
ECP Milestone Report

Performance tuning of CEED software and first wave apps

WBS 2.2.6.06, Milestone CEED-MS20

Stanimire Tomov
Pedro Bello-Maldonado

Jed Brown
Jean-Sylvain Camier

Veselin Dobrev
Jack Dongarra
Paul Fischer
Azzam Haidar
Tzanio Kolev
Elia Merzari
Misun Min

Aleks Obabko
Scott Parker

Thilina Ratnayaka
Jeremy Thompson
Ahmad Abdelfattah
Vladimir Tomov
Tim Warburton

September 28, 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP Milestone Report

Performance tuning of CEED software and first wave apps

WBS 2.2.6.06, Milestone CEED-MS20

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

September 28, 2018

Exascale Computing Project (ECP) iii CEED-MS20

ECP Milestone Report

Performance tuning of CEED software and first wave apps

WBS 2.2.6.06, Milestone CEED-MS20

Approvals

Submitted by:

Tzanio Kolev, LLNL Date
CEED PI

Approval:

Andrew R. Siegel, Argonne National Laboratory Date
Director, Applications Development
Exascale Computing Project

Exascale Computing Project (ECP) iv CEED-MS20

Revision Log

Version Creation Date Description Approval Date

1.0 September 28, 2018 Original

Exascale Computing Project (ECP) v CEED-MS20

EXECUTIVE SUMMARY

The goal of this milestone was the performance tuning of the CEED software and first wave apps.

In this milestone, the CEED team developed optimization techniques and tuned for performance the
CEED software. Specifically, the focus was on the following:

• Fast finite element operator storage and evaluation using partial assembly/matrix-free algorithms that
take advantage of tensor-product element structure;

• Architecture optimizations, including the development of performant discretization libraries targeting
heterogeneous systems with multi-core CPUs, GPUs, and/or many-core CPUs in single node, cluster,
or large-scale ECP supercomputer configurations;

• Global kernels for finite element operators, including the development of algorithms and libraries for
fast gather-scatter exchanges for action assembly on unstructured graphs and for components needed
for global linear solvers.

A main part of this milestone was the performance tuning of the CEED first-wave ECP applications. This
included the ExaSMR application – Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small
Modular Reactors (ORNL), and the MARBL application – Next-Gen Multi-physics Simulation Code (LLNL).

The artifacts delivered include performance improvements in CEED’s 1st wave of applications, and tuned
CEED software for various architectures through a number of backends, freely available in the CEED’s
repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the CEED GitHub
organization, http://github.com/ceed for more details.

In addition to details and results from the above R&D efforts, in this document we are also reporting on
other project-wide activities performed in Q4 of FY18 including: CEED’s second annual meeting, a successful
minisymposium at the premier international conference on high-order methods (ICOSAHOM), making the
CEED milestone reports publicly available, new Laghos release, and other outreach efforts.

Exascale Computing Project (ECP) vi CEED-MS20

http://ceed.exascaleproject.org
http://github.com/ceed

TABLE OF CONTENTS

Executive Summary vi

List of Figures viii

List of Tables x

1 Introduction 1

2 Architecture Optimizations 1
2.1 Fast Algorithms . 1

2.1.1 Pre-assembled vs. Partial Assembly . 1
2.1.2 BLAS vs. Custom Kernels . 3
2.1.3 Kernel Optimizations . 4

2.2 libParanumal . 5
2.3 libCEED-0.3 . 6

2.3.1 Active and passive fields . 6
2.3.2 Optimized CPU backend . 6
2.3.3 Initial non-tensor bases capability . 6
2.3.4 MAGMA backend . 7

3 Applications Performance Improvements 10
3.1 Nek5000/libParanumal Performance Benchmarks on V100 . 10
3.2 ExaSMR: Algorithmic Performance Improvements . 11

3.2.1 Jacobian-free Newton Krylov Method Implementation into Nek5000 12
3.2.2 RANS Model in Nek5000 with Jacobian-free Newton Krylov Method 13
3.2.3 Preconditioning Strategies for Steady Advection-Diffusion and Navier-Stokes 13
3.2.4 p-Multigrid for Steady Advection-Diffusion . 14
3.2.5 Approximate Separable Operators . 15
3.2.6 FDM Preconditioning Extension to Steady Navier-Stokes 19
3.2.7 Low-Order FEM Preconditioning for Pressure . 21

3.3 MARBL: Next-Gen Multi-Physics Simulation Code . 23
3.3.1 Initial BP1 and BP3 Results on LLNL’s Sierra Machine 23
3.3.2 MARBL/BLAST . 26

4 Other Project Activities 28
4.1 CEED Second Annual Meeting . 28
4.2 ICOSAHOM18 Minisymposium . 28
4.3 CEED Reports Publicly Available . 29
4.4 Laghos-1.1 . 29
4.5 Outreach . 29

5 Conclusion 29

Exascale Computing Project (ECP) vii CEED-MS20

LIST OF FIGURES

1 High-order finite element operators representation in the CEED low-level API, libCEED. . . 2
2 Node throughput rates measured on an NVIDIA V100 for assembled element matrices (Left)

vs. matrix-free (Right). 2
3 Performance in GFlop/s on NVIDIA V100 GPU on stiffness matrix action on tetrahedral

elements using cuBLAS (Left) vs. custom build kernels (Right). 3
4 Performance results for ten optimizations [19] on an NVIDIA Titan V GPU in double precision

arithmetic (Left), and corresponding speedup effects (Right). 4
5 libParanumal: Library Structure and Flow Solvers with Plugins for Existing DOE ECP Packages. 5
6 Batched DGEMM performance on two IBM Power8 CPUs (Left), NVIDIA V100 GPU (Center),

and an Intel Haswell CPU (Right). 7
7 Performance of fused vs. un-fused Batched DGEMMs of small sizes on NVIDIA V100 GPU. . 8
8 Design and auto-generation of the dgemm kernel: parameterized C++ dgemm kernel design

(Left) and auto-generated code for the dgemm kernel for the same configuration but with two
different inner loop order (Right). 9

9 Strong-scaling on V100 for ExaSMR singlerod simulations by libParanumal (+ Nek5000),
OpenACC (+ Nek5000), and Nek5000 (CPU). 11

10 Spectral-element meshes for single rod (left) and 17× 17 rods (right). 12
11 JFNK, converging to steady-state solutions for Dean’s flow with Re = 2000 (left) and the

convergence of the norms ‖f‖2 and ‖g‖2 with increasing pseudo-timestep sizes (dtNT) at each
pseudo-timestep (right). 13

12 Jacobian-free Newton Krylov pseudo-time stepping, converging to steady-state solutions for a
RANS turbchannel model with Re = 10935 (top left) and Re = 100, 000 (top right). Profiles
of the initial condition (bottom left) and steady state solution (bottom right) for k, ω and the
x-component of the velocity. 14

13 Double-glazing model: pre-defined velocity (left) and steady-state solution for temperature
(right) with Pe = 100. 16

14 Flows past a cylinder (E = 1472): pre-defined velocity (left) and steady-state solution for
temperature (right). 17

15 A singlerod (E = 2560, N = 7) and its steady-state solution for temperature with Pe = 1000
(left) with pre-defined frozen velocity (right). 18

16 A long singlerod (E = 2560× 5, N = 7) and its steady-state solution for temperature with
Pe = 1000 (left) with pre-defined frozen velocity (right). 19

17 Lid-driven velocity (left) and stream lines (right) with Re = 500. 20
18 FEM preconditioning discretizations in 2D and 3D: (a) GLL points for N = 3 in a 2D

quadrilateral spectral element and corresponding triangular discretization for the P1 basis
functions, (b) FEM meshing of a rectangular element with one triangle per vertex for a total
of 4 low-order FEM elements, (c) GLL points for N = 3 in a 3D hexahedral spectral element
and corresponding 6 tetrahedral discretization for the P1 basis functions, (d) FEM meshing of
a hexahedral element with one tetrahedron per vertex for a total of 8 low-order FEM elements. 21

19 A mesh for a flow past cylinder E = 93 (top). GMRES iteration counts (bottom) with varying
N for low-order FEM using one-per-vertex elements. 22

20 A mesh for wire-coil insert (top left) and temperature distribution in a wire-coil geometry (top
right). time per time step (bottom right) with (E,N) = (5720, 3). 23

21 A mesh for TTC-III engine (top left) and temperature distribution and surface thermal flux in
the TCC-III engine model during the compression stroke (top right). GMRES iteration counts
(bottom left) and simulation time per time step (bottom right) with (E,N) = (6784, 7). . . . 24

22 BP1 on Sierra using (left to right) 1, 4, and 16 GPUs. Each plot shows number of DOFs per
GPU versus performance per GPU, measured as (DOFs× CG iterations)/(CG time×GPUs). 24

23 BP3 on Sierra using (left to right) 1, 4, and 16 GPUs. Each plot shows number of DOFs per
GPU versus performance per GPU, measured as (DOFs× CG iterations)/(CG time×GPUs). 25

24 Profiling result from BP3 on 1 GPU with ∼ 70k DOFs. The time-line is zoomed-in around
one of the CG iterations. 25

Exascale Computing Project (ECP) viii CEED-MS20

25 Profiling result from BP3 on 1 GPU with ∼ 500k DOFs. The time-line is zoomed-in around
one of the CG iterations. 26

26 Strong scaling in 2D (left) and 3D (right) for the Triple Point problem in BLAST. Both plots
compare partial assembly (PA) vs full assembly (FA). In 2D, PA wins for orders above 5. In
3D, PA wins for orders above 2. 27

27 Weak scaling for Laghos on Sierra, pure CUDA version, Q3Q2 (left) and Q5Q4 (right) finite
element spaces. 27

28 Strong scaling comparison for Laghos on Vulcan (left) and Sierra (right), pure CUDA version,
Q3Q2 finite element spaces. 28

29 Strong scaling comparison for Laghos on Vulcan (left) and Sierra (right), pure CUDA version,
Q3Q2 finite element spaces. 28

Exascale Computing Project (ECP) ix CEED-MS20

LIST OF TABLES

1 Performance profile of libParanumal on ANL/JLSE DGX-1 Volta server using 8 GPUs for
singlerod mesh with (E = 2560, N = 7, n = 1, 310, 720). 11

2 Double-glazing model with varying E for N = 7: GMRES iteration # without and with
preconditioning using the LU and the FDM (FDM) for steady-state temperature solution with
a pre-defined velocity. 16

3 Flows past a cylinder with varying degrees N : GMRES iteration # and timings (sec) on a
single CPU using tensor-product based fast diagonalization method (FDM) for steady-state
temperature solution with frozen velocity. 17

4 Singlerod (E = 2560 and N = 7): GMRES iteration # for steady-state temperature solution
for Pe = 100 and Pe = 1000 with mismatched Pe in the FDM-based preconditioning. 18

5 Singlerod (E = 2560 and N = 7) and long singlerod (E = 12000 and N = 7): GMRES iteration
for steady-state temperature solution for Pe = 1, 000 and Pe = 10, 000 with mismatched
Pe in the FDM-based preconditioning. 19

6 Navier-Stokes Example (E = 144 and N = 7): Total number of GMRES iterations for the
steady-state flow solution of a lid-driven cavity at Re = 100 and Re = 500 with mismatched
Re in the FDM-based preconditioning. 20

Exascale Computing Project (ECP) x CEED-MS20

1. INTRODUCTION

The goal of this milestone was the performance tuning of the CEED software and first wave apps.

