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Abstract. P versus NP is considered as one of the most important open
problems in computer science. This consists in knowing the answer of the
following question: Is P equal to NP? A precise statement of the P versus
NP problem was introduced independently by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have
failed. Given a positive integer x and a collection S of positive integers,
MAXIMUM is the problem of deciding whether x is the maximum of
S. We prove this problem is complete for P. Another major complexity
classes are LOGSPACE, LOGTIME and coNP. Whether LOGSPACE =
P is a fundamental question that it is as important as it is unresolved.
We show the problem MAXIMUM can be decided in logarithmic space.
Consequently, we demonstrate the complexity class LOGSPACE is equal
to P. Moreover, we define a problem called SUCCINCT-MAXIMUM.
SUCCINCT-MAXIMUM contains the instances of MAXIMUM that can
be represented by an exponentially more succinct way. We show this
succinct version of MAXIMUM is in coNP-complete under logarith-
mic reductions. Hence, under the assumption of P = NP, we obtain
the padded version of SUCCINCT-MAXIMUM is in LOGTIME and P-
hard. However, this is not possible according to LOGTIME is strictly
contained in LOGSPACE, because that result would imply LOGTIME
= LOGSPACE. In this way, we demonstrate the assumption of several
computer scientists whom fully expect that P is not equal to NP.

Keywords: Complexity Classes · Polynomial Time · Logarithmic Space
· Complete Problem · Succinct Representation.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[1]. This is considered by many to be the most important open problem in the
field [1]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution
[1]. It was essentially mentioned in 1955 from a letter written by John Nash to
the United States National Security Agency [1]. However, the precise statement
of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [1].

In 1936, Turing developed his theoretical computational model [9]. The de-
terministic and nondeterministic Turing machines have become in two of the



most important definitions related to this theoretical model for computation [9].
A deterministic Turing machine has only one next action for each step defined in
its program or transition function [9]. A nondeterministic Turing machine could
contain more than one action defined for each step of its program, where this
one is no longer a function, but a relation [9].

Another relevant advance in the last century has been the definition of a
complexity class. A language over an alphabet is any set of strings made up of
symbols from that alphabet [3]. A complexity class is a set of problems, which
are represented as a language, grouped by measures such as the running time,
memory, etc [3].

In the computational complexity theory, the class P contains those languages
that can be decided in polynomial time by a deterministic Turing machine [4].
The class NP consists in those languages that can be decided in polynomial
time by a nondeterministic Turing machine [4]. The biggest open question in
theoretical computer science concerns the relationship between these classes: Is
P equal to NP?

A logarithmic Turing machine has a read-only input tape, a write-only output
tape, and a read/write work tape [9]. The work tape may contain O(log n) sym-
bols [9]. LOGSPACE is the complexity class containing those decision problems
that can be decided by a deterministic logarithmic Turing machine [9]. On the
other hand, LOGTIME is another language based on the languages that can be
solved by a logarithmic time algorithm [8]. In this work, we prove the complex-
ity class LOGSPACE is equal to P . Moreover, we demonstrate the complexity
class P is not equal to NP .

2 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [2]. A Turing machine M has an associated input alphabet
Σ [2]. For each string w in Σ∗ there is a computation associated with M on
input w [2]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [2]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [2].

The language accepted by a Turing machine M , denoted L(M), has an as-
sociated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w
[2]. For n ∈ N we denote by TM (n) the worst case running time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. The notations we use
to describe the asymptotic running time of an algorithm are defined in terms



of functions whose domains are the set of natural numbers [3]. Such notations
are convenient for describing the worst and better case running time functions,
which is usually defined only on integer input sizes [3]. For a given function g(n),
we denote by O(g(n)) the set of functions

O(g(n)) = {f(n) : There exist positive constants c and n0

such that 0 ≤ f(n) ≤ c× g(n) for all n ≥ n0}.
O-notation provides an asymptotic upper bound [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [2].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time or more specific in a running time O(nk) for
some constant k [2]. Therefore, P is the complexity class of languages that can
be accepted in polynomial time by deterministic Turing machines [3]. A verifier
for a language L is a deterministic Turing machine M , where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [2]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is
a member of L. This information is called certificate. NP is also the complexity
class of languages defined by polynomial time verifiers [8]. If NP is the class of
problems that have succinct certificates, then the complexity class coNP must
contain those problems that have succinct disqualifications [8]. That is, a “no”
instance of a problem in coNP possesses a short proof of its being a “no” instance
[8].

