge base not containing nominals (i.e. the class expressions ObjectOneOf
and ObjectHasValue) and object/datatype properties occurring in ΣS .

A simple PL concept has the form:

A1 u . . . uAn u ∃R1.C1 u . . . u ∃Rm.Cm u C1 u . . . u Ct (1.1)

where eachAi is either a concept name or⊥, each ∃Rj .Cj is an existential restriction such that
Rj is a object property and Cj is a simple PL concept, and each Ck is a constraint [l, u](fk).
All Rj and fk are taken from ΣS . A (full) PL concept is a union D1 t . . . t Dn of simple
PL concepts. PL’s subsumption queries are expressions C v D where C,D are (full) PL
concepts.

We adopt IBQ techniques using the external knowledge base Ke as an oracle. In a paper that
is currently under revision, this approach has been proved to be correct under the conditions
in Definition 1.1 that (i) Ke does not contain nominals and object/data properties occurring in
Km and (ii) PL concepts do not contain roles occurring in Ke. IBQ reasoning provides two
advantages: first, it allows to prove that the worst case complexity of the compliance check-
ing presented in the next section is tractable (note that, in general, extending OWL2-EL with
functional assertions func(R) leads to EXPTIME reasoning tasks). Secondly, adopting standard
techniques that process K as a whole would require to use of full OWL2 reasoners, conversely
IBQ reasoning allows to combine reasoners that are specifically optimized for PL and OWL2-
EL.

3 The compliance checking algorithm and its complexity

Recall that checking whether a data controller’s policy P0 complies with a data subject policy
(i.e. consent) P1 amounts to checking whether the inclusion

P0 v P1

is entailed by the knowledge base for the policy language and the external vocabulary, that will
be denoted with K. The SPECIAL’s compliance checking is articulated as follows:

H2020-ICT-2016-2017 : ICT-18-2016
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Phase 0 Classification of the external knowledge base Ke;

Phase 1 Normalisation of the interval constraints [`, u](f) in P0;

Phase 2 Normalisation of the resulting policy P ′0;

Phase 3 Subsumption checking of P ′′0 v P1, where P ′′0 is the result of step 2.

Phase 0

Phase 0 allows to use Ke as an oracle in Phase 3 and 4. More specifically, we exploit the
capability of the state-of-art OWL2-EL reasoner ELK to “compile” Ke by producing in a single
reasoning task (called classification) all the direct inclusions A v B between concept names
that are entailed by Ke. To ensure the correctness of the SPECIAL’s compliance checking, we
assume that Ke in extended by including, for each subformula A1 u A2 in P0, an equivalence
axiom A1,2 ≡ A1 u A2, where A1,2 a fresh concept name not previously occurring in Ke. This
allows to use A1,2 as “placeholder” for A1 uA2 in the classification process.

Thereafter, by A vKe B we mean that A v B is logical consequence of Ke, i.e. the
resulting classification contains a sequence A v A1, . . . , Am v B. Analogously, we write
disjKe

(A1, A2) to mean that Ke entails A1,2 v⊥ where A1,2 is the placeholder of A1 uA2.
Note that Phase 0 needs to be done only when the data controller’s policy P0 are deployed

or updated, and when Ke is modified (e.g. in order to add new terms to the vocabularies). Being
OWL2-EL classification tractable, Phase 0 is in PTIME w.r.t. |Ke| + |P0|2. In practice, classi-
fication is performed in a few seconds even for large knowledge bases (e.g. SNOMED CT) of
∼105 axioms.

Phase 1

Phase 1 is the same as in D2.1, we report it here for the sake of completeness. Informally,
it enforces for all expressions [`0, u0](f) occurring in P0 and all [`1, u1](f) occurring in P1
(with the same f ) that either the two intervals [`0, u0] and [`1, u1] are disjoint, or the former is
completely included in the latter. This is achieved as follows. For all expressions [`0, u0](f)
occurring in P0:

1. collect the expressions [`, u](f) (with the same f ) occurring in P1;

2. select from those expressions the integers ` and u that belong to the interval [`0, u0];

3. split [`0, u0](f) using the selected integers;

4. move the new instances of t introduced in step 3 to the top level.

The worst case complexity of Phase 1 isO(|P0|×|P1|)2 because each simple policy contains
at most one expression [`, u](f), therefore the last step (where t is moved to the top level)
does not cause any combinatorial explosion. More generally, Phase 1 has the same asymptotic
complexity for every constant bound on the number of expression [`, u](f) that may occur in a
simple policy.

In practice, however, we noticed that the number of different values ` and u occurring in
policies is small and fixed, because retention limits derive from the applicable legislation, i.e.

2The expression |X| denotes the size of X .
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they are standard durations. Since duration values are known a priori, it is not necessary to
gather them by scanning P1, so the complexity of Phase 1 becomes simply |P0|. Moreover, since
Phase 1 does not depend on consent policies, it can be performed once when P0 is deployed (and
each time it is modified, but only on the new or updated parts).

Phase 2

This phase has two purposes: (i) compiling the knowledge contained in K (i.e. SPECIAL’s
ontologies) into the policy P0, and (ii) detecting inconsistencies (e.g. attributes that are simulta-
neously required to belong to two disjoint classes).

Phase 2 applies the rewrite rules in Table 1.1 repeatedly until no more rules are applicable.
A rule X ; Y means that the expression X in P0 is replaced with Y . Rules can be applied in
any order, the final result is the same.

1) ⊥ u D ; ⊥
2) ∃R.⊥ ; ⊥
3) [l, u](f) ; ⊥ if l > u

4) (∃R.D) u (∃R.D′) u D′′ ; ∃R.(D u D′) u D′′ if func(R) ∈ Km

5) [l1, u1](f) u [l2, u2](f) u D ;

[max(l1, l2), min(u1, u2)](f) u D if func(f) ∈ Km

6) ∃R.D u D′ ; ∃R.(D u A) u D′ if range(R, A) ∈ Km and A not a conjunct of D

7) A1 u A2 u D ; ⊥ if disjKe
(A1, A2)

Table 1.1: Normalisation rules w.r.t. K. Intersections are treated as sets (the ordering of con-
juncts and their repetitions are irrelevant).

The first three rules are general (in)consistency checks, rules 4–6 compile in P0 functional
and range axioms ofKm. Rule 7 searches inconsistent conjuncts in P0 by usingKe as an oracle.
The worst case complexity is O(|P0|2× |K|). This phase depends only on P0 and K, so it needs
to be executed only when P0 is deployed or updated, and when K is modified.

We conclude this section by pointing out that the normalisation rules in Table 1.1 can be used
as a policy validation method, to check that a PL concept (policy) is satisfiable, as specified by
the next result:

Proposition 1 Let K be a PL knowledge base. A simple PL concept C is unsatisfiable w.r.t. K
iff C is rewritten to ⊥.

Phase 3

In Phase 3 we are given two policies P0 = P0,1 t . . . t P0,n and P1 = P1,1 t . . . t P1,m, and
we have to check whether K entails P0 v P1.

At this stage, P0 has already been normalised by Phase 1 and Phase 2. This is necessary
for the algorithm STS below to be correct and complete (i.e. to return “true” if and only if the
entailment is valid).

The main algorithm is Algorithm 1. It checks whether each P0,i in P0 is subsumed by some
P1,j in P1, using algorithm STS, that applies only to simple PL concepts. The STS algorithm
applies a structural subsumption making use of the external knowledge base Ke as an oracle.

We can prove the following result:

H2020-ICT-2016-2017 : ICT-18-2016
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Algorithm 1: main(K, P0 v P1)
Input: K and a PL inclusion P0 v P1 where P0 is normalised
Output: true if K |= P0 v P1, false otherwise

Note: By C = C ′ u C ′′ we mean that either C = C ′ or C ′ is a conjunct of C (possibly
not the 1st)

begin1
foreach P0,i in P0 do2

subsumed := false3
j := 14
repeat5

if STS(K, P0,i v P1,j) then subsumed :=true6
j := j+17

until subsumed = true OR j > m8
if subsumed = false then return false9

end10
return true11

end12

Algorithm 2: STS(K, C v D)
Input: K and an elementary C v D where C is normalised
Output: true if K |= C v D, false otherwise

Note: By C = C ′ u C ′′ we mean that either C = C ′ or C ′ is a conjunct of C (possibly
not the 1st)

begin1
if C = ⊥ then return true2
if D = A, C = A′ u C ′ and A′ vKe

A then return true3
if D = [l, u](f) and C = [l′, u′](f) u C ′ and l ≤ l′ and u′ ≤ u then return true4
if D = ∃R.D′, C = (∃R.C ′) u C ′′ and STS(K, C ′ v D′) then return true5
if D = D′ uD′′, STS(K, C v D′), and STS(K, C v D′′) then return true6
else return false7

end8

Proposition 2 Algorithm 1 is correct and complete, that is, for all PL subsumptions P0 v P1,
main(K, P0 v P1) = true iff P0 v P1 is implied by K.

The worst case complexity of Algorithm 1 is O(|K| · |P0| · |P1|). Both K and the policies P0
and P1 have limited size, while there can be a very large number of consent policies P1. Since
there are no cross-dependencies between compliance checks with respect to different consent
policies, the time required for global compliance checking (i.e. comparing the controller’s policy
P0 with all the data subjects’ consent) grows linearly with the size of the consent repository.

4 Summary of results

We introduced an algorithm for compliance checking and policy consistency checking which
exploits novel IBQ techniques to process PL and external OWL2-EL vocabularies separately.
The first three phases pre-process the data controller’s policy P0 and the external vocabulary;
they need to be executed only when P0 or the external vocabularies are deployed or updated.

H2020-ICT-2016-2017 : ICT-18-2016
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Phase 2 detects also whether the simple policies in P0 contain errors that make them inconsistent
(such as attributes that are required to belong to two disjoint classes, for example, and wrong
term choices, like data categories assigned to the hasPurpose attribute).

All the phases are tractable. Phase 0, which is a OWL2-EL classification, is in PTIME with
respect to |K| + |P0|2 and can be performed by well engineered OWL2-EL-tailored resoners
such as ELK. Phase 1 takes time O(|P0| × |P1|) (where P1 is a consent policy). Phase 2 takes
timeO(|P0|2×|K|) (whereK contains the ontologies reported in the appendix of D2.1). Phase 3
(the actual policy comparison) takes time O(|K| · |P0| · |P1|).

The ontology K and P0 have limited size, as well as each individual consent policy P1.
However, the number of consent policies may be very large. The cost of compliance checking
over all consent policies grows linearly with the consent repository size.

The algorithm works not only for the specific policy language and vocabularies reported
in D2.1, but also for all the policies and ontologies with the same structure, that are formally
defined in Definition 1.

H2020-ICT-2016-2017 : ICT-18-2016
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Chapter 2

Distributed and Decentralised
Frameworks

Before discussing existing distributed and decentralised platforms and frameworks and how
they could potentially be leverage in SPECIAL, we first distinguish between centralised, decen-
tralised and distributed systems. In a centralised system, clients connect to a single machine or
a collection of independent machines that function as a single entity, that acts as a central con-
troller for data storage and processing. In contrast in a decentralised system, there is no single
centralised controller, but instead machines are able to act autonomously. While, a distributed
system is composed of co-operating machines that serve a common function.