In this milestone, the CEED team developed optimization techniques and tuned for performance the
CEED software. Specifically, the focus was on the following:

• Fast finite element operator storage and evaluation using partial assembly/matrix-free algorithms that
take advantage of tensor-product element structure;

• Architecture optimizations, including the development of performant discretization libraries targeting
heterogeneous systems with multi-core CPUs, GPUs, and/or many-core CPUs in single node, cluster,
or large-scale ECP supercomputer configurations;

• Global kernels for finite element operators, including the development of algorithms and libraries for
fast gather-scatter exchanges for action assembly on unstructured graphs and for components needed
for global linear solvers.

A main part of this milestone was the performance tuning of the CEED first-wave ECP applications. This
included the ExaSMR application – Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small
Modular Reactors (ORNL), and the MARBL application – Next-Gen Multi-physics Simulation Code (LLNL).

The artifacts delivered include performance improvements in CEED’s 1st wave of applications, and tuned
CEED software for various architectures through a number of backends, freely available in the CEED’s
repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the CEED GitHub
organization, http://github.com/ceed for more details.

2. ARCHITECTURE OPTIMIZATIONS

2.1 Fast Algorithms

2.1.1 Pre-assembled vs. Partial Assembly

While a global (parallel) sparse matrix is a good representation of a PDE operator discretized with low-order
elements, a global parallel matrix is a poor choice when discretizing with high-order elements, due to the
large cost of both the memory transfer and floating point operations.

CEED is developing an alternative operator format, based on the CEED low-level API, that allows efficient
operator evaluation that is optimal in memory and nearly-optimal in FLOPs cost. The CEED low-level
API, libCEED operates with the foundational components of finite element operators, described by the
decomposition given in Figure 1.

To achieve high-performance, it is critical to take advantage of the tensor-product structure of both the
finite element basis and the quadrature rule to efficiently apply the action of B without necessarily computing
its entries. This is generally know as sum factorization. In the case where we precompute and store the D
matrix, we call the algorithm partial assembly.

The low-level API allows us to provide multiple high-level APIs that are necessary to enable application
to take advantage of CEED-developed high-order technologies at the level they are comfortable with, while
taking advantage of the tensor-product structure of the finite element basis and the quadrature rule to enable
efficient implementations on modern hardware.

Illustration of the benefits of matrix-free vs. assembled matrices for each element can be demonstrated
with the following results on NVIDIA V100 GPUs. First, we derive a simple but effective performance
model – the kernels of interest are strictly memory bound since each element requires a unique matrix and
performs a matrix-vector product that cannot gain performance from reusing cached data. An estimate on
the throughput in nodes per second is bound by:

GNODES/s = (device bandwidth in GB)/(sizeof(dfloat) * (Np + 2)),

Exascale Computing Project (ECP) 1 CEED-MS20

http://ceed.exascaleproject.org
http://github.com/ceed

Figure 1: High-order finite element operators representation in the CEED
low-level API, libCEED.

where Np is the number of basis functions, e.g., for a standard tetrahedral element of degree N this is given by

Np = (N+1) * (N+2) * (N+3)/6.

There are relatively few optimization options for implementing and tuning kernels that use pre-assembled
matrices since the operation reduces to streaming the matrices from device memory and caching the vector in
shared memory. Starting from our early work first reported in milestone CEED-MS13 [2], we have studied and
illustrated on particular kernels the main optimization which is important at low order of SIMD cramming
so that we use close to a multiple of 32 threads per thread-block [21]. The results of the comparison are
summarized in Figure 2. Shown is the node throughput rates measured on an NVIDIA V100 for assembled
element matrices (Left; demoted partially assembled matrix version) and for the matrix-free version (Right).

Figure 2: Node throughput rates measured on an NVIDIA V100 for assembled
element matrices (Left) vs. matrix-free (Right).

Exascale Computing Project (ECP) 2 CEED-MS20

We note that the achieved throughput of the matrix-free version is significantly faster. Further detail on
our analysis and conclusions are available in [21].

2.1.2 BLAS vs. Custom Kernels

The BLAS (Basic Linear Algebra Subprograms) standard is an API for performing common, basic linear
algebra routines. The appeal of using the BLAS API is that it is an accepted standard and implementations
have been highly optimized for various architectures (e.g., by vendors in their corresponding math libraries
like cuBLAS, MKL, ESSL, etc.). Thus, algorithms written in terms of BLAS benefit from both functional
and performance portability across architectures.

A significant part of the work performed by the CEED finite element codes consists of operations that
can be expressed as BLAS routines (i.e., dot products, vector updates, matrix-vector, and matrix-matrix
multiplications). We usually develop custom kernels that combine several BLAS-type operations to reduce
memory traffic or memory usage. For instance, we often implement matrix-free operations where we apply
the action of a matrix on a vector without storing the matrix explicitly (as described in Section 2.1.1).

Thus, it is of high interest to compare the two approaches, quantify the differences in performance, and
derive a strategy for developing fast high-order algorithms. We did extensive optimizations and comparison
studies in order to gain insight into the strong and weak scalability characteristics of each approach.

Figure 3 compares the performance in GFlop/s of the two approaches on NVIDIA V100 GPU. DOFS in
the figures refers to DOFS=Np*E, where Np is the number of basis functions as given in Section 2.1.1, and
E is element count chosen from meshes with [1,000 2,000 4,000 8,000 16,000 32,000 64,000 128,000 256,000
512,000] elements.

Figure 3: Performance in GFlop/s on NVIDIA V100 GPU on stiffness matrix
action on tetrahedral elements using cuBLAS (Left) vs. custom build kernels
(Right).

The custom kernel uses our best performing OCCA kernel [20]. The cuBLAS approach uses a matrix-
matrix product (CUBLAS DGEMM) plus a streaming kernel to apply the chain rule that relates derivatives
computed with respect to local elemental coordinates to derivatives in physical coordinates.

Our conclusion is that the custom kernel clearly “wins”, especially for lower degrees. At the lowest
orders the computation is memory bound and using cuBLAS in the above manner requires us to write out 7
intermediate values per FEM node and then read them in again in the chain rule kernel. The custom version
of the kernel compute the matrix product and chain rule without saving intermediate results, while achieving
roofline performance through efficient blocking (see [20] for further details).

In summary, the custom approach scales better and cuBLAS-based version starts to be competitive
at N=7. Although the cuBLAS implementation exercise is simpler than designing, implementing, testing,
modeling, and tuning bespoke kernels it also induced significantly more data movement and required excessive
temporary data storage. Finally, the tuned OCCA kernels deliver strong performance at all orders in contrast
to cuBLAS which underpierformed until N=7.

Exascale Computing Project (ECP) 3 CEED-MS20

In addition, we emphasize that in our case, we needed a two-step approach: cuBLAS function followed by
chain rule kernel, which means we launch two kernels. In addition, we were forced to allocate more array
space to hold the intermediate results. The conclusions of this study might had been very different if we were
able to allocate the same amount of array space for both approaches and replace the custom bake-off approach
with just one cuBLAS function. This is an approach that we pursue in one of the libCEED backends – the
MAGMA backend – that we discuss in Section 2.3.4.

Further detail on our analysis and conclusions are available in [20].

2.1.3 Kernel Optimizations

We did a number of kernel performance optimizations for GPUs. Our results in this section show that there
is a substantial difference in performance between basic GPU code and highly optimized GPU code. To
illustrate the effect of performance optimizations and tuning, we use a simple, yet demanding (high arithmetic
intensity) matrix-vector kernel coming from FEM. The piece of code in question is executed multiple times
per time step for time dependent flow calculations that might require hundreds of thousands of time steps,
hence we would like to make it as fast as possible. We used OCCA in the implementations but the same
techniques can be equally well applied directly in CUDA and OpenCL.

The code is executed for polynomial degrees N=1,2, ..., 8, using a mesh with E = 320, 000 affine tetrahedral
elements. The number of nodes per element is given by the formula: Np = (N+1)(N+2)(N+3)/6, as in the
previous subsections.

First, we describe how many flops (per element) do we perform. In our particular case this is: 20 ∗
p2Np + 20 ∗ pNp, where pNp is the number of nodes per element. Note that pNp increases cubically with
the polynomial degree and number of flops is proportional to the sixth power of the polynomial degree -
exhibiting the dreaded curse of dimensionality. Thus, the number of flops for N = 1..10 is respectively 400,
2200, 8400, 25200, 63840, 142800, 290400, and 547800.

We developed a sequence of ten optimizations that we describe in detail in [19]. The performance results
are summarized in Figure 4 for an NVIDIA Titan V GPU in double precision arithmetic (Left).

Figure 4: Performance results for ten optimizations [19] on an NVIDIA Titan
V GPU in double precision arithmetic (Left), and corresponding speedup effects
(Right).

In conclusion, it is clear that there is still a gap between the roofline and the achieved performance. The
gap is more pronounced for mid-range degrees. We hypothesize that this gap results from L1 and L2 cache
misses. For example, in double precision and N=8, the matrices alone take more than 4MB, which overflows
even L2 cache. Also, note that we have used manufacturer peak floating point performance for the roofline
plateaus. For an empirical estimate of the actual achievable peak performance on the Titan V see the earlier
blog entry discussing the results from occaBench. Using the empirical peak suggest that the above results are
close to best achievable performance for this kernel.

Exascale Computing Project (ECP) 4 CEED-MS20

2.2 libParanumal

The libParanumal library is an experimental test-bed for exploring plugin GPU capable components that can
be integrated into existing high-order finite element codes as optional accelerator modules. This library is being
actively developed at Virginia Tech as part of the CEED project. Figure 5 shows the base library structure.

Nek5K

libCEED

ECP Apps

NVIDIA CUDA

Backends

OCCA

AMD HIP

OpenCL

OpenMPCompressible
Navier-Stokes

Galerkin-
Boltzmann

Incompressible
Navier-Stokes

Linear 
Elliptic

Benchmarks Parallel mesh
wrangling

Heterogeneous
hybrid multigrid

Flow Solvers Core

High-oder Elements

Discretization

Discontinuous
Galerkin methods

Galerkin finite
element methods

Implicit time
steppers

Explicit time
steppers

Implicit-explicit
time steppers

libParanumal

Figure 5: libParanumal: Library Structure and Flow Solvers with Plugins for
Existing DOE ECP Packages.

The library uses the newly released OCCA 1.0 to deliver native CUDA/OpenCL/OpenMP performance for
GPU and/or CPU calculations. The library includes carefully optimized kernel implementations of the most
computationally intensive calculations for high-order finite element operations (see for example [16]).

The core sub-libraries of libParanumal include linear solvers and multigrid preconditioners that are fully
OCCA accelerated and are customized specifically for linear systems stemming from high-order finite element
discretization. The library further includes reference high-order finite element based solvers for incompressible
Navier-Stokes; compressible Navier-Stokes; Galerkin-Boltzmann based gas dynamics; linear acoustics; and
elliptic Poisson potential problems. A partial list of libParanumal capabilities follows:

A. Supported elements:

– Meshes consisting of triangles, quadrilaterals, tetrahedra, or hexahedra.

– Lagrange basis functions up to degree 15.

– Partial support for Bezier-Bernstein basis functions.

B. Elliptic solver:

– Linear Poisson and screened Poisson potential solvers.

– GPU optimized matrix-vector products.

– Hybrid p-type multigrid and algebraic multigrid preconditioned conjugate gradient solver.

– Sparse matrix or nearly matrix-free algebraic multigrid for coarse levels of multigrid hierarchy.

D. Heterogeneous accelerated flow solvers:

– Linearized Euler equations.

– Isothermal compressible Navier-Stokes solver with:

∗ Upwind discontinuous Galerkin discretization in space.