A logarithmic space transducer is a Turing machine with a read-only input
tape, a write-only output tape, and a read/write work tape [2]. The work tapes
must contain at most O(log n) symbols [2]. A logarithmic space transducer M
computes a function f : Σ∗ → Σ∗, where f(w) is the string remaining on the
output tape afterM halts when it is started with w on its input tape [2]. We call f
a logarithmic space computable function [2]. We say that a language L1 ⊆ {0, 1}∗
is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤l L2, if
there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is P–complete [5]. A language L ⊆ {0, 1}∗ is
P–complete if

– L ∈ P , and
– L′ ≤l L for every L′ ∈ P .

If L is a language such that L′ ≤l L for some L′ ∈ P–complete, then L is
P–hard [8]. Moreover, if L ∈ P , then L ∈ P–complete [8]. A Boolean formula φ
is composed of



1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one

output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables
in φ. We define a CNF Boolean formula using the following terms. A literal in
a Boolean formula is an occurrence of a variable or its negation [3]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [3]. A Boolean formula is
in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct
literals [3].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2.

For every n,m ∈ N a Boolean circuit C with n inputs and m outputs is a
directed acyclic graph [2]. It contains n nodes with no incoming edges; called
the input gates and m nodes with no outgoing edges, called the output gates
[2]. All other nodes are labeled with one of ∨, ∧ or ⇁ (in other words, the
logical operations OR, AND, and NOT) [2]. The ∨ and ∧ nodes have fanin (i.e.,
number of incoming edges) of 2 and the ⇁ nodes have fanin 1. The size of C is
the number of nodes in it [2].

3 Results

Definition 1. MAXIMUM
INSTANCE: A positive integer x and a collection S of positive integers. The

collection S could not be a set, since by the definition of a collection, this can
contain repeated elements.

QUESTION: Is x the maximum number in S?

Lemma 1. MAXIMUM ∈ P .

Proof. How many comparisons are necessary to determine whether a positive
integer x is the maximum of a collection of n positive integers? We can easily
obtain an upper bound of n comparisons: examine each element of the collection
in turn and keep track of the largest element seen so far and finally, we com-
pare the ultimate result with x. In the following procedure, we assume that the
collection resides in an array A of length n.

Is this the best amount of comparisons we can do? Yes, since we can obtain a
lower bound of n− 1 comparisons for the problem of determining the maximum
and one another comparison to check whether this is equal to x [3]. Think of any



Algorithm 1 MAXIMUM’s Polynomial Time Algorithm

1: procedure MAXIMUM(x,A)
2: /*Assign the first element*/
3: max← A[0]
4: /*Iterate for the elements of the collection*/
5: for i ← 1 to n− 1 do
6: /*When the element A[i] is greater than max*/
7: if max < A[i] then
8: /*Update the new value of max*/
9: max← A[i]

10: end if
11: end for
12: /*If the number x is equal to the maximum of the collection*/
13: if max = x then
14: /*Accept*/
15: return “yes”
16: else
17: /*Otherwise reject*/
18: return “no”
19: end if
20: end procedure

algorithm that determines the maximum as a tournament among the elements
[3]. Each comparison is a match in the tournament in which the larger of the two
elements wins [3]. The key observation is that every element except the winner
must lose at least one match [3]. Finally, we compare the winner with x [3].
Hence, n comparisons are necessary to determine whether x is the maximum of
the collection of positive integers, and the algorithm MAXIMUM is optimal
with respect to the number of comparisons performed [3].