In the context of the SPECIAL project, information relating to data processing and sharing
events could be stored in one or more distributed chains that are accessible via Application Pro-
gramming Interfaces (APIs). These chains may include a hash of the data and a pointer to the
actual data, which will be stored off chain in an encrypted format. Also, existing blockchain
platforms and frameworks could potentially be used to perform compliance checking in a trans-
parent manner. Alternatively, decentralised platforms such as Solid, which relies heavily on
World Wide Web Consortium (W3C) standards, could be used to provide individuals with more
control over their personal data and how it is used. In this chapter, we provide background
information on such distributed and decentralised platforms and frameworks and discuss how
they can be used in the context of SPECIAL.

1 Distributed ledger technology

We start by providing some background information on the blockchain platforms in general,
before digging deeper into two of the most popular blockchain community efforts, namely
Ethereum which is co-ordinated by a Swiss nonprofit organisation called the Ethereum Founda-
tion1 and HyperLedger which is hosted by The Linux Foundation2.

1.1 Background information on blockchain

In this section, we provide background information on the bitcoin blockchain platform, com-
monly used consensus mechanisms, and introduce the broader blockchain landscape in terms

1https://www.ethereum.org/
2https://www.hyperledger.org/
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of different types of blockchain platforms. Finally, we identify some challenges with respect to
GDPR compliance and blockchain applications, as highlighted in a recent report produced by
the European Union Blockchain Observatory and Forum.

1.1.1 The Bitcoin blockchain

Bitcoin [28], the first decentralised digital currency, is a peer-to-peer (P2P) system which is able
to function without the need for a centralised banking authority. Essentially all transactions are
stored in a public distributed ledger called a blockchain.

Bitcoin wallets are software program that are used to store virtual currency known as Bit-
coins. In essence, Bitcoins are private keys that are recorded in the wallet software. When
Party A wishes to send Bitcoins to Party B they use their wallet software to generate a transac-
tion, which indicates the payee, the payer and the amount to be transferred. The transaction is
subsequently broadcast to the P2P network.

The transaction is picked up, along with other transactions, by Miners who attempt to con-
firm the transactions by generating a new block to be added to the blockchain ledger. Essentially
miners compete to find the solution to a cryptographic puzzle (i.e. a cryptographic hash with a
specified number of proceeding zeros), which is difficult to solve yet easy to verify. Proof-of-
work (PoW) refers to the solution to the cryptographic puzzle produced by the miners. When
the miners solve the cryptographic puzzle they broadcast their PoW to the network. The nodes
participating in a P2P system verify the PoW and the new block is subsequently added to the
blockchain ledger. The miner that solves the cryptographic puzzle first is rewarded for their
efforts via freshly minted Bitcoins and transactions fees associated with any transaction that is
part of the newly mined block. Generally speaking a new block is added every 10 minutes, this
can be controlled by changing the number of proceedings zeros the hash must exhibit).

Although the Bitcoin blockchain functions as a cryptocurrency system, the technology itself
is designed to support features such as transparency, pseudonymity, immutability and auditabil-
ity, and cryptographic guarantees in terms of authenticity, integrity and non-repudiation. As
such, blockchain technology could be used for an array of different applications that require
distributed ownership of data.

1.1.2 Alternative blockchain consensus mechanisms

In the following, we provide a summary of the three primary consensus mechanism algorithms
that are used in well-know blockchain platforms.

Proof-of-work (PoW) is the original consensus algorithm used in the bitcoin blockchain to
produce new blocks. Essentially, minders compete against each other to solve a crypto-
graphic puzzle that is difficult to solve and easy to prove. Such puzzles are often known
as CPU cost functions, computational puzzles or CPU pricing functions.

Proof of stake (PoS) is an alternative to PoW, that is used to achieve consensus between the
nodes participating in a blockchain. In contrast to PoW, the PoS algorithm chooses the
creator of the next block in a deterministic manner, based on their wealth, which is com-
monly referred to as their stake. Unlike PoW, there are no rewards for creating new blocks.
PoS miners (commonly known as forgers) are however able to collect the transaction fees.
A major benefit of PoS is the reduction in energy needed to create a new block.
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Proof of Elapsed Time (PoET) uses a trusted execution environment to ensure that blocks are
produced randomly, without the high demand for energy. Essentially random numbers
are used to determine how long nodes have to wait before they are permitted to generate
a new block. The trusted execution environment is in turn responsible for generating a
proof that the waiting time has elapsed, which can easily be checked by the other nodes.

Byzantine-fault tolerant (BFT) consensus strives to achieve consensus, considering that some
peers in the distributed network of devices may be faulty, while others could potentially
behave maliciously. Here message passing is used in order for honest nodes to form a
consensus as to the state of the system through a majority.

Additional, details on the above consensus protocols can be found in [16].

1.1.3 Blockchain platforms

According to a recent blockchain landscape survey conducted by Baliga [8], existing blockchain
platforms can broadly be grouped according to five core categories. Here we provide a high
level overview of said categories, including details of one or two popular platforms in the space.
Another useful source of information is a recent blog by Rohas Nagpal, which provides an
overview of 17 blockchain platforms3.

Meta-data platforms use the existing Bitcoin blockchain to transfer information in the form
of meta-data which is encoded using the OP_RETURN instruction. ColoredCoins4 is just
one example of a meta-data platform.

Financial applications are specifically designed for applications in the financial domain, e.g.,
payments, equity, foreign exchange, to name but a few. Well known financial blockchain
platforms include Hyperledger5 and Ripple6.

Smart contract platforms provide functionality that enables code to be executed on the blockchain,
in the form of Turing complete languages that can be used to express complex logic.
Ethereum7 and Hyperledger8 are probably the most well known platforms in this space.

Consortium/Enterprise platforms are designed for corporate collaboration and usually in-
volve a distributed consensus protocol instead of computationally expensive PoW algo-
rithms. Openchain9 which targets Enterprises offers a robust, secure and scalable plat-
form. An alternative platform is provided by Hyperledger.

Sidechain platforms are blockchains in their own right that are connected to the Bitcoin blockchain
via a two-way peg or as an anchored chain. Such platforms can send Bitcoins back and
forth between the sidechain and the main blockchain. Additionally, using sidechains de-
velopers can attach new features to a separate chain. Both Openchain and Hyperledger
have offerings in this space.

3https://medium.com/blockchain-blog/17-blockchain-platforms-a-brief-introduction-e07273185a0b
4http://coloredcoins.org/
5https://www.hyperledger.org/
6https://ripple.com/
7https://www.ethereum.org/
8https://www.hyperledger.org/
9https://www.openchain.org/
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1.1.4 Blockchain and the GDPR

A recent article [25] produced by the European Union Blockchain Observatory and Forum,
examined some of the primary tensions between the GDPR and blockchain. From the offset
the article makes it clear that the focus is on the compliance of use cases and applications that
leverage blockchain technology, as opposed to the compliance of blockchain technology as a
whole. In the following we summarize the key take home messages from the report:

• Considering the anonymity guarantees offered by blockchain platforms the identification
of data controllers and processors could be difficult or perhaps even impossible.

• Although anonymous data is outside of the scope of the GDPR, the report highlights
that there is intense debate with respect to the effectiveness of existing anonymisation
techniques.

• The report recommends that personal data is not stored on the blockchain in clear text,
irrespective of whether it is a permissionless or permissioned blockchain, however there
are questions with respect to the effectiveness of existing encryption mechanisms and
especially the futureproofing of existing encryption mechanisms. Also, it is not clear if
hashed personal data should be considered as personal data or not.

• Given the immutability guarantees provided by such platforms, it remains to be seen how
the rectification and erasure rights of the data subject can be supported. However, the
article does point to a report produced by the Commission nationale de l’informatique
et des libertés (CNIL)10, which states that cryptographic delete could potentially be a
solution.

• Smart contracts and chaincode could also prove to be troublesome in the case of automatic
decision making, as the GDPR affords data subjects the right to be informed about such
processing and to request human intervention and/or challenge the decision.

• Where the actual processing takes place could potentially also pose problems, as the
GDPR states that data can only be transferred to third party countries if their data pro-
tection is at least equivalent to that of the GDPR, whereas public blockchains are not
limited by territorial scope.

The SPECIAL project will continue to monitor discussions with respect to the aforemen-
tioned issues, especially those coming from Data Protection Authorities (DPAs), the European
Data Protection Board (EDPB) and those arising from related court rulings.

1.2 Distributed ledger platforms and frameworks

In this section, we provide additional information on Ethereum and HyperLedger, which are at
the time of writing two of the most popular distributed ledger platforms.

10CNIL Blockchain report, https://www.cnil.fr/sites/default/files/atoms/files/la_blockchain.pdf
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1.2.1 Ethereum distributed ledger platform

Ethereum is an open source blockchain platform designed to support the development of de-
centralised applications in an adaptable and flexible manner. The currency used in Ethereum is
known as Ether. The first version of Ethereum, known as the Frontier release, was a beta release
designed to enable developers to experiment with decentralised applications. The second major
version of the platform, known as the Homestead release, was the first production release.

In essence, Ethereum is a platform that can be used to develop different types of decen-
tralised blockchain applications. Every node in the networks runs an Ethereum Virtual Machine
(EVM). Like in Bitcoin, miners are responsible for generating new blocks and adding them
to the blockchain based on a (PoW) protocol. However, while the Bitcoin blockchain simply
contains transactions, the Ethereum blockchain contains accounts i.e. the Ethereum blockchain
tracks the state and the exchange of information between accounts.

Ethereum distinguishes between two types of accounts: Externally Owned Accounts (EOAs)
controlled via private keys, and Contract Accounts (CAs) controlled by contract code which is
activated by an EOA i.e. the contract executes when a transaction is sent to the contract account.
The contract code, which is usually referred to as a smart contract is written in a high level
language known as Solidity which is known to be Turing-complete.

1.2.2 HyperLedger distributed ledger frameworks

At the time of writing HyperLedger incubates and promotes several different frameworks and
tools. A highlevel overview of the platforms currently incubated by HyperLedger is provided
below:

Hyperledger Burrow is a permissioned, smart contract, PoS client that can be used to con-
nect to a variety of blockchain networks. Key features include: permissioned (private)
networks, smart contracts, security and data privacy.

Hyperledger Fabric is a foundational platform that can be used to develop modular applica-
tions via its pluggable architecture. Key features include: identity management, privacy
and confidentiality, chaincode functionality (i.e. smart contracts), modular design, and
efficient processing.

Hyperledger Sawtooth is a modular platform for building, deploying, and running distributed
ledgers. Key features include: permissioned (private) networks, parallel transaction exe-
cution, event broadcasting, support for Ethereum smart contracts, and pluggable consen-
sus algorithms (PoET, PoET simulator and a random-leader algorithm).

Hyperledger Iroha is a business blockchain framework designed to be simple and easy in-
tegrate into corporate environments. Key features include: support for complex assets
(such as currencies or indivisible rights, serial numbers, patents, etc.), user and permis-
sion management, and support of business rules.

Hyperledger Indy is a distributed ledger that was purpose-built for managing decentralised
identity. Key features include: support of independent digital identities, and adherence to
best practices in terms of key management and cybersecurity.