∗ Dormand-Prince adaptive Runge-Kutta integration in time.

Exascale Computing Project (ECP) 5 CEED-MS20

– Isothermal Galerkin-Boltzmann gas dynamics solver with:

∗ Penalty flux DG discretization in space.

∗ Adaptive semi-analytic (pointwise exponential) integration in time.

∗ Multi-axial quasi-perfectly matched absorbing layer far field boundary condition.

– Incompressible Navier-Stokes solver with:

∗ Choice of continuous FEM or interior penalty DG in space.

∗ Extrapolation-BDF integration in time.

∗ Sub-cycling (Operator Integration Factor Splitting) for advection.

E. Dependencies: MPI, gslib, OCCA.

The initial open source release of libParanumal library [22] was committed on 8/1/18. Publications related
to libParanumal that have been submitted include [9, 16, 8].

It is now possible to use libParanumal as an optional flow simulation engine callable from within Nek5000,
using its internal curvilinear hexahedral mesh representation. For more details, see Section 3.1.

2.3 libCEED-0.3

The next release of the CEED API library, libCEED v0.3, was released with several new features, significant
performance improvements, improved continuous integration, and many new tests with code coverage reports
(currently about 90%).

2.3.1 Active and passive fields

In this significant change to the public interface, CeedQFunctions now takes any number of named input and
output arguments while CeedOperator connects them to the actual data, which may be supplied explicitly
to CeedOperatorApply() (active) or separately via CeedOperatorSetField() (passive). This interface
change enables reusable libraries of CeedQFunctions and composition of block solvers constructed using
CeedOperator.

2.3.2 Optimized CPU backend

A concept of blocked restriction has been added to libCEED and used in an optimized CPU backend. Although
this is typically not visible to the user, it enables effective use of arbitrary-length SIMD while maintaining
cache locality. This approach is essential for performance at relatively low order and competitive any time the
number of elements per core is significant. A different optimization strategy (based on internal vectorization)
will be needed for optimal SIMD performance with high order elements in the strong scaling limit where the
number of elements per core is smaller than the SIMD length.

This CPU backend also implements an algebraic factorization of tensor product gradients to perform
fewer operations than standard application of interpolation and differentiation from nodes to quadrature
points. This algebraic formulation automatically supports non-polynomial and non-interpolatory bases, thus
is more general than the more common derivation in terms of Lagrange polynomials on the quadrature points.

2.3.3 Initial non-tensor bases capability

libCEED has an initial capability to handle elements with non-tensor bases. Due to a lack of a standardized
convention for quadrature on triangles, there is currently not a constructor for Lagrange elements of an
arbitrary order for non-tensor bases. The user must provide the quadrature points and weights, in addition
to the full interpolation and gradient matrices.

This capability is currently implemented in the CPU family of backends: the reference backend, the
optimized CPU backed, and the template backend. These new bases use the same CeedBasisApply and
CeedBasisCreate functions, but with a new constructor, shown below.

1 CeedBasisCreateH1(ceed , CEED_TRIANGLE , 1, P, Q, interp , grad , qref , qweight , &b);

Exascale Computing Project (ECP) 6 CEED-MS20

2.3.4 MAGMA backend

A main component of the performance tuning efforts in the CEED software has been the extension of
the MAGMA backend. The MAGMA backend relies on the MAGMA library to provide the libCEED
functionalities following the libCEED API specifications. The main differentiation with the other backends is
that the MAGMA backend approach is based on the use of BLAS, as well as codesign efforts to extend the
BLAS standard and provide highly tuned implementations that will overcome the performance limitations
currently associated with the BLAS approach, as explained in Section 2.1.2.

Batched BLAS While the use of BLAS has proven to be very effective in developing portable and efficient
software, the existing BLAS is not adequate for batched computations involving thousands of (or more) small
problems. This is the case in high-order method, where the operators are matrix-free, and the operator
evaluations and applications require batched operations over the finite elements, as described in Section 2.1.1.
To address this drawback, we have been leading efforts to codesign, discuss, and formalize details related
to a batched BLAS API standard. This is an ongoing effort to reach out to various ECP application and
software developers, and to a broad community of scientific computing users, as well as library and application
developers. Main ECP hardware vendors already provide some Batched BLAS routines in their math libraries.
Recent activities on these co-design efforts included a BoF at SC17, two mini-symposium sessions at SIAM
PP18 and a session at GTC18.

We have developed, tuned, and released through MAGMA the most used Batched BLAS. The MAGMA
backend in CEED needs Batched matrix-matrix double-precision multiplication kernels (DGEMMs) that
we developed and tuned for the latest architectures [12]. For example, on a V100 GPU for square matrices
of size 32, we achieve an execution rate of about 1, 600 gigaFLOP/s in double-precision arithmetic, which
is 95% of the theoretically derived peak for this computation on a V100 GPU. These results outperform
currently available state-of-the-art implementations such as vendor-tuned math libraries, including Intel MKL
and NVIDIA CUBLAS, as well as open-source libraries like OpenBLAS and Eigen. Figure 6 illustrates the
performance obtained on batched DGEMMs for two 10-core IBM Power8 CPUs (Left), NVIDIA V100 GPU
(Center), and a 10-core Intel Xeon E5-2650 v3 (Haswell) CPU (Right).

Figure 6: Batched DGEMM performance on two IBM Power8 CPUs (Left),
NVIDIA V100 GPU (Center), and an Intel Haswell CPU (Right).

Fast Tensor Contractions through Fusing Batched BLAS Kernels The CEED operators have
tensor-product element structure. We take advantage of that by representing the tensor contractions as
sequence of matrix-matrix multiplications. For high-order methods, where the data for single DGEMM does
not fit in the fast memory (e.g., L1 cache and registers for GPUs), we apply blocking techniques and use
implementations that are in the current Batched BLAS libraries. However, when the matrices fit in fast
memory, it is beneficial to fuse the sequence of operations for the tensor contractions in a single kernel. This
removes the intermediate write to global memory of results from one Batched BLAS call, and possibly read
from global memory for the next Batched BLAS call. This was explained in Section 2.1.1. Fusing kernels is

Exascale Computing Project (ECP) 7 CEED-MS20

critical for performance for these smaller sizes contractions as they minimize communications, and these are
the best performing kernels that we have implemented for various cases so far.

Custom kernels though do not follow the BLAS API, may be more difficult to read (and hance understand
and modify when needed), and we have to maintain them, tune across architectures, and develop custom
kernels for many applications. Therefore, we have also been targeting developments based on Batched BLAS
but with the possibility to fuse batched kernels into a single batched kernel. For example, the high-order
operators can be expressed as a batch over the finite elements e, e.g.,

batch<e=0..nelems>{ BT
e De. ∗ (BeAeBe

T)Be },

where the matrices involved are small and dense (except De that is diagonal), and depend on the particular
element e. The effect of this optimization is shown in Figure 7 for NVIDIA V100 GPUs. Note that even
for these small sizes, performance is still memory bound but gets close to the compute peak of the machine
(which is around 7, 000 GFlop/s).

Figure 7: Performance of fused vs. un-fused Batched DGEMMs of small sizes
on NVIDIA V100 GPU.

We enabled this optimization by providing device interfaces to BLAS that can be used to derive custom
algorithm that fuse Batched BLAS calls. The data used by the new fused batched kernel is loaded at the
beginning into shared memory and registers and subsequently used by the device BLAS calls through the
shared memory or register shuffling (when needed). Finally, the result is written back to the main memory
only once. Our efforts that initially introduced this approach were first reported in the CEED-MS13 report [2]
and were further developed, extended, and tuned for more kernels in this milestone.

Kernel Auto-Generation and Autotuning Process for Performance Portable Versions The ker-
nels developed for the MAGMA backend in CEED were parameterized and implemented using C++ features,
including templates and overloaded functions. The gemm kernel design in particular for small matrix sizes is
illustrated in Figure 8. The matrix C is split into blocks Cij of size BLKM ×BLKN that can be computed
in parallel. The idea is that since C is where the computations are accumulated and the final result written,
it is better to keep as large a part of C as possible in registers during the accumulation of the multiplication.
Note that this one-level design of blocking is especially designed for small matrices; for larger matrices, a
design with multiple levels of blocking may be better in order to account for blocking on the possibly multiple
levels of the architecture’s memory hierarchy layers. Any particular block Cij of C will be held in registers
for either the CPU or GPU case. The number of rows in Cij is better to be multiple of the vector length for
CPUs, or multiple of the number of threads in the “x” dimension for GPUs. Also, the number of columns will
be dependent on the available registers (CPUs or GPUs) and on the number of threads in the “y” dimension

Exascale Computing Project (ECP) 8 CEED-MS20

for the GPU case. There is a sliding window of size BLKM ×BLKK that reads data of the matrix A and,
similarly, a sliding window of size BLKK × BLKN that reads data from the matrix B. This data can be
read into register or into cache (shared memory or register in case of the GPU kernel). The innermost loop
will multiply the green portion of A and B and will accumulate the result into the green portion of C. Note
that the blue portion of A and B corresponds to the prefetching when it is enabled by the kernel generator
(the kernel generator will generate two kernels w/o prefetching). The windows of A and B slide horizontally
and vertically, respectively, and once finished, the block of C contains the final results of A×B. This result
is multiplied by α (when α is not equal to one) and added to the corresponding block of the matrix C (loaded
from the main memory and multiplied by β—when β is not equal to one—before the addition, and the result
is stored back into the main memory). If β is zero, the results of the multiplication are directly stored into
the main memory.

C11	 C12	 C13	 C14	

C21	 C22	 C23	 C24	

C31	 C32	 C33	 C34	

C41	 C42	 C43	 C44	

M

K	

K	

N	

BLKK	

BLKM	

BLKK	

BLKN	

B	

A	

registers for C
Ve

ct
or

le

ng
th

					

Parametrized C++ kernel design

prefetching	
bl

oc
kD

im
.x

blockDim.y

!�
!for pk=0; pk<BLK_K; pk++); �
!{�
! !BCAST B(k,0)-->rb_0; �
! !LOAD A(0,k)-->ra_0; �
! !FMA rC_0_0 += ra_0 * rb_0; �
! !LOAD A(1,k)-->ra_1; �
! !FMA rC_1_0 += ra_1 * rb_0; �
! !BCAST B(k,1)-->rb_1; �
! !FMA rC_0_1 += ra_0 * rb_1; �
! !FMA rC_1_1 += ra_1 * rb_1; �
! !BCAST B(k,2)-->rb_2; �
! !FMA rC_0_2 += ra_0 * rb_2; �
! !FMA rC_1_2 += ra_1 * rb_2; �
! !BCAST B(k,3)-->rb_3; �
! !FMA rC_0_3 += ra_0 * rb_3; �
! !FMA rC_1_3 += ra_1 * rb_3; �
! !BCAST B(k,4)-->rb_0; �
! !FMA rC_0_4 += ra_0 * rb_0; �
! !FMA rC_1_4 += ra_1 * rb_0; �
! !BCAST B(k,5)-->rb_1; �
! !FMA rC_0_5 += ra_0 * rb_1; �
! !FMA rC_1_5 += ra_1 * rb_1; �
!}�

�
�
�
�

�
!for pk=0; pk<BLK_K; pk++); �
!{�
! !LOAD A(0,k+0)-->ra_0; �
! !BCAST B(k+0,0)-->rb_0; �
! !FMA rC_0_0 += ra_0 * rb_0; �
! !BCAST B(k+0,1)-->rb_1; �
! !FMA rC_0_1 += ra_0 * rb_1; �
! !BCAST B(k+0,2)-->rb_2; �
! !FMA rC_0_2 += ra_0 * rb_2; �
! !BCAST B(k+0,3)-->rb_3; �
! !FMA rC_0_3 += ra_0 * rb_3; �
! !BCAST B(k+0,4)-->rb_0; �
! !FMA rC_0_4 += ra_0 * rb_0; �
! !BCAST B(k+0,5)-->rb_1; �
! !FMA rC_0_5 += ra_0 * rb_1; �
! !LOAD A(1,k+0)-->ra_1; �
! !BCAST B(k+0,0)-->rb_0; �
! !FMA rC_1_0 += ra_1 * rb_0; �
! !BCAST B(k+0,1)-->rb_1; �
! !FMA rC_1_1 += ra_1 * rb_1; �
! !FMA rC_1_2 += ra_1 * rb_2; �
! !FMA rC_1_3 += ra_1 * rb_3; �
! !BCAST B(k+0,4)-->rb_0; �
! !FMA rC_1_4 += ra_1 * rb_0; �
! !BCAST B(k+0,5)-->rb_1; �
! !FMA rC_1_5 += ra_1 * rb_1; �
!}�

column-wise row-wise

Figure 8: Design and auto-generation of the dgemm kernel: parameterized C++
dgemm kernel design (Left) and auto-generated code for the dgemm kernel for
the same configuration but with two different inner loop order (Right).