Definition 2. Unweighted, Not–All–Equal Clauses, 3SAT/FLIP

INSTANCE: A Boolean formula φ in 3CNF and a truth assignment T . Each
clause has a weight of 1. The clauses are not–all–equals clauses with positive
literals. A truth assignment satisfies a clause c under the not–all–equals criterion
if it is such that c has at least one true and one false literal.

QUESTION: Is the truth assignment T the maximum cost assignment of φ
over all neighbors of T? The cost of the assignment is the sum of the weights
of the clauses it satisfies. The neighbors of T are truth assignments that differ
from T in one bit position.

REMARKS: We denote this language as U3NSATFLIP [5].

Theorem 1. U3NSATFLIP ≤l MAXIMUM .

Proof. Given a Boolean formula φ in 3CNF and a truth assignment T , we can
calculate the cost assignment of T based on the not–all–equals criterion in a
logarithmic space algorithm. In the following function COST , we assume the



Algorithm 2 COST’s Logarithmic space algorithm

1: function COST(φ, T )
2: /*Initialize the cost assignment to 0*/
3: num← 0
4: /*For each clause in φ*/
5: for all c ∈ φ do
6: /*The clause c is equal to (p ∨ q ∨ r)*/
7: if 0 < T [p] + T [q] + T [r] < 3 then
8: /*Increment num because c complies with the not–all–equals criterion*/
9: num← num+ 1

10: end if
11: end for
12: /*Return the cost assignment*/
13: return num
14: end function

truth assignment T is a dictionary that maps every variable in φ to 1 or 0 (true
or false).

This function uses logarithmic space in its work tapes and assumes the clauses
contain only positive literals. Certainly, the calculation of T [p] + T [q] + T [r] can
be made storing a constant amount of space where p, q and r are the positive
literals of each clause c in φ. In addition, if m is the number of clauses in φ, then
the number num will not exceed the number m and thus, the work tapes will
contain at most O(logm) space.

On the other hand, we can reduce an instance of U3NSATFLIP into another
of MAXIMUM in logarithmic space. For this purpose, we are going to use the
function COST into a new algorithm. In the following function REDUCE, we
represent the input instance as a given Boolean formula φ in 3CNF of n − 1
variables with a truth assignment T and the output instance as a positive integer
x with an array A filled with n elements of a collection of positive integers. We
will assume the truth assignment T given in the input is a dictionary that maps
every variable in φ to 1 or 0 (true or false) as well.

Is this a logarithmic space reduction from U3NSATFLIP to MAXIMUM?
Given a Boolean formula φ in 3CNF and a truth assignment T , we will obtain
the positive integer x as the cost assignment of φ in T and in the array A the cost
assignment of φ from all the neighbors of T included the cost assignment of T .
In this way, if x is the maximum in the collection of positive integers represented
by A, then 〈φ, T 〉 belongs to U3NSATFLIP where 〈. . .〉 is the binary encoding.
However, if x is the maximum in the collection of positive integers represented
by A (remember that A contains x), then this will be an element of the language
MAXIMUM as well. Certainly, 〈φ, T 〉 is in U3NSATFLIP if and only if x is
the maximum in the collection of positive integers in A. The function REDUCE
uses logarithmic space since the bit-length of the index i is O(log n) because there
are n−1 variables and thus, there are at most n costs assignments that we need
to calculate which is the cost of the original truth assignment T and the n − 1



Algorithm 3 REDUCE’s Logarithmic space algorithm

1: function REDUCE(φ, T )
2: /*Create an empty array A*/
3: A← [. . .]
4: /*Initialize the index of A in 0*/
5: i← 0
6: /*For each variable y in φ*/
7: for all y ∈ φ do
8: /*Flip the value of T [y] (0 to 1 or 1 to 0)*/
9: T [y]← (T [y]− 1)× (−1)