Existing tools, which are designed to work across different Hyperledger frameworks, can be
summarised as follows:
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Hyperledger Cello focuses on reducing the effort required for managing blockchains. It is
designed to work on top of several infrastructures, such as baremetals, virtual clouds
(e.g., virtual machines, vsphere Clouds), and container clusters (e.g., Docker, Swarm,
Kubernetes).

Hyperledger Composer makes it easier to build blockchain business networks and to develop
smart contracts, by providing business-centric abstractions as well as sample apps that
cater for modelling and integration.

Hyperledger Explorer is an open source browser which can be used to view and manage
blockchain activity. Additionally it is possible to get access to information via the pro-
vided REST APIs.

1.2.3 Distributed ledger platforms and SPECIAL

In the context of the SPECIAL project, information relating to data processing and sharing
events could be stored in one or more distributed chains that are accessible via Application
Programming Interfaces (APIs). These chains may include a hash of the data and a pointer to
the actual data, which will be stored off chain in an encrypted format. Depending on the use
case, such information could be stored in a public permissionless blockchain such as Bitcoin
or Ethereum or alternatively distributed ledger platforms such as Hyperledger could be used
to develop a private permissioned blockchain dedicated to providing transparency with respect
to personal data processing. However, as indicated by the European Union Blockchain Ob-
servatory and Forum, personal data should not stored on the blockchain in clear text and even
when data is encrypted or hashed data controllers need to be mindful of encryption security
vulnerabilities.

Also, existing blockchain platforms and frameworks could potentially be used to perform
automatic compliance checking in a transparent manner. For instance, the financial services
sector have setup an Interbank Information Network (IIN)11, which uses JPMorgan’s private
permissioned blockchain ’Quorum’ (built on top of the Ethereum blockchain platform), to sup-
port global payments and compliance checking.

In the context of the SPECIAL project Thomson Reuters are currently assessing the suitabil-
ity of Ethereum smart contracts, to support automated usage policy compliance checking based
on the SPECIAL compliance checking algorithm. Preliminary results indicate that the public
Ethereum platform struggles with complex policies, resulting in smart contract timeout issues.
Going forward the consortium will investigate potential optimisations, including assessing the
suitability of alternative platforms built on top of both the Ethereum and the Hyperledger Fabric
platforms.

Additionally, other platforms offered by Hyperledger could potentially also be of benefit in
the context of the SPECIAL project. More specifically, Hyperledger Iroha stands out because of
its support for permission management (i.e. confidentiality) and business rules. While, Hyper-
ledger Indy would be interesting from an identity management perspective as data subjects could
potentially use such an infrastructure to generate self sovereign identities [1] that they have full
control over and only they can link across company boundaries. From an interoperability per-
spective Hyperledger Burrow is a clear favorite as it is specifically designed for this purpose.

11https://www.euromoney.com/article/b1bfkrj10f1vts/banks-rush-to-join-jpmorgans-blockchain-based-interbank-
information-network
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Given that companies could potentially use different ledger platforms to record data processing
and sharing events, Hyperledger Burrow could be used to manage the interfaces between said
platforms.

2 Decentralised application platforms

In 2011, the World Economic Forum produced a report entitled Personal Data: The Emergence
of a New Asset Class12, which described the results of a multi-stakeholder project to envisage
what a personal data ecosystem of the future might look like. Among the key take homes was the
need to take steps to innovate around user-centricity and trust and to focus on interoperability
and open standards. In this section we introduce two alternative initiatives in this in the form of
the digi.me13 and SOLID14 platforms and discuss the intersection between said platforms and
the work carried out in the context of the SPECIAL project.

2.1 The Digi.me Platform

The overall mission of Digi.me is a decentralised world where data is controlled by people for
their own benefit. They do so by providing tools that enable individuals to retrieve and integrate
personal data from third parties, such as Facebook, Instagram, Twitter etc. The personal data is
stored in an encrypted format on the storage platform of the users choice, whereby the user can
control who has access to their personal data. Not only does Digi.me, allow you to search and
analyse your personal data but also provides a software development kit (SDK) and Applications
Programming Interfaces (APIs) that can be used by developers to create mobile applications that
make innovative use of personal data, with the consent of the users.

2.1.1 Digi.me and SPECIAL

Digi.me provides data subjects with the ability to retrieve and integrate personal data from a
variety of sources, while at the same time offering companies the ability to develop innovative
mobile apps over this data. Considering these apps process personal data, SPECIAL could
potentially be used to increase trust in the apps, via a SPECIAL transparency and compliance
mobile app. The SPECIAL app would act as a monitor of Digi.me applications, ensuring that
all data processing and sharing performed by the app complies with the permissions specified
by the end user.

2.2 The Solid Platform

An alternative decentralised platform known as Solid15 is currently under development at Mas-
sachusetts Institute of Technology (MIT). Solid (derived from "social linked data") is a modular
and extensible platform for building decentralised social applications based on Linked Data
principles. Key features include: reliance on W3C standards and protocols, user and permission
management, support for both Linked Data resources (RDF in the form of JSON-LD, Turtle,
HTML+RDFa, etc..) and non Linked Data resources.

12http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf
13https://digi.me/
14https://solid.mit.edu/
15https://solid.mit.edu/
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Identity & Profiles Web Identity and Discovery (WebID)16, which is supported by a W3C
community group, is a mechanism used to uniquely identify and authenticate a person,
company, organisation or other entity, by means of a URI. In solid, WebIDs are used to
uniquely identify actors. While, WebID profile documents are used to specify security
credentials and preferences.

Authentication & Access Control WebID-TLS17 describes a protocol that can be used to au-
thenticate a user without the need to have it signed by a trusted Certificate Authority. We-
bAccessControl (WAC) is an RDF vocabulary and an access control framework, which
demonstrates how together WebID and access control policies specified using the WAC
vocabulary, can be used to enforce distributed access control.

Consent Representation Solid supports two kinds of resources: Linked Data resources (RDF
in the form of JSON-LD, Turtle, HTML+RDFa, etc) and everything else (binary data and
non-linked-data structured text). Resources can be grouped using Linked Data Platform18

containers.

Protocols Currently supported protocols include simple REST APIs, that support Create, Read,
Update, and Delete (CRUD) operations, and WebSockets APIs that support Publish, and
Subscribe notifications.

2.2.1 SOLID and SPECIAL

The SOLID platform by design affords individuals more control over how their personal data is
used. It does so by changing the paradigm such that data subjects maintain their personal data
in a personal data store of their choice and applications are designed with work with distributed
personal data stores. Limitations of the existing architecture relate to performance and control.
More specifically in order for such an architecture to work in practice, there is a need for caching
of data either by the client (the application), the server (each of the personal data stores) or both.
The need for caching also brings with it the need to move beyond simple access control towards
usage control where data subjects can stipulate how their data is used. The SPECIAL team is
looking into investigating if the existing usage control policies, transparency and compliance
checking can be embedded into the fabric of the SOLID architecture.

3 Summary of results and future outlook

The SPECIAL transparency and compliance framework needs to be realised in the form of a
scalable architecture, which is capable of providing transparency beyond company boundaries.
In this context, it would be possible to leverage distributed ledger technology and decentralised
application platforms. However, each have their own strengths and weaknesses.

The distributed ledger technology offered by existing blockchain providers provide certain
guarantees with respect to immutability, integrity, non-repudiation, interoperability and trace-
ability. In terms of the development of decentralised applications based on blockchain technol-
ogy, both Ethereum Homestead and Hyperledger Fabric are production ready, however Hyper-
ledger seems to offer more in terms of fitting with existing Enterprise applications.

16https://www.w3.org/2005/Incubator/webid/spec/identity/
17https://www.w3.org/2005/Incubator/webid/spec/tls/
18https://www.w3.org/TR/ldp/
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When it comes to the development of decentralised applications, Solid is designed to work
with Linked Data and makes very good use of existing web standards in that space, making it
particularly attractive for interoperability.

Ongoing work by the SPECIAL team is looking into how we combine several of the afore-
mentioned technologies so that we can benefit from each of their strengths. The goal of the work
is to identify the strengths and weaknesses of the existing platforms, to discuss how the various
technologies can be combined and finally to assess what guarantees these combinations offer in
terms of usage control transparency and compliance requirements.

H2020-ICT-2016-2017 : ICT-18-2016
Project No. 318097



Chapter 3

Leveraging the Big Data Europe
Infrastructure

In deliverables D1.7 Policy, transparency and compliance guidelines V2, D1.8 Technical Re-
quirements V2, and D2.7 Transparency Framework V2 we motivated the need for a scalable
Big Data infrastructure to support transparency with respect to data processing and compliance
with respect to usage control policies. In particular, given the volume of events and policies
that will need to be handled, the scalability of event data processing is a major consideration.
In the following, we discuss how existing Big Data processing techniques can be used for con-
sent management, transparency and compliance. In particular, we build on top of the Big Data
Europe (BDE) platform [5], which provides the foundational basis for large-scale integration
and processing of data that is necessary to deliver such services. First we provide background
information on the SPECIAL usage policies, event log and supporting vocabularies. Following
on from this we describe two alternative architectures developed int he context of the SPECIAL
project.

1 RDF Vocabularies for Usage Policies and Events

The vocabularies described in this section are based on the SPECIAL usage policy language1

and log vocabulary2, which were derived from in-depth legal analysis of use cases that require
the processing and sharing of personal data for improved information and communication tech-
nology and financial services. SPECIAL usage policies can be used to denote the following
information at different levels of granularity:

• Data describes the personal data collected from the data subject.

• Processing describes the operations that are performed on the personal data.

• Purpose represents the objective of such processing.

• Storage specifies where data are stored and for how long.

• Recipients specifies with whom the data is shared.
1https://www.specialprivacy.eu/images/documents/SPECIAL_D2.1_M12_V1.0.pdf
2https://aic.ai.wu.ac.at/qadlod/policyLog/
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In this paper we use the standard namespace prefixes for both rdf and rdfs, and adopt the
SPECIAL vocabulary prefixes represented in Listing 3.1.

Listing 3.1: SPECIAL Namespace Prefixes
PREFIX s p l : < h t t p : / / www. s p e c i a l p r i v a c y . eu / l a n g s / usage−p o l i c y #>
PREFIX s p l o g : < h t t p : / / www. s p e c i a l p r i v a c y . eu / l a n g s / s p l o g #>
PREFIX svd : < h t t p : / / www. s p e c i a l p r i v a c y . eu / vocabs / d u r a t i o n #>
PREFIX s v l : < h t t p : / / www. s p e c i a l p r i v a c y . eu / vocabs / l o c a t i o n s # >.

1.1 Usage policies.

Using the SPECIAL usage policy language it is possible to specify basic usage policies as OWL
classes of objects, as denoted in Listing 3.2 (represented using the OWL functional syntax for
conciseness). Whereby the permission to perform SomeProcessing of SomeDataCategory for
SomePurpose has been given to SomeRecipient in compliance with SomeStorage restrictions.