The same methodology applies when any of the matrices is transposed, and the code generation is always
handled automatically. Cij is always of size BLKM ×BLKN and the reading of A and B always happens
following the block design (e.g., contiguous block of the size BLKM ×BLKK and BLKK ×BLKN , resp., for
the Non-Transpose). As a result, the transpose is implicitly coded through the innermost loop when the data
is already in cache. Moreover, the description here was provided for square matrices, but the same applies for
rectangular matrices as well. The matrix C is always split over blocks, and therefore the case of rectangular
matrices can be generalized to follow the same methodology. This is also valid for the GPU implementation.
We also note that, since the read/store happens by block, a matrix stored in row-major format can also be
handled by the same techniques. In this case, the window slides vertically on A and horizontally on B. It can
also be handled by flipping the operations from non-transpose to transpose. For example, if the matrix A is
the only matrix stored in row-major and the operation is C = A × B, then this can be computed by the
C = AT ×B kernel where A is considered stored in column-major format.

The ultimate goal is to explore all possible kernel configurations, called “the autotuning search space,”
and provide a clear description of the kernel generation and the autotuning process to be performed in order
to get the best performance. As described above, for every architecture, there might be a very large number
of possibilities for designing the matrix-matrix multiplication kernel. If we take for example an 8× 8 matrix,
on a hardware that has 16 256-bit AVX-2 registers, we can decide to hold all of B in registers and keep
loading/reloading A and C, or we can decide to use only 8 registers to hold a portion of B and minimize
the number of loads/reloads on A and C, and so on. The same scenario will be applicable to C and to A.
Thus, the decision of how many registers we must dedicate to each array (e.g., A, B, and C) can generate
many configurations (about a thousand). Furthermore, one configuration might be good for one matrix size
but bad for other matrix sizes. In addition to that, there is the loop order: should the innermost loop go

Exascale Computing Project (ECP) 9 CEED-MS20

“row-wise” or “column-wise,” should we implement the ijk, ikj, kij, or other loop orders? Thus, for every loop
order configuration, since we have about one thousand configurations for the registers, one might end up
with about ten thousand configurations. This is what makes up the search space. Then, in order to exploit
such a large search space of possibility in the shortest time, we apply an aggressive pruning technique to
reduce it. A condition of the pruning is that only the kernel configurations that have absolutely no chance of
achieving good performance be eliminated.

Because our design is parameterized, once all the possible and acceptable configurations are created, the
kernel generator creates one or many kernels for every configuration. For every configuration, the difference
between the kernels can be the fashion of the innermost loop, e.g., “row-wise” or “column-wise,” the whole
nested loop order (e.g., ijk, ikj, kij, etc.), the instruction order, etc. For example, a configuration specifies the
blocking sizes (BLKM , BLKN , and BLKK) and the number of registers allocated for each variable A, B,
and C. Then, the generator creates many possible kernels for this configuration. An example of two CPU
generated kernels for the same configuration (2 registers for A, 4 registers for B, and 6 registers for C) is
depicted in Figure 8, Right.

This new flexible and automated design for code and configuration generation enables us to easily design
kernels for any architecture and to tune them and find the best kernel for each. This automated design did
not exist in our previous work where we had to have different code snippets for every architecture and then
tune it. Furthermore, we were able to extract from this tuning process the best configuration for these small
sizes and write a parameterized C++ code for prefetch and loop unrolling on CPUs [12].

3. APPLICATIONS PERFORMANCE IMPROVEMENTS

3.1 Nek5000/libParanumal Performance Benchmarks on V100

As introduced in Section 2.2, libParanumal is a software developed by Tim Warburton’s group at Virginia
Tech, focusing on designing algorithms for finite element analysis that fully exploit the parallelism and data
movement capabilities of GPUs. liParanumal supports GPU with OCCA provided with a unified APT for
interacting with backend device APIs (OpenMPI, CUDA, OpenCL). Currently, its primary target is to run
finite element solvers on CUDA GPUs. libParanumal can read Triangle, Quad, Hex and Tet meshes and solve
incompressible Navier-Stokes, compressible Navier-Stokes, elliptic and few other equations on these meshes.
Also, continuous and discontinuous Galerkin discretizations are also available. Various solver parameters
can be tweaked by using a configuration file that is read before the numerical simulations are started. The
skeleton of libParanumal is written in C++ and the main computational kernels are written in OCCA which
can be compiled for different accelerator devices using CUDA, OpenCL, etc.

Nek5000 can successfully interface with libParanumal and can run complicated simulations using lib-
Paranumal as the main solver engine. Nek5000 can use libParanumal in parallel using MPI as well. We can
read in a Nek5000 mesh, partition the mesh on Nek5000 side and then set the required data structures on
libParanumal side to drive the required solvers from Nek5000. The process of setting up Nek5000 to use
libParanumal can be described in five main steps:

1. Initialize the libParanumal library using the MPI communicator from Nek5000.

2. Initialize the Nek5000 mesh on libParanumal side provided with the required boundary conditions and
get a handle for the mesh. Also, setup the data structures to be used for the solvers.

3. Write a header file for the initial condition and boundary conditions.

4. Setup the solvers with required parameters and solve the problem.

5. Cleanup the created handles.

Figure 9 demonstrates approximately 4× speedup on a single GPU, compared to previous Nek5000 +
OpenACC version for simulating the singlerod mesh (E = 2560, N = 7) in Figure 10 (left) by Nek5000
+ libParanumal which has the highly optimized tuned kernels in the OCCA backend. In particular, the
simulations using 1 GPU (n/p = 1, 310, 720 grid points per GPU) and 8 GPUs (n/p = 163, 840 grid points
per GPU) performs faster than the one using 64 CPU cores (n/p = 20, 480 grid points per CPU). Table 1
shows the performance profiling on ANL/JLSE DGX-1 Volta server using 8 GPUs, demonstrating 22% for
computing the elliptic operator and 8% for the gather-scatter operations.

Exascale Computing Project (ECP) 10 CEED-MS20

Figure 9: Strong-scaling on V100 for ExaSMR singlerod simulations by lib-
Paranumal (+ Nek5000), OpenACC (+ Nek5000), and Nek5000 (CPU).

We note the poor scaling performance on multi-GPU for this case, which was always meant as a single
GPU performance test. This is expected as the numbers of degrees of freedom is likely not enough to
even saturate a single GPU. For the pure OpenACC version saturation occurs at over 3,000,000 degrees of
freedom per GPU. Future studies will characterize the saturation limit for this version and a more extensive
strong-scaling and weak-scaling studies with the larger problem with 17x17 rods (E = 221, 600) in Figure 10
(right) on OLCF Summit once it becomes available for us to access.

3.2 ExaSMR: Algorithmic Performance Improvements

The CEED team is engaged with the ECP ExaSMR team for performance improvements through advanced
algorithmic developments as well as performance tuning. For the thermal-hydraulics analysis, hundreds of
thousands of flow channels comprise turbulent flow with very fine solution scales. The channels are typically
hundreds of hydraulic diameters in length.

For full reactor-core simulations, the ExaSMR strategy is to use Reynolds-Averaged Navier Stokes (RANS)
in the majority of the core with more detailed large eddy simulations (LES) in critical regions. In addition,
while the turbulence is challenging to resolve, it tends to reach a statistically fully-developed state within just
a few channel diameters, whereas thermal variations take place over the full core size. This poses a challenge
for coupled calculations. It is unpractical and too expensive to consider performing a full LES calculations.
Some acceleration to couple the solution through the use of steady-state solvers is likely necessary.

Table 1: Performance profile of libParanumal on ANL/JLSE DGX-1 Volta
server using 8 GPUs for singlerod mesh with (E = 2560, N = 7, n = 1, 310, 720).

Type Time(%) Time Calls Avg Min Max Name

GPU activities: 22.84% 1.42900s 3341 427.72us 420.99us 435.55us _occa_ellipticPartialAxIpdgHex3D_0

17.51% 1.09593s 88566 12.374us 1.7270us 48.511us _occa_scaledAdd_0

16.98% 1.06224s 32005 33.189us 9.6320us 134.05us _occa_ellipticPartialAxHex3D_0

11.38% 712.03ms 3341 213.12us 205.18us 220.48us _occa_ellipticPartialGradientHex3D_0

8.18% 511.86ms 36620 13.977us 5.1840us 57.568us _occa_gatherScatter_0

6.48% 405.65ms 37212 10.901us 1.5040us 40.544us _occa_dotMultiply_0

4.25% 265.88ms 9873 26.929us 17.855us 32.832us _occa_innerProduct_0

1.39% 87.292ms 34970 2.4960us 1.0880us 39.999us _occa_vectorAddKernel_0

1.19% 74.446ms 1898 39.223us 30.944us 45.535us _occa_weightedInnerProduct2_0

1.16% 72.393ms 20439 3.5410us 1.6310us 12.928us [CUDA memcpy DtoH]

1.11% 69.162ms 4221 16.385us 2.3990us 82.879us [CUDA memcpy DtoD]

API calls: 67.96% 5.63226s 236848 23.780us 1.3250us 1.0378ms cuStreamSynchronize

24.65% 2.04328s 338961 6.0280us 4.2300us 21.429ms cuLaunchKernel

6.40% 530.61ms 20439 25.960us 16.255us 130.81us cuMemcpyDtoH

0.70% 58.150ms 4221 13.776us 6.5470us 3.8550ms cuMemcpyDtoD

0.70% 58.150ms 4221 13.776us 6.5470us 3.8550ms cuMemcpyDtoD

Exascale Computing Project (ECP) 11 CEED-MS20

Figure 10: Spectral-element meshes for single rod (left) and 17×17 rods (right).

To accelerate the time-to-solution, CEED team is collaborating with ExaSMR team to develop fully
implicit and steady state solvers for thermal transport and RANS. For the nonlinear Navier-Stokes (and
RANS) transport, the Jacobian-free Newton Krylov (JFNK) routines from NekCEM’s drift-diffusion solver [18]
have been imported to Nek5000 and tested on several benchmark problems. This new steady-state solver
includes an inexact (Jacobi-free) formulation based on a first-order Taylor series expansion [10].