10: /*Calculate the cost of the flipped T based on the not–all–equals criterion*/
11: num← COST (φ, T )
12: /*Assign the cost assignment of the neighbor of T after flipping over T the

bit position in the variable y*/
13: A[i]← num
14: /*Increment the index to store the new neighbor cost assignment of T*/
15: i← i+ 1
16: /*Return the value of T [y] to the original bit number*/
17: T [y]← (T [y]− 1)× (−1)
18: end for
19: /*Calculate the cost of T based on the not–all–equals criterion*/
20: x← COST (φ, T )
21: /*Assign the cost assignment of the original T without flipping any bit posi-

tion*/
22: A[i]← x
23: /*Return the reduction*/
24: return (x,A)
25: end function



truth assignment after flipping one bit position in T . Moreover, the bit position
that we flip in T will use at most two symbols encoded in binary over the work
tapes: the new bit value and the variable. In addition, the algorithm COST runs
in logarithmic space in relation to φ and the truth assignment T with at most
one bit flipped. The algorithm COST will take into account the original truth
assignment T which remains in the input tape and the changed bit position
which is stored in the work tapes. After the computation of COST over each
iteration, we will erase from the work tapes the at most O(logm) space that
could contain those tapes where m is the number of clauses in φ. Furthermore,
we do not need to store the value of the elements of A in the work tapes since
they can be written directly to the output tape. The array A can be written to
the output tape as the pairs (i, vi) where i is an index between 0 and n− 1 and
vi is equal to the positive integer A[i]. We also write the binary string of the
number x to the output tape where this string contains at most O(logm) space.
Consequently, we demonstrate U3NSATFLIP ≤l MAXIMUM .

Theorem 2. MAXIMUM ∈ P–complete.

Proof. We prove U3NSATFLIP can be logarithmic reduced to MAXIMUM
and U3NSATFLIP ∈ P–complete [7], thus MAXIMUM belongs to P–hard.
Moreover, since MAXIMUM ∈ P , then MAXIMUM is in P–complete.

Theorem 3. MAXIMUM ∈ LOGSPACE.

Proof. Given a positive integer x and a collection S of positive integers, we are
going to demonstrate we can decide this problem in logarithmic space. In the
following procedure, we assume that the collection resides in array A of length
n. Besides, we assume the function length calculates the bit-length of a binary
string and uses a logarithmic space for the calculation.

Is this a logarithmic space algorithm? Yes, since we compare the value of the
functions length(x) and length(A[i]) (the ith element of A) using a logarithmic
space although we could partially calculate the length(A[i]). In addition, the
calculated bit-length of x only uses at most O(log x) space. Besides, in the com-
parison with the bit-length of A[i] and x we halt and reject immediately when
length(A[i]) exceeds length(x) at least in one digit and thus, we do not need to
calculate completely the length(A[i]) to reject. In this way, we just keep at most
O(log x) space in the calculation of length(A[i]). Finally, when both bit-lengths
are equal, then we compare the elements A[i] and x bit by bit. For this purpose,
we compare only two bits in the input tape over the same position j from x and
A[i] in a descending order for each step. Notice, that we start to compare from
the last bit position in a descending order. For example, in the binary string 100
which represents the number 4, we start iterating from the last bit element, that
is the bit 1. Moreover, we store the position j in the work tapes and this value
has at most O(log x) space. If it would be the case that A[i] and x have the same
bit-length, but A[i] is greater than x, then we reject. We continue the iteration
with the next value i while the property that x is the maximum number in the
array remains as true. However, we only accept when the value of the variable



Algorithm 4 MAXIMUM’s Logarithmic space algorithm

1: procedure MAXIMUM(x,A)
2: /*Initialize the variable answer*/
3: answer ← “no”
4: /*Iterate for each element of the collection*/
5: for i ← 0 to n− 1 do
6: /*If the bit-length of x is lesser than the bit-length of element A[i]*/
7: if length(x) < length(A[i]) then
8: /*Reject because A[i] is greater than x*/
9: return “no”