Listing 3.2: Structure of a Usage Control Policy
O b j e c t I n t e r s e c t i o n O f (

ObjectSomeValuesFrom ( s p l : ha sDa ta (*@\ t e x t i t { SomeDataCategory }@* ) )
ObjectSomeValuesFrom ( s p l : h a s P r o c e s s i n g (*@\ t e x t i t { SomeProcess ing }@* ) )
ObjectSomeValuesFrom ( s p l : h a s P u r p o s e (*@\ t e x t i t { SomePurpose }@* ) )
ObjectSomeValuesFrom ( s p l : h a s S t o r a g e (*@\ t e x t i t { SomeStorage }@* ) )
ObjectSomeValuesFrom ( s p l : h a s R e c i p i e n t (*@\ t e x t i t { SomeRec ip i en t }@* ) ) )

1.2 Data processing and sharing events.

The SPECIAL policy log vocabulary is used to represent data processing and sharing events.
The event log extract represented in Listing 3.3 (represented using turtle), relates to a new pro-
cessing event corresponding to a data subject identified as befit:Sue on the 03.01.2018 at
13:20 (i.e., validity time). The event was recorded few seconds later (i.e., transaction time).
The actual data captured can be traced via the splog:eventContent property, which is de-
tailed in Listing 3.4, and usually stored in a separate knowledge base. While a hash of the
content is stored in the event log.

Listing 3.3: A new event for Sue’s BeFit device
b e f i t : e n t r y 3 9 1 8 a s p l o g : P r o c e s s i n g E v e n t ;
s p l o g : d a t a S u b j e c t b e f i t : Sue ;
d c t : d e s c r i p t i o n " S t o r e l o c a t i o n i n our d a t a b a s e i n Europe "@en ;
s p l o g : t r a n s a c t i o n T i m e "2018−01−10T13 : 2 0 : 5 0 Z"^^ xsd : dateTimeStamp ;
s p l o g : v a l i d i t y T i m e "2018−01−10T13 : 2 0 : 0 0 Z"^^ xsd : dateTimeStamp ;
s p l o g : e v e n t C o n t e n t b e f i t : c o n t e n t 3 9 1 8 ;
s p l o g : i n m u t a b l e R e c o r d b e f i t : iRec3918 .

Listing 3.4: The content of a new event for Sue’s BeFit device
b e f i t : c o n t e n t 3 9 1 8 a s p l o g : LogEn t ryCon ten t ;

s p l : hasDa ta svd : L o c a t i o n ;
s p l : h a s P r o c e s s i n g b e f i t : S e n s o r G a t h e r i n g ;
s p l : h a s P u r p o s e b e f i t : H e a l t h T r a c k i n g ;
s p l : h a s S t o r a g e [ s p l : h a s l o c a t i o n s v l : O u r S e r v e r s ] ;
s p l : h a s R e c i p i e n t [ a s v r : Ours ] .
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Figure 3.1: A Scalable Consent, Transparency and Compliance Architecture

1.3 Compliance checking.

In order to verify that data processing and sharing events comply with the corresponding usage
policies specified by data subjects, we use OWL reasoning to decide whether the authorized
operations specified by a data subject through their given consent, subsume the specific data
processing records in the transparency log.

2 SPECIAL-K: our Apache Kafka based implementation

In this section, we describe the SPECIAL3 consent, transparency and compliance system, which
can be used not only to record consent but also to provide transparency to data subjects concern-
ing the use of their personal data.

2.1 Background on Kafka

Apache Kafka4 is an open-source stream-processing platform managed by the Apache Soft-
ware Foundation, which provides publish and subscribe functionality to streams of data that are
persisted in a fault-tolerant durable manner. Messages, which contain a key, value and times-
tamp are stored in Kafka topics (i.e. a unique identifier for the stream content), which can be
partitioned across a cluster of machines.

2.2 SPECIAL-K: leveraging Kafka for transparency and compliance

The SPECIAL demo system architecture, which is depicted in Figure 3.1, enables transparency
and compliance checking based on usage policies and events expressed using the aforemen-
tioned vocabularies.

3https://www.specialprivacy.eu/
4https://kafka.apache.org/
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Kafka and Zookeeper. Data processing and sharing event logs are stored in the Kafka5 dis-
tributed streaming platform, which in turn relies on Zookeeper6 for configuration, naming,
synchronization, and providing group services. Each application log is represented using
a distinct Kafka topic, while a separate compliance topic is used to store the enriched log
after compliance checks have been completed.

Virtuoso Triple Store Based on our current use case requirements, we assume that consent
updates are infrequent and as such usage policies and the respective vocabularies are
represented in a Virtuoso triple store.

Compliance Checker. The compliance checker, which includes an embedded HermiT7 rea-
soner uses the consent saved in Virtuoso together with the application logs provided by
Kafka to check that data processing and sharing complies with the relevant usage control
policies. The results of this check are saved onto a new Kafka topic.

Elasticsearch. As logs can be serialized using JSON-LD, it is possible to benefit from the
faceting browsing capabilities of Elasticsearch8 and the out of the box visualization capa-
bilities provided by Kibana.

Consent and Transparency & Compliance Backends. Interaction between the various archi-
tectural components is managed by mu.semte.ch9 an open source micro-services frame-
work for building RDF enabled applications.

Consent and Transparency & Compliance Dashboards. Users interact with the system via
the consent management and the transparency and compliance dashboards. The former
supports granting and revoking consent for processing/sharing. While, latter provides the
data subject with transparency with respect to data processing and sharing events in a
digestible manner.

3 SPIRIT: our Apache Spark based implementation

The work described in this section has been performed in close collaboration with the BDE
members, Jens Lehmann10 and Patrick Westphal11. We first introduce the semantic data pro-
cessing stack (SANSA), which we use as an architectural basis for SPECIAL transparency and
compliance. Then, we present SPIRIT, our proposed extension of SANSA to provide trans-
parency with respect to personal data processing.

3.1 The SANSA stack

The current big data landscape provides a plethora of tools and frameworks covering a variety of
methods and techniques for processing huge amounts of data in a distributed cluster of machines.

5https://kafka.apache.org/
6https://zookeeper.apache.org/
7http://www.hermit-reasoner.com/
8https://www.elastic.co/products/elasticsearch
9https://mu.semte.ch/

10Smart Data Analytics Group, University of Bonn, DE. jens.lehmann@cs.uni-bonn.de
11Institute for Applied Informatics (InfAI), University of Leipzig, DE. patrick.westphal@informatik.

uni-leipzig.de
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Figure 3.2: The SANSA Stack Layers

In terms of actual general purpose big data processing frameworks, Apache Hadoop12, Apache
Spark13, and Apache Flink14 are examples of established open source projects. However, none
of those frameworks provide built-in support for processing big semantic data e.g. to load and
store RDF data as a uniform data format, along with ontological inference support and analytics.

SANSA15 is an open source16 semantic data processing stack that supports distributed com-
putations on large-scale RDF data. Being built on top of the two prevalent distributed in-memory
big data processing frameworks Apache Spark and Apache Flink, SANSA provides perfor-
mance, scalability and fault tolerance. SANSA is designed as a stack of individual layers, each
covering specific aspects of RDF data processing and analytics (cf. Figure 3.2) and the corre-
sponding description below:

Knowledge Distribution and Representation This layer provides a means to read and write
RDF and OWL files, which can then serve SPECIAL needs in terms of data models, as specified
in deliverables D1.7 Policy, transparency and compliance guidelines V2 and D2.7 Transparency
Framework V2. In terms of data structures and programming interfaces SANSA follows the
common and accepted representations of Apache Jena17 and the OWL API18. Hence, the RDF
and OWL data is provided as a distributed collections of Apache Jena triples and OWL API
axioms, respectively.

Querying The query layer comprises functionality for searching, exploring and extracting
information from big semantic data. The main W3C standard for performing queries on RDF
is SPARQL19. SANSA supports two interfaces for executing such SPARQL queries: (1) Within
an Apache Spark/Flink program, and (2) via an HTTP SPARQL endpoint. In both cases the

12Apache Hadoop, http://hadoop.apache.org/
13Apache Spark, http://spark.apache.org/
14Apache Flink, http://flink.apache.org/
15SANSA Stack home page, http://sansa-stack.net
16SANSA Stack on GitHub, https://github.com/SANSA-Stack
17Apache Jena, http://jena.apache.org/
18OWL API, https://owlcs.github.io/owlapi/
19SPARQL, https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
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actual queries will eventually be translated into lower level Apache Spark/Flink programs and
executed on the Knowledge Distribution and Representation Layer. To better exploit parallelism
and data locality different partitioning strategies are explored.

Inference Apart from actual data-level assertions or facts, the Semantic Web technology stack
also provides a means to express schema or ontological knowledge. The respective W3C stan-
dards, RDFS20 and OWL, allow the inherent semantics (or parts thereof) to be express as rules,
which can be used to infer new knowledge. This forward chaining process can be applied,
e.g. to materialise all rule-based inferences, or to prepare a given knowledge base for further
processing. In contrast backward chaining techniques infer new knowledge starting at a given
‘goal’, which can be a (set of) RDF triple(s). SANSA currently supports different profiles for
rule-based forward chaining, while support for rule-based backward chaining is currently in de-
velopment. Besides focusing on fixed profiles like RDFS or OWL Horst [31], SANSA allows
an arbitrary set of rules and is able to compute an efficient execution plan by generating and
analysing a rule dependency graph. Hence, users can adjust the trade-of between expressivity
and performance, and furthermore introduce custom rules, representing e.g. business policies.

Machine Learning This layer is a collection of machine learning algorithms that can directly
work on RDF triples or OWL axioms. In addition to machine learning algorithms that work on
feature vectors, SANSA makes use of the graph structure and the inherent semantics of RDF
and OWL data. The algorithms implemented thus far cover knowledge graph embeddings [29]
for e.g. link prediction, graph clustering and association rule mining techniques.

3.2 SPIRIT: leveraging the SANSA stack for transparency and compliance

In the following, we present technical details of our transparency and compliance checking
approach. Figure 3.3 sketches the transparency and compliance architecture and shows the
components of the proposed architecture. We keep the notion of ”Line of Business“ applications
as presented in deliverable D2.7 Transparency Framework V2.

The architecture is divided into three main parts: The company systems (bottom left), the
SPIRIT dashboard component and business logic (top left), and the big data application built
on top of SANSA (right). While the company systems continuously produce log information
concerning transactions involving user data, the SANSA application can be used to analyse it at
scale. The SPIRIT dashboard controls the SANSA application and presents results to the user.
The components are described in the following.

3.2.1 Transaction logs

When it comes to the ledger storing all data sharing and processing events (presented in de-
liverable D2.7 Transparency Framework V2), a straightforward option would be to recommis-
sion/extend existing application logs to include the information necessary to verify compliance.
Considering that all data processing and sharing events need to be recorded it may not be feasi-
ble to store all log information on disk. Consequently, with large amounts of event data comes
the need for a file system that: (1) is able to store big data; (2) is fault tolerant; and (3) is ca-
pable of supporting parallel processing. The Hadoop Distributed File System (HDFS)21 fulfills

20RDFS, https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
21HDFS, http://hadoop.apache.org/
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Big DataNon-Big Data

App

def main(args) {
  userId = args(0); val query = args(1)
  axioms, rules = loadPolicies(userId) // (1)

  return getUserTransactions(userId, query)  
}

def getUserTransactions(userId, query) {
  wholeLog: RDD = NTripleReader.load(...)               // (2)
  queryEngine = new QueryEngine(wholeLog+axioms)        // (3)
  reasoner = new Reasoner(rules + profile, queryEngine) // (4)
  return reasoner.getInf(query): Collection[Triple]     // (5)
}
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Figure 3.3: SPIRIT architecture exemplifying the transparency use case

said criteria and is the default choice for Apache Spark and Apache Flink. Moreover, there is a
stable and mature solution to transfer log data to HDFS, called Apache Flume22. It provides an
architecture of sources, channels and sinks, where interceptors can transform the log content,
e.g. obtained from an application log source before it is passed along to the channel. This allows
heterogeneous transaction logs to be translated to RDF on the fly. Since HDFS can serve as an
Apache Flume sink integrated RDF data can then be persisted on a distributed storage cluster
for later access.