3.2.1 Jacobian-free Newton Krylov Method Implementation into Nek5000

In JFNK approach, we consider the semi-discrete form based on spectral element method for the unsteady
Navier-Stokes problems with a steady-state solution as

∂u

∂t
= f(u)→ 0, as t →∞, (1)

and we define a pseudo-timestep using BDF1 with a time step size τn and introduce gn at each time step
which will approximate the root of f(u) as t →∞:

gn(u) :=
u− un−1

τn
− f(u)→ 0, as t →∞. (2)

At each pseudo-timestep, we solve gn(u) = 0 by Newton iterations:

un−1k = un−1k−1 + sn−1k−1 , (3)

where snk is obtained by GMRES solving a linear system

Jn−1
k−1s

n−1
k−1 = −gn(un−1k−1). (4)

Within GMRES the action of the Jacobian matrix-vector product is approximated by a first order Taylor
expansion for an arbitrary vector s, where f is approximated by BDF1 solver with ∆t small enough:

Jn−1
k−1s = [gn(un−1k−1 + εs)− gn(un−1k−1)]/ε (5)

= s/τn − [fn(un−1k−1 + εs)− fn(un−1k−1)]/ε. (6)

Figure 11 shows the case of Dean’s flow (left) with rapid convergence to steady state solution with ∼ 18
pseudo-time steps (right).

Exascale Computing Project (ECP) 12 CEED-MS20

Figure 11: JFNK, converging to steady-state solutions for Dean’s flow with
Re = 2000 (left) and the convergence of the norms ‖f‖2 and ‖g‖2 with increasing
pseudo-timestep sizes (dtNT) at each pseudo-timestep (right).

3.2.2 RANS Model in Nek5000 with Jacobian-free Newton Krylov Method

We extended the JFNK method for a RANS model [17] that is a regularized k-ω model, including the
turbulent kinetic k and the specific dissipation rate ω in addition to the velocity field v. The model describes
the turbulent properties of the incompressible flows with

k =
〈u′2〉+ 〈v′2〉+ 〈w′2〉

2
, (7)

where u′, v′ and w′ are fluctuation component of velocity vector around the ensemble-averaged mean velocity
vector v = (u, v, w) governed by

∂(ρv)

∂t
+∇ · (ρvv) = −∇p+∇ ·

[
(µ+ µt)

(
∇v +∇vT − 2

3
∇ · v

)]
, (8)

∂(ρk)

∂t
+∇ · (ρkv) = ∇ · (Γk∇k) +Gk − Yk + Sk, (9)

∂(ρω)

∂t
+∇ · (ρωv) = ∇ · (Γω∇ω) +Gω − Yω + Sω, (10)

where µ is the molecular viscosity and µt is the turbulent viscosity with the continuity equation for incom-
pressible flow

∇ · v = 0. (11)

Figure 12 demonstrates the number of pseudo-time steps to converge to the steady state solutions for a
2D turbulent channel problem with 57 pseudo-time steps for Re = 10, 935 and 140 pseudo-time steps for
Re = 100, 000, whereas the second-order backward difference formula (BDF) with extrapolation (EXT) takes
more than 500,000 timesteps. Experiments are currently ongoing with an extension to 3D RANS problem
through CEED/ExaSMR collaboration.

3.2.3 Preconditioning Strategies for Steady Advection-Diffusion and Navier-Stokes

These recent developments are the first step in nonsymmetric system solvers for Nek5000. The next steps
include larger problem sets, including Pe > 10, 000 with the 17× 17 rod bundle (E > 200, 000 elements) to
generate temperature profiles at low cost. The idea is to temporarily freeze the velocity field. The velocity

Exascale Computing Project (ECP) 13 CEED-MS20

Figure 12: Jacobian-free Newton Krylov pseudo-time stepping, converging to
steady-state solutions for a RANS turbchannel model with Re = 10935 (top left)
and Re = 100, 000 (top right). Profiles of the initial condition (bottom left) and
steady state solution (bottom right) for k, ω and the x-component of the velocity.

rapidly reaches a statistically steady state while the hydraulic diameter Dh, is much shorter than the channel
length Lt, which governs the thermal development time. By freezing the expensive-to-generate velocity
field, we hope to accelerate equilibration of the thermal field without having to laboriously compute tens of
thousands of transient turbulent eddies. Once the initial thermal transient has passed, LES of the thermal
and hydrodynamics will be evolved in concert.

The steady-state advection-diffusion and steady-state Navier-Stokes (NS) equations share a nonsymmetric,
non-positive-definite character arising from advective transport. Preconditioning these systems for tensor-
product-based spectral element methods presents unique challenges and opportunities. Following earlier
work for the Poisson and Stokes problems [4, 7, 6, 11], we develop a p-multigrid (PMG) strategy that uses
overlapping Schwarz solves for a smoother at each level. For the steady advection-diffusion problem, PMG
is used directly as a preconditioner within a Krylov subspace projection (KSP) method such as GMRES.
For the Navier-Stokes, PMG is part of a larger preconditioner that includes restriction of velocity search
directions to the space of divergence-free fields through a projection technique that we describe later. We
begin with a short description of the advection-diffusion preconditioner and subsequently explain how PMG
is a key component in the Newton-based nonlinear NS solver in next section.

3.2.4 p-Multigrid for Steady Advection-Diffusion

The smoother for our current p-multigrid preconditioner is based on a simple Richardson iteration involving
a preconditioner, M . Coupling this with a coarse-grid correction leads to the two-level preconditioner given

Exascale Computing Project (ECP) 14 CEED-MS20

by the following pseudo-code.

Approximate the solution to Lx = b; x0 = 0: (12)

x1 = x0 + M(b − Lx0)

r1 = b − Lx1

rc = JT
c r1

xc = L−1c rc (13)

x = Jcxc (return x)

Here, L is assumed to be the spectral element advection-diffusion operator, M ≈ L−1 is the Schwarz smoother,
and Lc = JT

c LJc is the coarse grid system with Jc an interpolator from polynomial degree p′ < p to polynomial
degree p within each spectral element. The coarse grid problem (13) can be solved by an invocation of the
same two-level strategy, starting on a coarser grid, which leads to classic p-multigrid, or by an iterative KSP
scheme. We formally define the overlapping Schwarz smoother with the Galerkin form:

M :=

E∑
e=1

RT
e L
−1
e Re, (14)

where Re is a rectangular Boolean matrix that restricts a global set of basis coefficients, u to a subset
associated with Ωe and its corresponding region of overlap, ue = Reu. The local systems are Le := ReLR

T
e .

The challenge with this method is to solve Leue = re. Le is dense and, if formed explicitly, has O(p6)
nonzeros, which is prohibitive for p > 3. Fortunately, Le can be applied in only O(p4) operations with
only O(p3) storage, which is optimal. For elliptic problems, Le is spectrally equivalent to its low-order
finite-element counterpart on the same Gauss-Lobatto-Legendre nodes, which allows one to approximate
L−1e by solving a sparse system [4, 13]. The equivalence is lost, however, for the advection-dominated case;
the high-wavenumber eigenvalues of the low-order operator tend to zero whereas the high-order ones do not.
Moreover, despite the tensor-product form of the underlying basis coefficients, Le is generally not separable,
particularly when advection is added.

3.2.5 Approximate Separable Operators

In the absence of advection, Le is separable for certain geometries, which means that it can be expressed in
the tensor-product form

Le = B3 ⊗B2 ⊗A1 + B3 ⊗A2 ⊗B1 + A3 ⊗B2 ⊗B1, (15)

where Aj is the one-dimensional stiffness matrix associated with the jth direction (i.e., r, s, or t in the

reference element Ω̂ := [−1, 1]3), and Bj is the associated mass matrix. Since Bj is symmetric positive definite
(SPD), it is possible to find a matrix of eigenvectors, Sj , and a diagonal matrix of eigenvalues, Λj , satisfying
AjSj = BjSjΛj , which leads to the diagonalization of Le,

Le = SΛS−1, (16)

and its inverse,

L−1e = SΛ−1S−1. (17)

Here, the full block-eigenvectors and eigenvalues are

S := S3 ⊗ S2 ⊗ S1, (18)

S−1 := S−13 ⊗ S−12 ⊗ S−11 , (19)

Λ := I ⊗ I ⊗ Λ1 + I ⊗ Λ2 ⊗ I + Λ3 ⊗ I ⊗ I. (20)

We note that, in 3D, (17) provides one of the fastest possible solution strategies for solving the Schwarz
substeps in (14) for the p in the range of 2 to 20. S and S−1 are inexpensive to apply as tensor contractions
that are expressible as fast matrix-matrix products. Λ is trivially inverted because it is diagonal.

Exascale Computing Project (ECP) 15 CEED-MS20

Figure 13: Double-glazing model: pre-defined velocity (left) and steady-state
solution for temperature (right) with Pe = 100.

E No Precon iter# LU iter# FDM iter#
1× 1 37 16 -
2× 1 79 22 23
2× 2 170 22 19
3× 3 319 19 18
4× 4 482 18 16
5× 5 632 17 15

Table 2: Double-glazing model with varying E for N = 7: GMRES iteration
without and with preconditioning using the LU and the FDM (FDM) for
steady-state temperature solution with a pre-defined velocity.

The challenge for advection-diffusion is that Le is generally not separable, meaning it does not have
the form (15). In two dimensions, for the case of rectilinear elements with a velocity field of the form
c = (cx(x) cy(x)), Le takes the form

Le = By ⊗Ax +Ay ⊗Bx +By ⊗ diag(cx)BxDx + diag(cy)ByDy ⊗Bx. (21)

Even in the simplest case where, say, cy = 0 and cx = b(y)a(x), the fast diagonalization form (17) would
require simultaneous diagonalization of By, Ay, and b(y)By, which is not possible unless two of the three
matrices commute.

Fortunately, there have been recent developments in generating separable approximations to any given
matrix Le that require only the evaluation of matrix-vector products of the form w = Leu (which is fast) and
not explicit formation of Le (which is prohibitively expensive) [15]. We introduce the basic concepts for the
two dimensional case, where we would seek an approximation of the form

Le ≈ A⊗B + C ⊗D, (22)

which could be solved by the fast diagonalization method. To simplify the exposition, we’ll assume that all
matrices on the right of (22) are p× p and that Le is therefore p2 × p2. We note that both A and B have p2

entries such that A⊗B really comprises only 2p2 pieces of information, despite being of full rank (assuming
that A and B are invertible). In particular, we note that

A⊗B :=

a11b11 a11b12 · · · a1pb1p
a11b21 a11b22 · · · a1pb2p

...
. . .

...
ap1bp1 ap1bp2 · · · appbpp

 (23)

= shuffle(a bT), (24)

Exascale Computing Project (ECP) 16 CEED-MS20

Figure 14: Flows past a cylinder (E = 1472): pre-defined velocity (left) and
steady-state solution for temperature (right).