10: /*If the bit-length of x is greater than the bit-length of element A[i]*/
11: else if length(x) > length(A[i]) then
12: /*Continue to the next iteration on i*/
13: continue
14: /*If the bit-length of x is equal to the bit-length of element A[i]*/
15: else
16: /*Assign the index to the last bit element*/
17: j ← length(x)− 1
18: /*While there are bits to compare*/
19: while j ≥ 0 do
20: /*Compare the bit in the position j of x with the bit in the position

j of A[i]*/
21: if x[j] < A[i][j] then
22: /*Reject because A[i] is greater than x*/
23: return “no”
24: /*Compare the bit in the position j of x with the bit in the

position j of A[i]*/
25: else if x[j] > A[i][j] then
26: /*Continue to the next iteration on i*/
27: break
28: else
29: /*Decrement the bit position j of x and A[i]*/
30: j ← j − 1
31: end if
32: end while
33: /*After iterating from all the bits of x and A[i]*/
34: if j < 0 then
35: /*x is equal to A[i]*/
36: answer ← “yes”
37: end if
38: end if
39: end for
40: /*Accept if answer = “yes” and reject when answer = “no”*/
41: return answer
42: end procedure



answer is “yes” when initially has the value of “no” by default. The value will
be “yes” in the variable answer after the whole iteration for each element in
the array if and only if there is at least one element A[i] that is equal to x.
Furthermore, if the iteration is completed until the last item, then x is greater
than or equal to every element in the array A. To sum up, we show we can
decide whether x is the maximum of the collection represented by the array A
in logarithmic space and thus, MAXIMUM ∈ LOGSPACE.

Theorem 4. LOGSPACE = P .

Proof. As result of Theorems 2 and 3 we obtain LOGSPACE = P , because the
complexity class LOGSPACE is closed under logarithmic space reductions [8].

Definition 3. SUCCINCT–MAXIMUM
INSTANCE: A positive integer x and a collection S of positive integers such

that the collection S is represented by a Boolean circuit C where some positive
integer i belongs to S if and only if C(i) accepts. The size of the Boolean circuit
C is bounded by mk where k is a feasible constant and m is the number of input
gates in C.

QUESTION: Is x the maximum number in S?

Theorem 5. SUCCINCT–MAXIMUM is a succinct representation of the lan-
guage MAXIMUM .

Proof. Considering that m is the number of input gates in C, then the Boolean
circuit C could be a succinct representation of a collection of positive integers S.
Indeed, this will happen in many cases since the collection S could contain more
than or approximately to 2m elements (remember that a collection could contain
repeated elements) if we represent it by a Boolean circuit of m input gates.
However, the size of the Boolean circuit C is polynomially bounded by m for
a feasible constant as exponent. Certainly, SUCCINCT–MAXIMUM is nothing
else but a language that contains the instances of the problem MAXIMUM
which could be represented by an exponentially more succinct input in relation
to S [8].

Theorem 6. SUCCINCT–MAXIMUM ∈ coNP .

Proof. The language of SUCCINCT–MAXIMUM is in coNP . Certainly, we can
check in polynomial time a disqualification from an instance 〈x,C〉 of this lan-
guage that is a positive integer y where x < y and y is in S or we can simply
verify in polynomial time when x is not in S where 〈. . .〉 is the binary encoding.
Indeed, we can check whether the both evaluations of y and x in C accept and
check later whether x < y or we can just verify when C(x) does not accept. Cer-
tainly, we can polynomially make the verification when 〈x,C〉 is a “no” instance
of the problem SUCCINCT–MAXIMUM, because the evaluation in the Boolean
circuit can be done in polynomial time as well. Indeed, by definition its size does
not exceed the value mk where k is a feasible constant and m is the number of
input gates in C.



Given a Boolean circuit C, the problem coCIRCUIT–SAT consists in deciding
whether there is not any input such that C accepts [8].

Theorem 7. coCIRCUIT–SAT ≤l SUCCINCT–MAXIMUM.

Proof. Given a Boolean circuit C we can check whether C(0) does not accept. In
that case, we create a succinct Boolean circuit C ′ which only accepts the input
string 0 and has the same number of input gates of C. We combine C with C ′

through the input gates into a new Boolean circuit C ′′ which accepts only when
C or C ′ accept. This is possible just adding a gate OR between the output gates
of C and C ′. The instance of the positive integer 0 and the final Boolean circuit
C ′′ belongs to SUCCINCT–MAXIMUM if and only if C is in coCIRCUIT–SAT.
Certainly, 0 is the maximum of the collection that represents C ′′ if there is not
any other input which C ′′ accepts. In addition, C ′′ accepts the positive integer 0
because of the construction of C ′ on C. Since we can create the succinct Boolean
circuit C ′ and evaluate C on the input 0 in logarithmic space due to Theorem
4, then coCIRCUIT–SAT ≤l SUCCINCT–MAXIMUM.