3.2.2 The SPIRIT dashboard

The SPIRIT dashboard provides a means for data subjects, companies and supervisory authori-
ties to obtain transparency with respect to the processing of personal data and compliance with
respect to usage policies. For confidentiality reasons, personal data should only be accessible
after the identity of the data requester is confirmed. Such functionality can be provided via
existing industry standards such as OAuth223, OpenId Connect24 or SAML2.025. One of the
key challenges for the transparency and compliance dashboard is the presentation of data in a
manner that considers the users’ cognitive limitations. Here a combination of paging, faceted
browsing, search and filtering techniques are necessary. Moreover information can be grouped
by data categories obtained from the policy storage. In all cases the request is converted into a
query which is passed to the SANSA application, together with a user identifier. The results of
the respective processing task is then passed back to the dashboard to be presented to the user.

22Apache Flume, http://flume.apache.org/
23OAuth2, https://oauth.net/2/
24OpenId Connect, http://openid.net/connect/
25SAML2.0, https://wiki.oasis-open.org/security/FrontPage
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3.2.3 Transaction log processing with SANSA

Our SANSA-based architecture inherently provides traceability by: i) storing and serving all
log data records in a scalable, big data-ready processing framework; and ii) offering querying
functionality on big semantic data and thus enabling all user-centric transactions as depicted in
Figure 3.3. In addition, using semantic data eases the data integration across several heteroge-
neous line of business applications, brings interoperability across platforms and a simple way
to link user data and policies.

As sketched in Figure 3.3 the main steps that need to be performed include: (1) loading
the policies (modelled according to deliverable D2.1 Policy Language V1) from the policy store
and dividing them into rules that are used in the reasoning step, and schema/ontology axioms
added to the log data later; (2) loading the RDF log data (modelled according to deliverable
D2.7 Transparency Framework V2) stored in the distributed file system; (3) initialising a query
engine with the log and schema/ontology data; (4) creating a reasoner which works on the query
engine, considers the rules from the policy store and also a set reasoning profiles; and eventually
(5) invoking the backward chaining on the given query goal.

Besides providing transparency to data subjects, the infrastructure should help data con-
trollers and processors to demonstrate to data subjects and supervisory authorities that their
business processes comply both with the consent provided by the data subject and relevant obli-
gations from the GDPR. Our SPIRIT architecture can be used to implement the compliance
checking presented in Chapter 1 on the basis of: (i) encoding user data policies in (subsets of)
OWL 2 DL according to the SPECIAL policy language defined in D2.1 Policy Language V1;
and (ii) providing the compliance checking mechanisms on the basis of the inference rule-engine
provided by SANSA. As for the former, we allow policies to define restrictions in terms of the
five data categories identified in SPECIAL (as depicted in Figure 3.3):

• Data reflects which personal data is governed by the policy.

• Processing lists the operations (e.g. anonymisation, aggregation, etc.) performed on the
personal data.

• Purpose describes why data are collected/processed.

• Storage concerns where data are stored and for how long. Here, we follow a pragmatic
approach specifying the location and the upper bound time period for the storage, strictly
bound to the service needs.

• Sharing specifies the potential use of the personal data by third parties.

In addition to the personal data policies, the SPIRIT architecture holds rules that provide
mechanism to check compliance of data processing and sharing transactions according to the
usage policies and regulations obligations. Acknowledging that GDPR compliance checking
cannot be fully automated (given the generality, vagueness and subjectivity inherent in the reg-
ulation), we focus on verifying minimal sets of conditions (“if condition X holds then the data
policy Y is violated”) to assist the stakeholders in charge of providing evidence of GDPR com-
pliance. As shown in Figure 3.3, it would be possible to support multiple reasoning profiles to
enable different semantics and levels of expressivity. Also, this inference scheme is integrated
in the resolution of the transparency request of the data subject, in order to offer not only a trace
of their user-centric events, but also compliance evidence according to their usage policies and
regulatory obligations.
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3.3 Relevance for SPECIAL

Although SPIRIT goes a long way towards catering for transparent and compliant personal
data processing, there are still a number of open research challenges to be considered in the
Knowledge Distribution & Representation, Querying, Reasoning and Machine Learning layers.

Knowledge distribution, representation & querying In D1.7 Policy, transparency and com-
pliance guidelines V1, we identify requirements that need to be satisfied by a transparent per-
sonal data processing architecture. Herein we focus specifically on storage, security, avail-
ability, performance, and scalability robustness requirements. The scalability and availability
features are inherently supported by our SPIRIT architecture. In order to reduce the volume of
the data stored on disk, while at the same time protecting the data from unauthorised access, a
combination of encryption and compression mechanisms are necessary [33]. Additionally dif-
ferent partitioning, indexing and materialisation strategies based on access policies and requests
are required, in order to improve performance.

Reasoning The SPIRIT architecture advocates to implement the conformance checking mech-
anism presented in Chapter 1, nonetheless, its efficient practical application using SANSA is not
trivial. We are currently exploring optimisations to perform such task efficiently in such big data
scenario.

Machine learning Although thus far we focus on using SANSA for transparency and compli-
ance checking, a natural next step would be to demonstrate how the SANSA machine learning
layer can be used for the SPECIAL use cases, in particular to serve personalised recommenda-
tions. However, it is worth noting that there presently exists legal uncertainty with respect to
ML algorithms trained over personal data where the consent is later withdrawn, and whether or
not those models need to be thrown away.

4 Summary of results and future outlook

In this chapter we introduced two consent, transparency and compliance architectures, the kafka
based SPECIAL-K architecture and the spark based SPIRIT architecture. Ongoing work in-
cludes both the optimization of the existing prototypes and the benchmarking of these two
alternative architectures against each other. Future work also includes the extension of these
architectures to cater for compressed and encrypted data and privacy preserving machine learn-
ing.
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Chapter 4

Fair Exchange

Creating a reliable record for joint operations, and creating records with multiple simultaneous
signatures, requires the adoption of fair exchange protocols to guarantee that the operation is
completed (e.g. data are transferred) if and only if all the involved parties sign the record and
the record is included in the ledger. In this chapter, we show how fair exchange protocols could
be used to provide certain guarantees in terms of completeness, correctness, and non-repudiation
of data sharing events.

1 Motivation

Let us recall some of the desiderata for the transparency ledger (cf. D1.7 and [14]):

Completeness: All data processing and sharing events should be recorded in the ledger.

Correctness: The records stored in the ledger should accurately reflect the processing event.

Immutability: The log should be immutable such that it is not possible to go back and reinvent
history.

Integrity: The log should be protected from accidental and/or malicious modification.

Non-repudiation: When it comes to both data processing and sharing events it should not be
possible to later deny that the event took place.

Some of these desiderata can be addressed with a combination of standard cryptographic tech-
niques and trusted architectures. For instance, if a record R in the transparency ledger is signed
by a party X , then X cannot deny to be the author of R, and no party Y 6= X can replace R
with a modified version R′ – therefore digital signatures address non-repudiation and, to some
extent, immutability and integrity. Note that X itself could tamper with R and modify it. More-
over, it may be possible to delete R. This is why suitable trusted architectures are needed in
order to achieve the full integrity and immutability of the transparency ledger.

Other desiderata in the above list cannot be fully achieved. For instance, correctness and
completeness cannot be guaranteed for those data processing events that involve only the data
controller, as there is no way to prevent companies from logging incorrect information or not
entering the information into the log.

The situation is different for those operations that involve two or more parties. The two most
important examples of such events are:
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• consent release;

• data transfer.

In a typical consent release, it is unlikely that the two parties (the data subject and the data
controller) collude, because they have opposite interests. Similarly for data transfers where the
following condition holds:

the recipient (resp. the sender) – that wants to comply with the GDPR and prove
that the data transfer was legitimate on its side – wants to be able to prove how and
when the data has been acquired (resp. released), under which policy/licence it has
been released, and what is the source (resp. recipient).

In both cases, the involved parties require the following guarantees:

1. the recipient wants the object of interest (the data subject’s consent, or the shared data,
possibly with the associated sticky policy), together with a proof of its provenance, for
non-repudiation;

2. the sender wants a receipt, again for non-repudiation; in the simplest case, the receipt
might just be a proof that the recipient has received the object of interest, but it might
also be a proof that the current transaction has been faithfully recorded in the ledger; in
this case, the receipt would also guarantee the completeness and correctness of the ledger
with respect to the operations that involve two non-colluding parties.

This schema is an instance of a fair exchange protocol. The characteristic feature of such pro-
tocols is that either both parties get what they want (i.e. the object of interest and the receipt,
respectively), or none of them obtains anything. In the rest of this chapter, we illustrate the
general features of fair exchange protocols and discuss which methods might be applicable to
the transparency ledger.

2 Basic notions and desired properties

The abstract formulation of the fair exchange problem is the following: two partiesA andB (or
Alice and Bob) want to exchange two objects OA and OB such that A receives OB if and only
if B receives OA.

It is known that this objective cannot possibly be achieved without a trusted third party
(TTP). In 1980, Even and Yacobi in [18] proved that no deterministic protocol exists, in which
there is no participation of a third party. Further research is discussed in [19], that provides
an extended negative result in a richer model, with multiple TTP, that highlights the role of
connectivity in the network of peers. There exist some protocols without TTP, but they provide
weaker (e.g. probabilistic) guarantees, and sometimes rely on assumptions on the computational
power of A and B (which restrict applicability). Therefore, we shall focus on protocols with
TTP.1

The following is a finer-grained list of properties that may be required of a fair-exchange
protocol, depending on context:

1A fully detailed survey of fair exchange protocols, including the approximate and probabilistic notions of fair-
ness and all the classes of protocols not discussed here, will be included in D1.7.
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• Fairness: The protocol should be fair in the sense that neither Alice nor Bob should be
able to obtain an advantage on the other player. In other words, either Bob receives the
messageOA and Alice the correspondingOB or none of them receives useful information.

• Non-repudiation of origin: Alice should not be able to deny the fact that she sent the mes-
sageOA. This means that Bob, at the end of the protocol, should have enough information
to prove the sender’s identity.

• Non-repudiation of receipt: Bob should not be able to deny the fact that he received the
message. Alice should get a receipt for the message that can be used as a proof in a court
of law.

• Authenticity: The players should be guaranteed of their reciprocal identity.

• Integrity: The parties should not be able to corrupt the message and/or its receipt, e.g.,
Alice should not be able to obtain a receipt for a message different from the one received
by Bob and vice versa.

• Confidentiality: The protocol should be such that only Alice and Bob will be able to read
the content of the message. Notice that this property applies also to the TTP, that should
not be able to infer useful information about the message.

• Timeliness: The protocol terminates within a finite and known a priori time.

• Temporal Authentication: Some applications, e.g., patent submission, require the possibil-
ity to verify the time at which the message was sent. The timestamp should be observable
by the players and should be ensured by a trusted authority.