Pe = 100 Pe = 500 Pe = 1000
N + 1 LU FDM LU FDM LU FDM LU FDM LU FDM LU FDM

(sec) (sec) (sec) (sec) (sec) (sec)
6 15 15 0.52 1.10 59 171 7.39 29.99 181 300 21.03 93.45
8 11 16 0.96 1.65 26 33 4.82 7.99 49 280 15.68 137.5
12 10 13 6.05 6.94 12 18 6.54 7.92 15 20 10.21. 15.71
16 10 14 28.73 22.66 11 14 26.71 17.38 12 14 28.42 18.85
20 10 19 95.58 62.03 11 14 83.58 41.61 11 14 84.00 40.97

Table 3: Flows past a cylinder with varying degrees N : GMRES iteration #
and timings (sec) on a single CPU using tensor-product based fast diagonalization
method (FDM) for steady-state temperature solution with frozen velocity.

where a = [a11 a21 . . . app]T , b = [b11 b21 . . . bpp]T , and shuffle is a permutation operator that rearranges the

entries of a bT to the form (23).
For obvious reasons, we refer to A⊗B as a rank-1 tensor and A⊗B + C ⊗D as a rank-2 tensor. We are

thus seeking a rank-2 tensor that approximates Le, which is to say that we are seeking the rank-2 matrix

L2 := a bT + c dT ≈ shuffle−1(Le) =: Se (25)

It is well-known that the closest rank-2 approximation to Se, in the Frobenius norm, is given by entries in
the singular value decomposition (SVD), Se = UΣV T . Specifically,

L2 = u1σ1v
T
1 + u2σ2v

T
2 . (26)

The approximation, therefore, simply requires identification of the first two terms in the SVD of Se, which
can be found by iterative methods [15] that require fast matrix-vector products with Le and forward and
inverse shuffle operations applied to vectors.

Working with summer student Pablo Brubeck from UIUC, we have implemented approximate separable
solvers for the fast diagonalization method (FDM) in Nek5000 for the advection-diffusion problem in both
2D and 3D. In the multilevel Schwarz context, it is used as a smoother at several levels. For 2D, we have
compared the method to exact LU factorizations of Le for the particular case of thermal transport past a
heated cylinder at several Peclet numbers. (LU was deemed too expensive to test directly in 3D.)

Our preliminary results are summarized here, followed by more details: Table 2 presents comparisons of
iteration counts with and without preconditioning with varying mesh resolution for a fixed polynomial order.
Table 3 shows that, for sufficiently high polynomial orders (N = p), the FDM is faster than LU for each
Peclet number, Pe = 100, 500, and 1000. Given the relative complexity estimates of p2d for LU and pd+1

and pd work and storage estimates for the FDM, it is clear that the FDM would be the best option in 3D.
Tables 4 and 5 illustrate the effectiveness of this preconditioning strategy for the ExaSMR examples with
single-rod and long single-rod cases in 3D as a function of Peclet number and domain size. These results are
relatively new and thus still under investigation but, overall, the approach is promising for these challenging
nonsymmetric problems.

Exascale Computing Project (ECP) 17 CEED-MS20

Preconditioner Pe = 100 Pe = 1000
Pe FDM FDM
10 81 -
20 50 468
50 26 234
100 14 124
200 - 67
500 - 30
1000 - 16

Table 4: Singlerod (E = 2560 and N = 7): GMRES iteration # for steady-state
temperature solution for Pe = 100 and Pe = 1000 with mismatched Pe in the
FDM-based preconditioning.

Figure 15: A singlerod (E = 2560, N = 7) and its steady-state solution for
temperature with Pe = 1000 (left) with pre-defined frozen velocity (right).

Table 2 shows the case of the 2D double-glazing problem for the temperature solution with Pe = 100 and
the pre-defined velocity shown in Figure 13. The GMRES iteration counts without preconditioning increase
dramatically as the mesh resolution increases with larger E for a fixed N = 7, while the iteration counts drop
down significantly with the cases of LU and FDM preconditioning.

Table 3 shows the case for 2D flows past a cylinder (E = 292) with varying polynomial degrees N . It
demonstrates the GMRES iteration counts for steady-state temperature solution with frozen velocity by
the steady-state advection-diffusion solver using the FDM. The results show the validation of the FDM
implementation in comparison to the LU method, demonstrating the iteration numbers reduce as N increases
and stays relatively constant as the Peclet number also increases.

Table 4 shows the case for solving the temperature with a frozen velocity for Pe = 100 and Pe = 1000
on a singlerod mesh (E = 2560, N = 7) shown in Figure 10 (left) with the field profiles in Figure 15. In
particular, we studied mismatched Pe in the FDM-based preconditioning. The experiments show that the
GMRES iterations actually reduce as the Pe in preconditioning chosen close to the problem Pe, with 14
iterations for Pe = 100 and 16 iterations for Pe = 1000. We also observe more speedup with smaller iteration
counts in 3D when using relatively smaller N than the ones in 2D case of Table 3.

Table 5 demonstrates the cases for solving the temperature with higher Pe, including a larger singlerod
mesh (E = 12000, N = 7) which is longer in z direction. The GMRES counts for Pe = 1000 stays around
16 ∼ 18 with matching Pe = 1000 in preconditioning for both experiments. For larger Pe = 10000, we
currently obtained the data only up to Pe = 1000 in the preconditioning, with iteration counts around
122 ∼ 135 while we expect it would significantly reduce with the matching Pe = 10000 in preconditioning
which have to be updated.

Exascale Computing Project (ECP) 18 CEED-MS20

Figure 16: A long singlerod (E = 2560×5, N = 7) and its steady-state solution
for temperature with Pe = 1000 (left) with pre-defined frozen velocity (right).

singlerod long singlerod
Preconditioner Pe = 1000 Pe = 10000 Preconditioner Pe = 1000 Pe = 10000

Pe FDM FDM Pe FDM FDM
500 30 - 500 34 -
1000 16 122 1000 18 135

Table 5: Singlerod (E = 2560 and N = 7) and long singlerod (E = 12000 and
N = 7): GMRES iteration # for steady-state temperature solution for Pe = 1, 000
and Pe = 10, 000 with mismatched Pe in the FDM-based preconditioning.

3.2.6 FDM Preconditioning Extension to Steady Navier-Stokes

Here, we briefly outline extensions of the advection-diffusion preconditioner to the steady NS equations.
Following [4], we write the algebraic form for the steady NS equations as[

A −DT

−D 0

](
u

p

)
=

(
Bf − C(u)u

0

)
, (27)

where A constitutes the diffusion operator, C(u)u is the nonlinear convection term, and D is the discrete
divergence operator. Let W be a diagonal SPD matrix and rewrite (27) in the algebraically equivalent form,[

W −DT

−D 0

](
u

p

)
=

(
Bf − C(u)u + (W −A)u

0

)
=

(
g

0

)
(28)

With the SPD Schur complement, E := DW−1DT , we can solve directly for the divergence-free velocity,

u =
[
I − W−1DTE−1D

]
W−1g (29)

= PWW−1g, (30)

Exascale Computing Project (ECP) 19 CEED-MS20

Figure 17: Lid-driven velocity (left) and stream lines (right) with Re = 500.

Preconditioner Re = 100 Re = 500
Re FDM FDM
10 255 921
20 250 868
50 246 744
100 252 608
200 - 499
500 - 522

Table 6: Navier-Stokes Example (E = 144 and N = 7): Total number of
GMRES iterations for the steady-state flow solution of a lid-driven cavity at
Re = 100 and Re = 500 with mismatched Re in the FDM-based preconditioning.

where PW :=
[
I − W−1DTE−1D

]
is a projector onto the space of divergence-free functions. The solution

u of (27) is also a solution of the fixed-point iterator (29) and thus the root of

F(u) = u − PWW−1g

= u − PWW−1 [Bf − C(u)u + (W −A)u]

= u − PWW−1 [Bf − C(u)u − Au] − PWu

= PWW−1 [C(u)u + Au − Bf] . (31)

Equation (31) requires PWu = 0
¯
, which will be true after a single iteration of (29).

For Newton’s method, the Jacobian for the nonlinear problem (31) is

J(u) = PWW−1 [C′(u) + A] ,

which we recognize as (almost) an advection-diffusion system subject to projection onto a divergence-free
space. We take as our preconditioner for J the matrix

M(u) = PWW−1 [C′(u) + A]
−1
,

which entails solving an advection-diffusion system ([C′(u) + A]
−1

), followed by projection onto a divergence-
free space (which requires a multigrid solve for the pressure). We have verified that, despite being rank
deficient as a result of the divergence-free constraint, this preconditioner manages to cluster the resultant
eigenvalues close to 1 and results in an effective iteration scheme. Of course, it is in reality too expensive to
solve [C′(u) + A] exactly, so we apply a single sweep of the Schwarz-PMG scheme outlined in the preceding
section to each component of the velocity.

Exascale Computing Project (ECP) 20 CEED-MS20

Figure 18: FEM preconditioning discretizations in 2D and 3D: (a) GLL points
for N = 3 in a 2D quadrilateral spectral element and corresponding triangular
discretization for the P1 basis functions, (b) FEM meshing of a rectangular
element with one triangle per vertex for a total of 4 low-order FEM elements, (c)
GLL points for N = 3 in a 3D hexahedral spectral element and corresponding
6 tetrahedral discretization for the P1 basis functions, (d) FEM meshing of a
hexahedral element with one tetrahedron per vertex for a total of 8 low-order
FEM elements.

As an initial test, we have applied the projected-FDM preconditioning strategy for our exact Jacobian
Newton Krylov (EJNK) solver for the NS equations. Table 6 demonstrates the case of the lid-driven cavity
problem (E = 144, N = 7) for Re = 100 and Re = 500 shown in Figure 17. The FDM iterations are the
total GMRES iterations required for a sequence of Newton iterations. For Re = 100 and Re = 500, the total
Newton iterations are 6 and 9, respectively. For the fluid problems, the FDM gives also a better speedup as
the Re in the preconditioning gets close to the actual Re.

3.2.7 Low-Order FEM Preconditioning for Pressure

We accelerate the pressure solver using effective sparse preconditioner based on the first-order finite-element
method (FEM), extended from [3]. The FE discretization is applied on the same Gauss-Lobatto-Legendre
(GLL) points as the SE discretization. Figure 18 illustrates P1 discretizations for a rectangular and hexahedral
element with one triangle per vertex and one tetrahedron per vertex, respectively.

For the pressure solver, we consider the Poisson equation in Rd, d = 2 or 3, defined by

−∇2u = f for u, f ∈ Ω ⊂ Rd. (32)

The SE discretizations is based on the weak form, Find u ∈ XN
0 such that

(∇v,∇u)N = (v, f)N ∀v ∈ XN
0 = {φj(x) : φj vanishes on ∂ΩD}, (33)

where the basis function φl = l̂i(ξ)lĵ(η)lk̂(γ) (l = î+(N +1)ĵ+(N +1)2k̂) is defined by a tensor-product form

of the one-dimensional Legendre-Lagrange interpolation polynomials l̂i(ξ), lĵ(η), lk̂(γ) for (ξ, η, γ) ∈ [−1, 1]3,
approximating

xe(ξ, η, γ) =
∑
îĵk̂

xe
îĵk̂
l̂i(ξ)lĵ(η)lk̂(γ) and ue(x) =

∑
îĵk̂

ue
îĵk̂
l̂i(ξ)lĵ(η)lk̂(γ) (34)

Exascale Computing Project (ECP) 21 CEED-MS20

Figure 19: A mesh for a flow past cylinder E = 93 (top). GMRES iteration
counts (bottom) with varying N for low-order FEM using one-per-vertex elements.

on the non-overlapping elements Ωe such that Ω = ∪Ωe. Discretizing (32) by (34) we obtain the matrix form

Au = Bf, (35)

where the entries of A and B are defined as

Aij = (∇φi,∇φj)N and Bij = (φi, φj)N . (36)

Here we introduce finite-element-based matrices AF and BF having entries

AF,ij := (∇ψi,∇ψj), BF,ij := (ψi, ψj), (37)

where ψj(x) is a linear finite element basis function based on a (tetrahedral) triangulation of the mapped
GLL points, xe

îĵ
, from the SE discretization and (·, ·) is the standard L2 inner product for the linear basis

functions. We also consider the diagonal (lumped) mass matrix Bd := diag(
∑

j BF,ij).
Three different preconditioners are considered:

M−1 = A−1F Weak preconditioner, Pw (38)

M−1 = A−1F BFB
−1 Strong preconditioner, P s (39)

M−1 = A−1F BdB
−1 Strong diagonal preconditioner, P sd (40)

The preconditioning behaviors of these preconditioners are discussed in details for 2D and 3D geometries [1].
These preconditioners are robust with high aspect ratio, show bounded iteration counts with h- and p-
refinement, and have lower iteration counts than scalable hybrid-Schwarz (HS) multigrid preconditioner used
in Nek5000 [11].