Theorem 8. SUCCINCT–MAXIMUM ∈ coNP–complete.

Proof. coCIRCUIT–SAT is a known coNP–complete problem [8]. Hence, the lan-
guage SUCCINCT–MAXIMUM is in coNP–hard because of the Theorem 7 and
due to the logarithmic reduction is also a polynomial reduction [8]. As result of
Theorem 6, we obtain SUCCINCT–MAXIMUM is in coNP and thus, the proof
is completed.

Theorem 9. P 6= NP .

Proof. Given a positive integer x and a collection of positive integers S repre-
sented by an array, we can convert them into another instance the same x with
a Boolean circuit C where some positive integer i belongs to S if and only if
C(i) accepts. Certainly, we can construct C just iterating from each element i
of the array and creating a single circuit Ci which only accepts i. We assume
that every circuit Ci has the same number of input gates. Later, we create C
just unifying all the circuits Ci coinciding their input gates and joining all their
output gates with an OR gate for obtaining a single output gate. In this way,
we obtain a Boolean circuit where some positive integer i belongs to S if and
only if C(i) accepts. Given a Boolean circuit C, MINIMUM–CIRCUIT is the
problem of deciding whether there is no circuit with fewer gates that computes
the same Boolean function of C [8]. This problem belongs to PH [8]. However,
if P = NP then the polynomially hierarchy collapses to the first level [8]. In
this way, MINIMUM–CIRCUIT would be in P when P = NP . Consequently,
the complement language of MINIMUM–CIRCUIT would be in P because P is
closed under complement. Moreover, the function problem of this complement
would be in FP and that would mean, with a circuit C as input we can find
another circuit C ′ which has the fewest gates such that C and C ′ compute the
same Boolean function. Certainly, we can try with that function problem the
search of another circuit with fewer gates and we can repeat this process over



and over again until we reach the circuit C ′ with the fewest amount of gates.
This can be done in polynomial time, because the class FP finds the solutions
in polynomial time and the search of C ′ depends mostly of the amount of gates
in the original C.

In this way, given an instance of MAXIMUM represented by some positive
integer x and a Boolean circuit C, we could reduce it in polynomial time to
another instance of SUCCINCT–MAXIMUM that would be the same x with a
succinctly representation of S that would be the circuit C ′ with the fewest gates
which computes the same of C. Since the positive integer x and the circuit C can
be reduced into an exponentially more succinct way such as x and C ′, then we can
pad x and C ′ by enough “quasiblanks” symbols ∇ such that 〈x,C ′〉∇∇∇∇ . . .
has the same string length of 〈x,C〉 where 〈. . .〉 is the binary encoding. Since
this polynomial reduction under the assumption of P = NP is possible, then
this can be converted into a logarithmic reduction according to Theorem 4. Con-
sequently, the padded version of the language SUCCINCT–MAXIMUM would
be in P–hard. Nevertheless, every instance 〈x,C ′〉∇∇∇∇ . . . of the padded ver-
sion of the language SUCCINCT–MAXIMUM can be solved in logarithmic time,
because 〈x,C ′〉 can be solved in polynomial time due to P would be equal to
coNP when P = NP and 〈x,C ′〉 is exponentially more succinct than its padded
version. As result, the padded version of SUCCINCT–MAXIMUM would be
in LOGTIME and in P–hard under the assumption of P = NP , but that
would mean LOGTIME = LOGSPACE which is a trivial contradiction due to
LOGTIME is strictly contained in LOGSPACE [6]. In conclusion, we demon-
strate P 6= NP based on the reduction ad absurdum logic rule after finding a
contradiction assuming that P = NP .
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