• Sending Receipt: Some fair exchange protocols might involve human interaction, e.g.,
certified email ones. It might be desirable that the sender obtains an evidence of the fact
that he has started the process of exchanging messages. Notice that this receipt may not
contain any information generated by the recipient, e.g., it is produced by a third authority.

3 Classification based on TTP and optimistic protocols

Fair Exchange protocols with TTP can be essentially classified as on-line/in-line and off-line (or
optimistic) protocols. In the first class, a Trusted Third Party (TTP for short) has a central role
in the protocol in the sense that each exchange involves the TTP. In the optimistic protocols, the
TTP comes into play only in case of disputes or errors (e.g. communication failures) while, in
the other cases, the users run the protocols by themselves.

It is clear that the latter class of protocols has a number of advantages with respect to the
former. In-line protocols are usually simpler than optimistic ones but have the drawback that
the TTP could become a bottleneck for the system. On the contrary, in the absence of disputes,
an off-line TTP does not even know that a pair of players exchanged messages. For this reason,
off-line protocols are more appropriate for SPECIAL’s purposes, and we will focus on them in
this report.

Here is a more detailed definition of the different classes of protocols:
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• Inline TTP. In inline protocols the TTP is involved in every message transmission. In
other words, every message is either sent to the TTP or is sent by the TTP to another
party.

• Online TTP. In an online TTP protocol, the TTP is involved in every protocol execution,
i.e., in every run of the protocol there exists at least one message that is either sent to
or received by the TTP, but there might exist messages exchanged directly by the other
parties.

• Offline TTP. In a protocol, the TTP is said to be offline if the TTP participates in the
protocol only in case one of the parties misbehaves or in case of technical failures.

Offline protocols are also called optimistic, since the underlying assumption is that in the
vast majority of cases no intervention is required from the TTP. The ability of the TTP to fix
problems prevents deliberate misbehavior, since malicious participants have nothing to gain
from protocol violations.

Since TTP involvement is not required at each execution of an off-line protocol, optimistic
protocols are typically described by defining the algorithm for the honest parties along with the
recovery procedures that the parties and the TTP have to execute in case of failures/timeouts.

Among the first optimistic protocols for contract signing we mention [11]. This protocol is
less interesting for SPECIAL because of its probabilistic nature (eventually, the contract C is
binding for both parties with a probability p). Considering that in SPECIAL the “contracts” are
consent to data usage and sticky policies – that must be preserved to comply with the GDPR –
probabilistic guarantees are not satisfactory.

The idea of optimistic protocols is introduced by Micali [26, 27] in the context of certified
email, and in the setting of efficient fair exchange protocols for generic items in [3, 4, 9].

Micali’s protocol can probably be adapted to our setting and will be discussed later.
In the protocols for generic items, the degree of fairness guaranteed by the protocol depends

on certain properties of the items to be exchanged: if the third party can undo a transfer of an
item (so called revocability) or if it is able to produce a replacement for it (so called generata-
bility) the protocol achieves true fairness. None of these assumptions applies to data transfer or
consent transfer.

In [24] the authors consider a sort of possibly-asymmetric fair exchange problem. Motivated
by the exchange of files in p2p networks, the authors consider the following variation of fairness.
Informally, an exchange is fair either when both parties receive the requested file or when one
party receives a payment for a file she provides. Again, there seems to be no match with the
application to the transparency ledger.

Distributed Trusted Third Party As for inline protocols the idea of reducing the trust over
a single third party has been developed also in the case of off-line protocols. In [6] the authors
first introduce the possibility of distributing the role of TTP among a set of honest neighbours in
the network. Intuitively the protocol initiator uses a (publicly) verifiable secret sharing scheme
to generate n shares of her message m. She then encrypts each share with the public keys of
n other parties in the network and sends all such encrypted shares the the receiving party. The
receiving party sends back the expected message and receives the original message m. If sender
and receiver act properly, the protocol terminates without the need of any external intervention.
If any of the player tries to deviate from the protocol, if a sufficient number of honest players
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is present, the protocol fairness is guaranteed. This solution implicitly assumes the presence
of timeouts and some bounds on the number of untrusted parties. In [23], the authors show
that timeouts, i.e., the existence of loosely synchronised clocks, are essential for guaranteeing
fairness, unless complex (and costly) cryptographic tools like secure multiparty computation are
deployed.

In [7] the authors present a solution in which perfect fairness can be achieved if a majority
of parties are honest but, whenever the majority of parties are dishonest, it is possible to achieve
probabilistic fairness with arbitrary low probability of error.

4 Micali’s optimistic fair-exchange protocol

Let us briefly recall the notation for describing protocols.

• X‖Y denotes the concatenation of strings X and Y ;

• [X]A is party A’s signature of string X;

• EA(X) (resp. DA(X)) is the encryption (resp. decryption) of X with A’s public key;

• in order to make encryption more robust, a random string R may be used; it is made
explicit with notation ER

A(X); it is assumed that decryption recovers both X and R;

• A→ B : X means that A sends message X to B.

Now we are ready to recall Micali’s fair protocol for certified email [27]. In the following
A, B and TTP denote Alice, Bob and the trusted third party, respectively.

In the absence of errors or misbehavior sending an email M requires 3 messages:

1. A→ B : Z, where Z = ER
TTP(A‖B‖M)

2. B → A : [Z]B

3. A→ B : (M‖R).

At the end of this sequence, if no one cheats, B has M and A has the receipt [Z]B . With this
receipt, A can prove that she sent M to B simply by exhibiting M , R, and the receipt. Indeed,
everyone can (i) compute Z from M and R (since the rest is public information), and (ii) see
that B received Z, by verifying B’s signature on the receipt.

The protocol may depart from the above sequence in several places:

• IfB fails to send the receipt (message #2), thenA does not send the plaintextM (message
#3). Consequently, B cannot read M (as it can be extracted from Z only with the private
key of TTP).

• If B sends the receipt but A does not send back the plaintext M , then B resorts to the
TTP:

4. B → TTP : Z‖[Z]B
5. TTP → B : (M‖R)
6. TTP → A : [Z]B
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So B gets the plaintext message from TTP (that extracts it from Z using its private key).

• Similarly, if there is a mismatch between steps 2 and 3, B goes to step 4. A mismatch
occurs if Z is different from the expression ER′

TTP(A‖B‖M ′) computed with the values
M ′, R′ sent in step 3. The TTP decrypts the actual value Z sent initially by A, so that B
has access exactly to the message that correponds to the receipt returned in step 2.

• The lack of messages fromA orB may be due to network problems. If message #2 is lost,
then the transaction fails and must be restarted. If message #3 is lost, then messages 4–6
solve the problem. The connections with the TTP must be resilient, that is, each message
is eventually delivered.

• If B tried to contact the TTP instead of sending back the receipt (which means skipping
directly from step 1 to step 4), thenB would eventually be able to readM , but at the same
time the TTP would send the receipt back to A (step 6).

• Finally, A might put nonsense in M . However, the receipt would correspond to that non-
sense; A could make a fake receipt for a different message only by forging B’s signature.

In summary, fairness is guaranteed: B obtains M iff A obtains the corresponding receipt. Note
that in the absence of cheating and transmission errors the TTP is not involved, and the transfer
requires only 3 messages.

The confidentiality of M can be guaranteed with a simple variant: it suffices to replace M
with EB(M) across all steps. In this way, only B can read M ; the TTP itself would only be
able to extract the cyphertext EB(M) from Z.

Moreover, it is possible to guarantee the provenance of TTP’s messages by having the TTP
sign them.

The limitation of this version of the protocol is that all steps contain eitherM or an encrypted
version of it. In SPECIAL’s data transfer scenarios M could be a very large dataset, whose size
would make the protocol practically unfeasible.

5 Optimistic fair-exchange protocols for large data transfers

To the best of our knowledge, the only optimistic fair exchange protocol for large data is [30]
(a variant of Micali’s protocol). Unfortunately, it is specialised to an e-commerce scenarios,
whose features do not match SPECIAL’s requirements. Here are the main features that hinder
the application of this protocol to the transparency ledger:

• The protocol requires a preliminary setup phase in which the TTP produces n certificates
that contain a digest of the dataset. The cost of the setup is balanced by the reuse (re-
selling) of the same data multiple times. One of the main reference applications of [30] is
selling multimedia contents, where each item is fixed and sold multiple times. However,
if the transferred datasets change frequently along time, then the protocol tends to become
online.

• Fairness does not concern a receipt of the data, but a payment token (which removes some
of the problems related to size, since the payment token is usually very small).
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• The data are transmitted in a single message. However, in SPECIAL’s scenarios, the
data may be too large for this kind of transfer. The transmission of data with multiple
messages potentially opens the way to novel attacks, and requires a specific validation of
the modified protocol. Moreover, datasets are usually not transmitted in messages, but
made available at some URI, where they can be downloaded.

For these reasons we introduce in the following another variant of Micali’s protocol, where data
is referred to by means of URIs and the receipt is tightly related to the transferred data.

A new fair exchange protocol for large data transfers. Let URI be the location of the
dataset to be transferred from A to B, and let ∗URI denote the actual data resulting from
dereferencing URI . We add to notation a hash function h(·) resistant to pre-image attacks (i.e.
it is computationally hard, given a value x = h(y) to find z 6= y such that h(z) = x). The
protocol is the following:

1. A makes the dataset D available at URI in encrypted form, using a session key k (there-
fore ∗URI = Ek(D))

2. A→ B : Z1, where Z1 = [A‖B‖URI‖h(∗URI )‖t0]A (t0 a unique timestamp)

3. B downloadsD′ = ∗URI and verifies that h(D′) equals the field h(∗URI ) in Z1; in case
of mismatch abort the protocol; otherwise go to the next step;

4. B → A : [Z1]B

5. A→ B : Z2, where Z2 = [A‖B‖URI‖ETTP(k)‖t0]A

6. B → A : [Z2]B

7. A→ B : [EB(k)]A; in case of timeout, B starts the recovery procedure (step 9)

8. B decrypts the downloaded datasetD′ using k and verifies the result. In case of problems,
B starts the recovery procedure (step 9).

The recovery procedure (involving the TTP) is the following:

9. B → TTP : [Z2]B

10. TTP → B : [EB(k)]TTP

11. TTP → A : [[Z2]B]TTP

The above protocol enjoys the following properties:

1. If no problems occur, then at step 8 B has the dataset D and A has the two receipts
R1 = [Z1]B andR2 = [Z2]B . WithR1,B declares that the downloaded encrypted dataset
corresponds to the hash value included in Z1. With R2, B declares that A delivered the
session key k for decrypting D, protected with the TTP’s public key. Together, the two
receipts show that A sent all the messages prescribed by the protocol, and that the digest
in Z1 (i.e. h(∗URI )) is correct. The two receipts (as well as Z1 and Z2) are connected
by their common elements A, B, URI , and t0, that constitute a unique identifier of the
transaction.
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2. If a problem occurs before step 5, then the protocol is aborted (we assume a timeout for
each step). Then A has at most one of the two receipts needed, and B has no way of
decrypting ∗URI . After step 5, B can terminates the protocol with no problems.

3. If a problem occurs at steps 7 or 8, then the TTP extracts the session key k for B from
Z2, using TTP’s private key, and sends the second receipt to A. After this stage, A has the
two receipts, and B can decrypt ∗URI .