Figure 19 demonstrates the GMRES iteration counts (bottom) for solving (35) with random right-hand
side on the cylinder mesh (top). While the HS preconditioner is highly sensitive to high-aspect ratio elements,
FEM preconditioner sustains at a constant level.

Figure 20 shows the run history for a full Navier-Stokes plus heat transfer simulation for 500 timesteps. We
note that the iteration counts drop dramatically after the start of the computation because we generate highly
accurate initial guesses to the pressure by projecting the solution onto the space of a handful (typically, 8–20)
prior pressure solutions [5]. We can see that the one-per-vertex scheme requires about one-third the number
of pressure iterations as HS. The total execution time for the full simulation was measured to be 2946.71 (sec)
for HS and 2615.87 (sec) for one-per-vertex, thus achieving a 12 % reduction in overall computation time.

Figure 21 shows the iteration history for 250 time steps for the TCC-III engine geometry, deforming with
time using the arbitrary Lagrangian-Eulerian (ALE) formulation described in [14]. A particular challenge

Exascale Computing Project (ECP) 22 CEED-MS20

Figure 20: A mesh for wire-coil insert (top left) and temperature distribution
in a wire-coil geometry (top right). time per time step (bottom right) with
(E,N) = (5720, 3).

for this problem is that the timestep is quite large, corresponding to a Courant number of C ≈ 4, which is
enabled through the ALE+characteristics-based timestepper developed in [14]. Higher Courant numbers
typically lead to higher pressure iteration counts because the initial residual scales with timestep size, even in
the context of time-projection [5]. Thus the baseline iteration count for this example is high, which provides
more opportunity for improved preconditioning strategies. The preconditioner is constant throughout each
restarted simulation. While A and B are functions of time because of the mesh motion, AF is taken to be
fixed at its initial instantiation at the start of each restarted computation. Here, we have the eight-fold
reduction in iteration counts for the one-per-vertex algorithm with a significant reduction in time-to-solution
compared to the HS method showing 2.82(sec) vs. 1.54 (sec) for the HS and one-per-vertex case, respectively,
thus achieving an overall improvement of 46 % in the time spent at each Navier-Stokes step.

3.3 MARBL: Next-Gen Multi-Physics Simulation Code

3.3.1 Initial BP1 and BP3 Results on LLNL’s Sierra Machine

One of the key components of explicit time-stepping algorithms with general high-order finite elements is the
inversion of a global mass matrix, as exemplified by the momentum equation solve in the Lagrangian phase
of the MARBL application. In the scalar case, this mass matrix inversion corresponds to CEED’s benchmark
BP1. Below we report some initial results for this benchmark on LLNL’s Sierra machine, that are based on
MFEM’s new GPU engine interface (see below). We are also reporting results for BP3, which is relevant to
diffusion problems, similar to the radiation-diffusion or MHD physics packages in MARBL. For more details
on the specifications of BP1 and BP3 see http://ceed.exascaleproject.org/bps.

Exascale Computing Project (ECP) 23 CEED-MS20

http://ceed.exascaleproject.org/bps

Figure 21: A mesh for TTC-III engine (top left) and temperature distribution
and surface thermal flux in the TCC-III engine model during the compression
stroke (top right). GMRES iteration counts (bottom left) and simulation time
per time step (bottom right) with (E,N) = (6784, 7).

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 Config: MFEM-engines-OCCA, host: sierra (1 node, 1 task/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 Config: MFEM-engines-OCCA, host: sierra (1 node, 4 tasks/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 Config: MFEM-engines-OCCA, host: sierra (4 nodes, 4 tasks/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

Figure 22: BP1 on Sierra using (left to right) 1, 4, and 16 GPUs. Each plot
shows number of DOFs per GPU versus performance per GPU, measured as
(DOFs× CG iterations)/(CG time×GPUs).

The results for BP1 and BP3 are presented on Figures 22 and 23, respectively. We summarize our
observations regarding the results:

• For both BP1 and BP3, performance drops at relatively high number of DOFs. For example, we see
∼ 50% drop around 200k–300k DOFs.

Exascale Computing Project (ECP) 24 CEED-MS20

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0
[D

O
Fs

 x
 C

G
 it

er
at

io
ns

] /
 [M

PI
 ta

sk
s

x
se

co
nd

s]

1e9 Config: MFEM-engines-OCCA, host: sierra (1 node, 1 task/node), xlc, BP3

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 Config: MFEM-engines-OCCA, host: sierra (1 node, 4 tasks/node), xlc, BP3

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

103 104 105 106

Points per MPI task

0.0

0.2

0.4

0.6

0.8

1.0

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 Config: MFEM-engines-OCCA, host: sierra (4 nodes, 4 tasks/node), xlc, BP3

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2

Figure 23: BP3 on Sierra using (left to right) 1, 4, and 16 GPUs. Each plot
shows number of DOFs per GPU versus performance per GPU, measured as
(DOFs× CG iterations)/(CG time×GPUs).

Figure 24: Profiling result from BP3 on 1 GPU with ∼ 70k DOFs. The time-line
is zoomed-in around one of the CG iterations.

• The kernel used in BP1 performs best for orders 5–8, whereas the kernel used in BP3 performs best for
orders 3–6.

• For both BP1 and BP3, going from 1 to 4 GPUs (within the same compute node), the medium size
problems are visibly affected by the addition of on-node MPI communication.

• Going from 4 to 16 GPUs (from 4 GPUs on one node, to 4 GPUs/node on 4 nodes), the inter-node
MPI communication overhead is on the order of the on-node overhead, so the performance decrease is
relatively small. However, scaling to larger number of nodes will be needed to fully assess the scaling
properties of the machine and the BP implementations.

In order to investigate the reasons behind the first bullet above (the performance drop at a relatively high
number of DOFs), we ran the NVIDIA profiler on two representative cases. We chose BP3, run on 1 GPU,
with order p = 4, and problem sizes of ∼ 70k and ∼ 500k DOFs. The results we present show screenshots of
the profiling tool with a view of the execution time-line zoomed-in to show the computations done during one
CG iteration — this is representative for the overall problem (BP3), consisting of multiple CG iterations

Exascale Computing Project (ECP) 25 CEED-MS20

Figure 25: Profiling result from BP3 on 1 GPU with ∼ 500k DOFs. The
time-line is zoomed-in around one of the CG iterations.

which are almost identical. The screenshots are shown on Figure 24, for the smaller problem, and on Figure
25, for the larger problem.

The main observation from these results is that the percentage of time during which the GPU is busy
is quite different in the two cases. For the larger problem, the white gaps in the “Compute” line are much
smaller compared to the same gaps for the smaller problem. The actual GPU kernels scale relatively well, as
seen by the timings in the lower-left corner of the screenshots. For example, the main kernel, MultAdd3D,
takes 395µs and 76µs, respectively, a ratio of ∼ 5.20. On the other hand, the CG time per iteration, as seen
in Figure 23, is roughly 0.75× 109 DOFs/s or 670µs, for the larger problem, and 0.25× 109 DOFs/s or 280µs,
for the smaller problem. This gives a ratio of about 2.4 speedup of the CG time per iteration (going from
the larger to the smaller problem) which is worse compared to the speedup of 5.20 for the MultAdd3D kernel.
This clearly emphasizes the need for reducing the time when the GPU is not utilized.

3.3.2 MARBL/BLAST

As discussed in previous reports, the CEED team targets the optimization of the MARBL simulation code
by improving its BLAST component, which is a multi-material multi-physics code based on the MFEM
library. Details of the targeted computational kernels in BLAST are discussed in CEED-MS1. The main tool
to impact BLAST is the Laghos miniapp, developed by CEED, which resembles the main computational
kernels of BLAST’s Lagrangian phase. Overview of Laghos is given in the CEED-MS6 report, and numerous
performance results for Laghos on CPUs and GPUs are presented in the CEED-MS8, CEED-MS10 and
CEED-MS13 reports. See also Section 4.4 for description of the new Laghos-1.1 release.

The developments in Laghos have already provided several benefits to BLAST, as described in the
CEED-MS8 and CEED-MS10 reports. These include partial assembly kernels for the four major computations
of BLAST’s Lagrangian phase, which were originally written in Laghos and then transferred to BLAST with
several modifications (e.g. for multi-material and axisymmetric terms). Furthermore, based on the Laghos
code structure, extensive parts of the BLAST code were refactored to allow separation between physics
and finite element assembly, allowing batched equation of state (EOS) calls and better compatibility with
partial-assembly based calculations. These additions and modifications allowed partial assembly simulations
in BLAST, which lead to faster CPU simulations for higher order finite element spaces, see Figure 26.

For the past period the CEED researchers have continued improving BLAST through improvements in
Laghos and MFEM. The pure CUDA implementation of the Laghos kernels (see CEED-MS13 for details)

Exascale Computing Project (ECP) 26 CEED-MS20

Figure 26: Strong scaling in 2D (left) and 3D (right) for the Triple Point
problem in BLAST. Both plots compare partial assembly (PA) vs full assembly
(FA). In 2D, PA wins for orders above 5. In 3D, PA wins for orders above 2.

was tested on up to 1024 GPUs of the Sierra machine at LLNL. Weak and strong scaling of the pure CUDA
version are presented in Figures 27 and 28, respectively. Figure 29 compares execution rates for various orders
between the full Vulcan machine and 1024 GPUs of Sierra (6.25% of the machine). The above plots imply,
as observed in other applications, that the GPU implementation is faster as long as there is enough work
per GPU. One straightforward method to optimize BLAST is to transfer the pure CUDA kernels directly
from Laghos, as done with the CPU partial assembly kernels. A more flexible approach is described in the
following paragraph.

Figure 27: Weak scaling for Laghos on Sierra, pure CUDA version, Q3Q2 (left)
and Q5Q4 (right) finite element spaces.

CEED researchers have been actively working on defining an additional abstraction layer in MFEM. This
new layer provides a method to utilize heterogeneous systems through a common interface. The new interface
allows MFEM to connect to an arbitrary execution engine. Examples of such engines are OCCA and libCEED.
Laghos has been connected to this interface, meaning that it can be executed through any engine, as long as
its custom kernels are defined for that engine. The CEED team has also defined the Kernels engine, which
can be used to switch between the pure CUDA, CPU and RAJA versions of the Laghos kernels. Thus, as
the needed kernels for Laghos already exist, the new interface allows to switch easily (at compile-time or
run-time) between the OCCA (CPU or GPU), RAJA (CPU or GPU), and pure CUDA versions of Laghos.
The pure CUDA version of Laghos will be used as a benchmark for performance, which all of the above
abstractions should not deteriorate. This new engines interface is currently being incorporated in BLAST,
following the approach that’s used in Laghos. Once completed, BLAST would have a way to connect, through
MFEM, to any of OCCA, libCEED, the Kernels engine, and other future engines.

Exascale Computing Project (ECP) 27 CEED-MS20

Figure 28: Strong scaling comparison for Laghos on Vulcan (left) and Sierra
(right), pure CUDA version, Q3Q2 finite element spaces.

Figure 29: Strong scaling comparison for Laghos on Vulcan (left) and Sierra
(right), pure CUDA version, Q3Q2 finite element spaces.

4. OTHER PROJECT ACTIVITIES

4.1 CEED Second Annual Meeting

The second annual meeting of the CEED co-design center took place August 8–10 at the University of
Colorado at Boulder. Participants reported on the progress in the center, deepened existing and established
new connections with ECP hardware vendors, ECP software technologies projects and other collaborators,
planned project activities and brainstormed / worked as a group to make technical progress. The meeting
was very successful and was attended by 40+ participants from several DOE labs, academia and industry.

4.2 ICOSAHOM18 Minisymposium

The CEED team organized a minisymposium on “Efficient High-Order Finite Element Discretizations at
Large Scale” at the premier conference on high-order methods, the International Conference in Spectral
and High-Order Methods (ICOSAHOM18) in London. The minisymposium featured 12 participants from
universities and labs around the globe representing the leading edge of the international high-order community.

Exascale Computing Project (ECP) 28 CEED-MS20

4.3 CEED Reports Publicly Available

The ECP/CEED milestone reports are now publicly available on the CEED publications page at http:

//ceed.exascaleproject.org/pubs/#ceed-reports. The currently available reports are:

• CEED-MS1: Engage first wave ECP/CEED applications.

• CEED-MS6: Identify initial kernels, bake-off (benchmark) problems and miniapps.

• CEED-MS8: Initial integration of CEED software in ECP applications.

• CEED-MS10: Initial CEED API.

• CEED-MS13: Public release of CEED 1.0.

• CEED-MS18: Propose high-order mesh/data format.

4.4 Laghos-1.1

Version 1.1 of the Laghos miniapp was released at https://github.com/CEED/Laghos/releases. The new
release includes diagonal preconditioning, energy-conserving time integration, a new example problem (Gresho
vortex) and instructions for building CUDA and RAJA versions in the raja-dev branch. Laghos-1.1 will be
part of the 2.0 release of ECP’s Proxy Applications Suite, see https://proxyapps.exascaleproject.org/

ecp-proxy-apps-suite/.

4.5 Outreach

CEED researchers were involved in a number of outreach activities, including 7 presentations at the Argonne
Training Program on Extreme-Scale Computing (ATPESC18), presentations at the Smoky Mountains
Computational Sciences & Engineering Conference (SMC18) and the SIAM Annual Meeting. A new paper,
“OpenACC acceleration for the Pn/Pn-2 algorithm in Nek5000” was submitted to the Journal of Parallel
and Distributed Computing. Article about CEED appeared in Krell’s institute DEIXIS magazine, which
was further highlighted on the ECP’s website. CEED researchers are also organizing two minisymposium at
SIAM CSE19, “Exascale Software for High-Order Methods” and “Exascale Applications with High-Order
Methods”, centered around the work in CEED and including key representatives of the international high-order
community (16 talks total).

5. CONCLUSION

In this milestone, we developed optimization techniques and tuned for performance the CEED software.
The focus was on developing and tuning fast finite element operator storage and evaluation, architecture
optimizations, and global kernels for finite element operators. We also worked on performance tuning of
CEED’s first-wave ECP applications, including the ExaSMR and MARBL applications.

The artifacts delivered include performance improvements in CEED’s 1st wave of applications, and tuned
CEED software for various architectures through a number of backends, freely available in the CEED’s
repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the CEED GitHub
organization, http://github.com/ceed for more details.

In addition to details and results from the above R&D efforts, in this document we are also reporting on
other project-wide activities performed in Q4 of FY18 including: CEED’s second annual meeting, a successful
minisymposium at the premier international conference on high-order methods (ICOSAHOM), making the
CEED milestone reports publicly available, new Laghos release, and other outreach efforts.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including

Exascale Computing Project (ECP) 29 CEED-MS20

http://ceed.exascaleproject.org/pubs/#ceed-reports
http://ceed.exascaleproject.org/pubs/#ceed-reports
https://github.com/CEED/Laghos/releases
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
http://ceed.exascaleproject.org
http://github.com/ceed

software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344, LLNL-TR-758990.

REFERENCES

[1] Pedro D. Bello-Maldonado and Paul Fischer. Scalable low-order finite element preconditioner for spectral
element poisson solvers. 2018. submitted.

[2] Jed Brown, Ahmad Abdelfatah, Jean-Sylvain Camier, Veselin Dobrev, Jack Dongarra, Paul Fischer,
Aaron Fisher, Yohann Dudouit, Azzam Haidar, Kazem Kamran, Tzanio Kolev, Misun Min, Thilina
Ratnayaka, Mark Shephard, Cameron Smith, Stanimire Tomov, Vladimir Tomov, and Tim Warburton.
ECP Milestone Report CEED-MS13: Public release of CEED 1.0, April 2, 2018.

[3] C. Canuto, P. Gervasio, and A. Quarteroni. Finite-element preconditioning of G-NI spectral methods.
SIAM J. Sci. Comput., 31:4422–44251, 2010.

[4] P.F. Fischer. An overlapping Schwarz method for spectral element solution of the incompressible
Navier-Stokes equations. J. Comput. Phys., 133:84–101, 1997.

[5] P.F. Fischer. Projection techniques for iterative solution of Ax = b with successive right-hand sides.
Comput. Methods Appl. Mech. Engrg., 163:193–204, 1998.

[6] P.F. Fischer and J.W. Lottes. Hybrid Schwarz-multigrid methods for the spectral element method:
Extensions to Navier-Stokes. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and
J. Xu, editors, Domain Decomposition Methods in Science and Engineering Series. Springer, Berlin,
2004.

[7] P.F. Fischer, N.I. Miller, and H.M. Tufo. An overlapping Schwarz method for spectral element simulation
of three-dimensional incompressible flows. In P. Bjørstad and M. Luskin, editors, Parallel Solution of
Partial Differential Equations, pages 158–180, Berlin, 2000. Springer.

[8] A Karakus, N Chalmers, Jan S Hesthaven, and T Warburton. Discontinuous galerkin discretizations
of the boltzmann equations in 2d: semi-analytic time stepping and absorbing boundary layers. arXiv
preprint arXiv:1805.02082, 2018.

[9] Ali Karakus, Noel Chalmers, Kasia Swirydowicz, and Timothy Warburton. Gpu acceleration of a
high-order discontinuous galerkin incompressible flow solver. arXiv preprint arXiv:1801.00246, 2017.

[10] Dana A Knoll and David E Keyes. Jacobian-free newton-krylov methods: a survey of approaches and
applications. Journal of Computational Physics, 193(2):357–397, 2004.

[11] J. W. Lottes and P. F. Fischer. Hybrid multigrid/Schwarz algorithms for the spectral element method.
J. Sci. Comput., 24:45–78, 2005.

[12] Ian Masliah, Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, Marc Baboulin, Joel Falcou, and Jack
Dongarra. Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications
of Very Small Matrices. Technical Report ICL-UT-18-09, 09-2018 2018.

[13] S.A. Orszag. Spectral methods for problems in complex geometry. J. Comput. Phys., 37:70–92, 1980.

[14] S. Patel, P. Fischer, M. Min, and A. Tomboulides. A characteristic-based, spectral element method for
moving-domain problems. Under Review, 2018.

[15] Will Pazner and Per-Olof Persson. Approximate tensor-product preconditioners for very high order
discontinuous galerkin methods. Journal of Computational Physics, 354:344–369.

Exascale Computing Project (ECP) 30 CEED-MS20

[16] Kasia Świrydowicz, Noel Chalmers, Ali Karakus, and Timothy Warburton. Acceleration of tensor-product
operations for high-order finite element methods. arXiv preprint arXiv:1711.00903, 2017.

[17] A. Tomboulidesa, S. M. Aithal, P. F. Fischer, E. Merzari, A. V. Obabkob, and D. R. Shaver. A novel
numerical treatment of the near-wall regions in the k-ω class of RANS models. International Journal of
Heat and Fluid Flow, 2018.

[18] Ping-Hsuan Tsai, Yu-Hsiang Lan, Misun Min, and Paul Fischer. Jacobi-free Newton Krylov method for
Poisson-Nernst-Planck equations. to be submitted, 2018.

[19] Warburton, Timothy. Finite element stiffness matrix action: monolithic kernel op-
timization on titan v, 2018. https://www.paranumal.com/single-post/2018/03/02/

Finite-Element-Stiffness-Matrix-Action-monolithic-kernel-optimization-on-Titan-V.

[20] Warburton, Timothy. Finite element stiffness matrix action: to blas or not to
blas, that is the question, 2018. https://www.paranumal.com/single-post/2018/03/13/

Finite-Element-Stiffness-Matrix-Action-to-BLAS-or-not-to-BLAS-that-is-the-question.

[21] Warburton, Timothy. Finite element stiffness matrix action: to precompute or
not to precompute, 2018. https://www.paranumal.com/single-post/2018/03/14/

Finite-Element-Stiffness-Matrix-Action-to-precompute-or-not-to-precompute.

[22] Warburton, Timothy. libparanumal: Library for parallel numerical algorithms, 2018. https://github.
com/paranumal/libparanumal.

Exascale Computing Project (ECP) 31 CEED-MS20

https://www.paranumal.com/single-post/2018/03/02/Finite-Element-Stiffness-Matrix-Action-monolithic-kernel-optimization-on-Titan-V
https://www.paranumal.com/single-post/2018/03/02/Finite-Element-Stiffness-Matrix-Action-monolithic-kernel-optimization-on-Titan-V
https://www.paranumal.com/single-post/2018/03/13/Finite-Element-Stiffness-Matrix-Action-to-BLAS-or-not-to-BLAS-that-is-the-question
https://www.paranumal.com/single-post/2018/03/13/Finite-Element-Stiffness-Matrix-Action-to-BLAS-or-not-to-BLAS-that-is-the-question
https://www.paranumal.com/single-post/2018/03/14/Finite-Element-Stiffness-Matrix-Action-to-precompute-or-not-to-precompute
https://www.paranumal.com/single-post/2018/03/14/Finite-Element-Stiffness-Matrix-Action-to-precompute-or-not-to-precompute
https://github.com/paranumal/libparanumal
https://github.com/paranumal/libparanumal

	Executive Summary
	List of Figures
	List of Tables
	Introduction
	Architecture Optimizations
	Fast Algorithms
	Pre-assembled vs. Partial Assembly
	BLAS vs. Custom Kernels
	Kernel Optimizations

	libParanumal
	libCEED-0.3
	Active and passive fields
	Optimized CPU backend
	Initial non-tensor bases capability
	MAGMA backend

	Applications Performance Improvements
	Nek5000/libParanumal Performance Benchmarks on V100
	ExaSMR: Algorithmic Performance Improvements
	Jacobian-free Newton Krylov Method Implementation into Nek5000
	RANS Model in Nek5000 with Jacobian-free Newton Krylov Method
	Preconditioning Strategies for Steady Advection-Diffusion and Navier-Stokes
	p-Multigrid for Steady Advection-Diffusion
	Approximate Separable Operators
	FDM Preconditioning Extension to Steady Navier-Stokes
	Low-Order FEM Preconditioning for Pressure

	MARBL: Next-Gen Multi-Physics Simulation Code
	Initial BP1 and BP3 Results on LLNL's Sierra Machine
	MARBL/BLAST

	Other Project Activities
	CEED Second Annual Meeting
	ICOSAHOM18 Minisymposium
	CEED Reports Publicly Available
	Laghos-1.1
	Outreach

	Conclusion