4. If B skips step 6 and goes to step 9 (to obtain k from TTP without releasing R2), then the
receipt R2 will be delivered to A anyway, by the TTP (step 11).

5. The actual data D are kept confidential; k is always encrypted with B’s public key so not
even the TTP can decrypt it and see the dataset.

6. The provenance of all messages is guaranteed by the senders’ digital signatures. This
addresses man-in-the-middle attacks.

7. Replay attacks are addressed as follows: (i) all messages but those in 7 and 10 contain
the unique timestamp t0 (if the clock granularity is insufficient, then it can be comple-
mented with a nonce); (ii) messages 7 and 10 depend on the randomly chosen key k that
is changed at every transaction.

8. The dataset D might consist of rubbish, but the value h(∗URI ) in Z1 corresponds to the
rubbish and is signed by A, like the decryption key k in Z2, Then, using Z1 and Z2, B
can convincingly argue that A transferred “bad” data. Indeed, by the properties of h(·)
it would be practically impossible for B to find a D′ 6= D such that h(D′) = h(D).
Moreover, the TTP can certify (using its private key and Z2) that k is actually the key
signed by A in step 7.

9. The dataset D itself needs not be processed by the TTP. Only A and B shall compute its
hashed value, once for each transaction.

6 Formal verification of the protocol

The protocol has been validated by formally verifying that it actually enjoys the properties
defined above, and therefore, it is fair.

The verification process of an exchange protocol relies on the creation of a model which
describes the behaviour of the protocol itself. Once such a model is deployed, in the form of
a finite state machine (FSM, for short), it is possible to express the desired fairness properties
with an appropriate logic language and then apply the technique of model checking on the
FSM. Clearly, the model checking of the FSM will succeed if and only if the protocol enjoys
the required properties.

The formalism accepted by model checking tools is low-level, compared to the notation
introduced above (calld AB notation), since the latter is not precise enough. The AB notation,
indeed, is a user-friendly specification and therefore too abstract. For this reason we adopted
the specification language HLPSL, developed in the european project Automated Validation
of Internet Security Protocols and Applications (Avispa)2. The main feature of HLPSL is the

2http://www.avispa-project.org/
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description of the behaviour of each party of the protocol in the form of roles. In particular,
it allows to define operators for send and receive messages using channels, and to combine
atomic messages in order to compose messages of complex type. A more detailed description
of HLPSL syntax is provided in the Appendix.

An important feature of HLPSL is the presence of an intruder, that is an additional role
whose goal is to break the protocol. We adopt Dolev-Yao’s intruder model, where the attacker
has full control of communication channels. Hence, the intruder is able to intercept and then
replay, suppress or forward every message, except those exchanged with the TTP . The in-
truder also gains knowledge by decomposing and analysing messages, though it cannot break
cryptography.

HLPSL is supported by several tools, such as OFMC[10], CL-Atse[32], SATMC[2] and
TA4SP[13]. However, these tools do not provide resilient communication channels. This feature
is necessary to prove fairness properties, since no protocol can guarantee fairness if the intruder
is able to suppress the messages towards one party[21]. Hence, the communication channels
between parties and TTP are assumed to be resilient. As model checker, therefore, we used
the tool TPMC[12], presented in the 21st European Conference on Modelling and Simulation.
It allows to define both resilient and unreliable channels. TPMC is based on THLPSL, and, as
opposed to HLPSL, also provides specification of temporal aspects. Moreover, the tool includes
a translator from HLPSL specification to compositions of parallel automata, which can then be
model checked by the UPPAAL engine. The language used to express the fairness properties
supported by UPPAAL is a fragment of CTL[17] (see in Appendix).

The version of the protocol we verified is a refinement of the one presented above, where the
signature on some messages that are not necessary to ensure the satisfiability of the properties
are removed.3 More specifically, Step 7, 10 and 11 of the protocol do not includes the signature
anymore. The entire validated protocol is the following:

1. A makes the dataset D available at URI in encrypted form, using a session key k (there-
fore ∗URI = Ek(D))

2. A→ B : Z1, where Z1 = [A‖B‖URI‖h(∗URI )‖t0]A (t0 a unique timestamp)

3. B downloadsD′ = ∗URI and verifies that h(D′) equals the field h(∗URI ) in Z1; in case
of mismatch abort the protocol; otherwise go to the next step;

4. B → A : [Z1]B

5. A→ B : Z2, where Z2 = [A‖B‖URI‖ETTP(k)‖t0]A

6. B → A : [Z2]B

7. A→ B : EB(k); in case of timeout, B starts the recovery procedure (step 9)

8. B decrypts the downloaded datasetD′ using k and verifies the result. In case of problems,
B starts the recovery procedure (step 9).

The recovery procedure (involving the TTP) is the following:

9. B → TTP : [Z2]B
3In practice, however, it is useful to keep those signatures since they make it possible to discover attacks earlier.
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10. TTP → B : EB(k)

11. TTP → A : [Z2]B

The fairness properties mentioned above has been verified by means of the following con-
ditions:

1. if A has the receipt R2 = [Z2]B , then A has obtain the receipt R1 = [Z1]B;

2. if B has the session key k, then A can obtain the receipt R2 = [Z2]B;

3. if A has the receipt R2 = [Z2]B , then B can obtain the session key k.

It is easy to see that wheneverB has the session key k and, therefore, has access to the datasetD,
than the first two conditions imply that A obtains the two receipts R1 = [Z1]B and R2 = [Z2]B ,
as required by Property 1.

Property 2 requires that if a problem occurs before Step 5, then A has at most one of the two
receipts. Due to the first condition, A cannot have the receipt R2 = [Z2]B , and, as consequence
of the second condition, B cannot obtain the session key k. After Step 5, three cases may
arise: (1) B can abort the protocol, thus neither A obtains R2 = [Z2]B , nor B obtains k; (2) B
sends to A the receipt R2 = [Z2]B , hence, by the third condition, B obtains the session key
k; (3) B sends to TTP the message [Z2]B . In latter case, as a consequence of the fact that
the communication channels between the TTP and the parties are resilient, B obtains k and A
obtains the receipt R2 = [Z2]B . Observe that this case also implies Property 3 and 4.

The secrecy constraint of Property 5 has been verified during the creation of the FSM, since
the tool TPMC in this process generates for each party the maximal knowledge it can obtain by
means of derivation rules. Hence, in the corresponding FSM, it turns out that neither the TTP
nor the intruder own the symmetric key k.

Property 6 and 7 are implicitly verified adopting the model Dolev-Yao, since this type of
intruder can perform both man-in-the-middle and replay attacks.

Finally, Properties 8 and 9 are not security properties and do not require the verification of
logical formulas. Concerning 8, note that the fairness properties of the protocol do not guarantee
that the dataset D is meaningful. However, they ensure that, at the end of the protocol, B has
both of the messages sent by A, by means of which it can prove that A transferred "bad" data
(if D actually consists of rubbish). Concerning Property 9, it is well known that the TTP
may become a bottleneck. To certify that this problem is mitigated in the proposed protocol,
Property 9 ensures that the workload of TTP is independent from the size of the dataset D.
This property can be confirmed by analysing the implementation of the TTP role in the HLPSL
language, where one can observe that TTP never needs to process D to complete its tasks.

The protocol can abort due to a time-out either as consequence of message suppression by
the intruder or due to problems of the parties. These cases are simulated by means of the non-
deterministic choices in the control flow of the specification of the parties. Intuitively, at every
step the parties can choose either to proceed with the exchange or to stop the communication
(thereby modelling hardware/software faults, party misbehavior, and failure of the cryptographic
verification steps). The non-determinism has also been used to model the case in which at Step
3 the dataset D addressed by the URI does not match the hash value h(∗URI ), as well as the
case at Step 8 in which the session key k cannot decrypt the dataset D.

We successfully validated the protocol with one session and two interleaved sessions (where
the intruder may try to use the messages of one session to attack the other). The validation with
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three sessions required more computational resources than those available, as the size of the
FSM grows exponentially with the number of sessions. We can only report that the verification
of the protocol with three sessions did not find any errors before running out of memory.
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Appendix

Technical details of the formal protocol verification

The specification language used to describe the input protocol of TPCM is HLPSL4. Therefore,
in this section, we first describe its main features and then show how the protocol is reformulated
in this language.

HLPSL is a role-based language, containing two type of roles: basic and composition. A
basic role is a module that describes the behaviour of a party, consisting of its initial knowledge
and the rules expressing how the knowledge can change. A composition role, instead, is the
parallel instantiation of basic roles (which is useful for checking multiple parallel sessions, for
example).

The knowledge of a party is represented by the content of the set of parameters, constants
and local variables of its role. Each data is typed and the types provided are the following:
nat (natural numbers), bool (binary flags), agent (party names), symmetric_key and public_-
key (cryptographic keys), channel (communication channels), text (atomic messages), message
(complex messages), function (hash functions), role_instance (instance identifiers).

The type channel has additional parameters to specify (1) the model of intruder (DY for
the Dolev-Yao model) and (2) the reliability of the communication, that can be operational
(delivery guaranteed within a bounded time interval), resilient (delivery eventually guaranteed),
and unreliable (delivery not guaranteed).

Examples of complex messages are: A.B with A and B messages, H(A) with H function and
A messages, A_K or A_inv(K) with A messages and K symmetric or public key. Obviously, a
text is also a message.

The knowledge of a basic role identifies a state and its actions are transitions describing
changes of the role knowledge. The new value that a variable A takes in a transition is repre-
sented by a primed variable, e.g., A′. The transition schema is

l a b e l . l e f t −p r e d i c a t e =| > r i g h t−p r e d i c a t e

The label uniquely identifies the transition. The left-side predicate, instead, specifies when
the transition is enabled by means of boolean expressions and it can include message delivery.
Finally the right-side predicate describes the action of the role and it can include send operations.

We can now describe the formulation of the protocol in HLPSL. The proposed fair protocol
has four roles: the two parties (Alice and Bob) and the TTP are basic roles, the main role, here
called environment, is a composite role.

Alice has the following role:

role Alice(

4http://www.avispa-project.org/
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A, B : agent,
SND, RCV : channel(dy, 0, inf, unreliable),
RCVTTP : channel(dy, 0, 0, resilient),
KA, KB, KTTP : public_key,
RI : role_instance)

played_by A def=

local State : nat,
URI,HASHDATA,T : text,
R1,R2,R3,KT : message,
K : symmetric_key

init State = 0

transition
alice1. State = 0 =|> State’ = 1 /\ SND({A.B.URI.T.HASHDATA}_inv(KA))
alice2. State = 1 /\ RCV(R1’) /\ R1’ = {{A.B.URI.T.HASHDATA}_(KA)}_(KB) =|> State’ = 2
alice3. State = 2 =|> State’ = 3 /\ KT’ = {K}_(KTTP) /\ SND({A.B.URI.T.KT}_inv(KA) )
alice4. State = 3 /\ RCV(R2’) /\ R2’ = {{A.B.URI.T.KT}_(KA)}_(KB) =|> State’ = 4
alice5. State = 3 /\ RCVTTP(R3’) /\ R3’ = {{A.B.URI.T.KT}_(KA)}_(KB) =|> State’ = 5
alice6. State = 4 =|> State’ = 5 /\ SND({K}_(KB) )
alice7. State = 1 =|> State’ = 5
alice8. State = 2 =|> State’ = 5
alice9. State = 4 =|> State’ = 5

end role

In detail, the parameters A and B are the name of parties, SND and RCV are the two un-
reliable comunication channels between A and B, SCVTTP is the resilient channel on which
A receives messages from the TTP , finally KA, KB and KTTP are public keys and RI is the
identifier of the role instance. Local variable are used for information independent of the in-
stantiation, in particular State represents the current state. Alice has six states: (0) is the initial
state; (1) identifies the state in which A has sent Z1 to B and is expecting the receipt [Z1]B
from B; in state (2) A has obtained receipt [Z1]B; (3) identifies the state in which A has sent
Z2 to B and is expecting the receipt [Z2]B from B; in state (4) A has obtained receipt [Z2]B;
finally (5) is the final state. There are also nine transitions, corresponding to the steps reported
in Section 5: (1) represents Step 2; (2) represents Step 4; (3) represents Step 5; (4) represents
Step 6; (5) represents Step 11; (6) represents Step 7; finally (7), (8) and (9) allow for time-out
simulation.

The role of Bob is the following:

role Bob(
A, B : agent,
SND, RCV : channel(dy, 0, inf,unreliable),
SNDTTP, RCVTTP : channel(dy, 0, 0, resilient),
KA, KB, KTTP: public_key,
RI : role_instance)

played_by B def=

local State : nat,
URI,HASHDATA,T : text,
K : symmetric_key,
R1,R2,S1,S2,KT : message
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init State = 0

transition
bob1. State = 0 /\ RCV(R1’) /\ R1’ = {A.B.URI’.T’.HASHDATA’}_(KA) =|> State’ = 1
bob2. State = 1 =|> State’= 2 /\ S1’ = {R1}_inv(KB) /\ SND(S1)
bob3. State = 1 =|> State’= 3
bob4. State = 2 /\ RCV(R2’) /\ R2’ = {A.B.URI.T.KT’}_(KA) =|> State’ = 4
bob5. State = 4 =|> State’= 5 /\ S2’ = {R2}_inv(KB) /\ SND(S2)
bob6. State = 5 =|> State’= 7 /\ SNDTTP(S2)
bob7. State = 5 /\ RCV({K’}_inv(KB)) /\ KT = {K’}_(KTTP) =|> State’ = 6
bob8. State = 6 =|> State’= 3
bob9. State = 6 =|> State’= 7 /\ SNDTTP(S2)
bob10. State = 7 /\ RCVTTP({K’}_inv(KB)) /\ KT = {K’}_(KTTP) =|> State’= 3
bob11. State = 0 =|> State’= 3
bob12. State = 2 =|> State’= 3
bob13. State = 4 =|> State’= 3
bob14. State = 5 =|> State’= 3

end role

In detail, in addition to the parameters of Alice, Bob has also the send resilient channel to
communicate with the TTP . Bob has seven states: (0) is the initial state in which is expecting
the message Z1 from A; (1) identifies the state in which B has received Z1; in state (2) B has
sent the receipt [Z1]B to A and is expecting the message Z2 from A; (3) is the final state; in
state (4) B has received Z2; in state (5) B has sent the receipt [Z2]B to A and is expecting
the session key from A; (6) identifies the state in which B has received the session key from
A; finally (7) identifies the state in which B has sent to TTP the message Z2. There are also
fourteen transitions, corresponding to the steps reported in Section 5: (1) represents Step 2;
(2) represents Step 4; (3) represents the abort of Step 3 in case of mismatch; (4) represents Step
5; (5) represents Step 6; (6) represents Step 9; (7) represents Step 7; (8) represents the succeed
of the verification at Step 8; (9) represents Step 9 as consequence of the failure of the verification
at Step 8; (10) represents Step 10; finally (11), (12), (13) and (14) allow for time-out simulation.

TTP has the following role:
role TServer(
A, B, TTP : agent,
SNDTTPA, SNDTTPB, RCVTTPB : channel(dy, 0, 0, resilient),
KA, KB, KTTP : public_key,
RI : role_instance)

played_by TTP def=

local State : nat,
URI,T : text,
K : symmetric_key,
M : message

init State = 0

transition
sttp1. State = 0 /\ RCVTTPB(M’) /\ M’ = {{A.B.URI’.T’.{K’}_inv(KTTP)}_(KA)}_(KB) =|> State’ = 1
sttp2. State = 1 =|> State’ = 2 /\ SNDTTPB({K}_(KB))
sttp3. State = 2 =|> State’ = 3 /\ SNDTTPA(M)

end role

In detail, TTP has the same parameters as Alice and Bob, except for the communica-
tion channels. Indeed, SCVTTP is the resilient channel on which TTP sends messages to A,
SNDTTPB and RCVTTPB are the two resilient channel of comunication withB. TTP has three
states: (0) is the initial state in which is expecting the message [Z1]B from B; (1) identifies the
state in which TTP has received [Z1]B; in state (2) TTP has sent the session key to B; finally
in state (3) TTP has sent the receipt [Z2]B to A. There are three transition for the TTP: (1)
represents Step 9; (2) represents Step 10; and (3) represents Step 11.
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Finally, the composite role has no parameters and declares the variable used to instantiate the
basic roles. It also defines the initial knowledge of the intruder. The following code instantiates
one session, therefore, it declares one copy of each basic role:

r o l e Env ( ) d e f =
c o n s t a , b : agen t ,
ka , kb , k t t p : p u b l i c _ k e y ,
k i : symmetr ic_key ,
sa , ra , sb , rb : c h a n n e l ( dy , 0 , i n f , u n r e l i a b l e ) ,
s t t p a , s t t p b , r t t p b : c h a n n e l ( dy , 0 , 0 , r e s i l i e n t )

knowledge ( i )={ a , b , ka , kb , k t t p , k i }

c o m p o s i t i o n
A l i c e ( a , b , sa , ra , r t t p a , ka , kb , k t t p , 0 ) / \

Bob ( a , b , sb , rb , s t t p b , r t t p b , ka , kb , k t t p , 1 ) / \
TSe rve r ( a , b , t t p , r t t p a , r t t p b , s t t p b , ka , kb , k t t p , 2 )

end r o l e

The composition of two session is, instead, the following:

c o m p o s i t i o n
A l i c e ( a , b , sa , ra , r t t p a , ka , kb , k t t p , 0 ) / \

Bob ( a , b , sb , rb , s t t p b , r t t p b , ka , kb , k t t p , 1 ) / \
TSe rve r ( a , b , t t p , r t t p a , r t t p b , s t t p b , ka , kb , k t t p , 2 )

A l i c e ( a , b , sa , ra , r t t p a , ka , kb , k t t p , 3 ) / \
Bob ( a , b , sb , rb , s t t p b , r t t p b , ka , kb , k t t p , 4 ) / \

TSe rve r ( a , b , t t p , r t t p a , r t t p b , s t t p b , ka , kb , k t t p , 5 )

The language used to express the fairness formulas is a fragment of CTL[17], since nested
formulas are not allowed. Given a formula ϕ it is possible to express reachability properties
E♦ϕ (ϕ can be eventually satisfied), invariants A�ϕ (ϕ is always satisfied), safety properties
E�ϕ (potentially ϕ is always satisfied) and liveness properties A♦ϕ (always ϕ is eventually
satisfied).

Before describing the formulas used in the verification process, we need to discuss how the
resiliency of the communication channels has been modelled. When a protocol in HLPSL has a
resilent channel, the resulting FSM, generated by TPMC, has an additional variable I , that is an
array of resilient messages irsl. Every time a message is sent through a resilient channel, the
corresponding message irsl in I is flagged. Once it is delivered, its flag is reset. In this way it
is possible to identify which states are conform to the resiliency constraint.

We can now recall the conditions introduced in Section 5:

1. if A has the receipt R2 = [Z2]B , then A has obtained the receipt R1 = [Z1]B;

2. if B has the session key k, then A can obtain the receipt R2 = [Z2]B;

3. if A has the receipt R2 = [Z2]B , then B can obtain the session key k.

The form of these conditions is ϕ imply ψ and can be expressed in CTL as A�(ϕ imply A♦ψ)
or succinctly as ϕ –> ψ. The corresponding formula of the first condition with CTL, in the
succinct form, is the following:

( ( a _ A l i c e _ 0 .N[11]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[11] !=−1)
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or
( a _ A l i c e _ 0 .N[12]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[12 ] != −1) )
−−>
( ( f o r a l l ( i : i r s l ) I [ i ]==0)
imply
( b_Bob_0 .N[8]== a _ A l i c e _ 0 .N[ 7 ] and b_Bob_0 .N[ 8 ] ! = −1 ) )

In the above formula, ϕ represents the predicate "A has the receipt R2" and is composed
of the OR of two formulas: the first one expresses the condition that A has received R2 form
B and the second one that A received R2 from TTP . On the right-hand side of the formula,
instead, ψ represents the predicate "A has obtained the receipt R1" in the form ψ1 imply ψ2,
where ψ1 requires that the messages sent through the resilient channels have been delivered,
while ψ2 expresses the condition that A has obtained the receipt R1.

The formula of the second condition is the following:

( ( b_Bob_0 .N[12]== a _ A l i c e _ 0 .N[ 9 ] and b_Bob_0 .N[12] !=−1)
and
( a _ A l i c e _ 0 .N[10]== b_Bob_0 .N[ 9 ] and a _ A l i c e _ 0 .N[10 ] != −1) )
−−>
( ( f o r a l l ( i : i r s l ) I [ i ]==0)
imply
( ( a _ A l i c e _ 0 .N[11]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[11] !=−1)
o r
( a _ A l i c e _ 0 .N[12]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[ 1 2 ] ! = −1 ) ) )

As before, ϕ represents the predicate "B has the session key k" and is composed of the AND
of two formulas: the first one expresses that B has the session key k, and the second that this
key match with key contained in the receipt R2. On the right-hand side of the formula, instead,
ψ represents the predicate "A can obtain the receipt R2" in the form ψ1 imply ψ2, where ψ1
requires that the messages sent through the resilient channels have been delivered, while ψ2
expresses the condition that A obtains the receipt R2 from B or from TTP .

Finally, the formula of the third condition is the following:

( ( ( a _ A l i c e _ 0 .N[11]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[11]!=−1)
o r
( a _ A l i c e _ 0 .N[12]== b_Bob_0 .N[ 1 1 ] and a _ A l i c e _ 0 .N[12 ] != −1) )
and
( a _ A l i c e _ 0 .N[10]== b_Bob_0 .N[ 9 ] and a _ A l i c e _ 0 .N[10 ] != −1) )
−−>
( ( f o r a l l ( i : i r s l ) I [ i ]==0)
imply
( b_Bob_0 .N[12]== a _ A l i c e _ 0 .N[ 9 ] and b_Bob_0 .N[12 ] != −1) )

The antecedent of the operator "–>" represents the predicate "A has the receipt R2" and is
composed of the AND of two formulas: the first one expresses that A has received the receipt
R2 from B or from TTP and the second that the key contained in the R2 match with the
encription key of the dataset. On the right-hand side of the formula, instead, ψ represents the
predicate "B can obtain the session key k" in the form ψ1 imply ψ2, where ψ1 requires that
the messages sent through the resilient channels have been delivered, while ψ2 expresses the
condition that B obtains the session key k.
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