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EXECUTIVE SUMMARY

The goal of this milestone was to develop a high-order ”Field and Mesh Specification” interface that allows a
wide variety of applications and visualization tools to represent unstructured high-order meshes with general
high-order finite element fields defined on them.

Currently there is no agreement on how to represent high-order solutions and meshes (or even non-standard
finite elements, such as Nedelec and Raviart-Thomas elements) within a common, easy to read and write to
format. This is a bottleneck to adopting high-order technologies, as e.g. proper visualization of the high-order
information is critical for its use in practice.

In this milestone, the CEED team proposed a new specification, FMS, for high-order fields and meshes
together with a simple API library and documentation for it. Initial support for the new FMS interface was
added to MFEM and PUMI and we demonstrated its use for data transfer between the codes. Our long-term
goal is to work with apps and vis teams within and outside of the ECP to shape the FMS interface in a form
that is beneficial for them to adopt for high-order data exchange and for high-order visualization and data
analysis.

The artifacts delivered include a simple API library and documentation for the new FMS interface, freely
available in the CEED’s FMS repository on GitHub. See the CEED website, http://ceed.exascaleproject.
org/fms and the CEED GitHub organization, http://github.com/ceed for more details.

In addition to details and results from the above R&D e↵orts, in this document we are also reporting on
other project-wide activities performed in Q3 of FY18, including: extensive benchmarking of CEED Bake-O↵
problems and kernels on BG/Q, GPU and AMD/EPYC platforms, improvements in libCEED, results from
application engagements, progress on FEM-SEM preconditioning, three new software releases, and other
outreach e↵orts.
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1. INTRODUCTION

The goal of this milestone was to develop a high-order ”Field and Mesh Specification” interface that allows a
wide variety of applications and visualization tools to represent unstructured high-order meshes with general
high-order finite element fields defined on them.

Currently there is no agreement on how to represent high-order solutions and meshes (or even non-standard
finite elements, such as Nedelec and Raviart-Thomas elements) within a common, easy to read and write to
format. This is a bottleneck to adopting high-order technologies, as e.g. proper visualization of the high-order
information is critical for its use in practice.

In this milestone, the CEED team proposed a new specification, FMS, for high-order fields and meshes
together with a simple API library and documentation for it. Initial support for the new FMS interface was
added to MFEM and PUMI and we demonstrated its use for data transfer between the codes. Our long-term
goal is to work with apps and vis teams within and outside of the ECP to shape the FMS interface in a form
that is beneficial for them to adopt for high-order data exchange and for high-order visualization and data
analysis.

The artifacts delivered include a simple API library and documentation for the new FMS interface, freely
available in the CEED’s FMS repository on GitHub. See the CEED website, http://ceed.exascaleproject.
org/fms and the CEED GitHub organization, http://github.com/ceed for more details.

2. THE CEED HIGH-ORDER FORMAT

The proper specification of the mesh and associated field data for high-order methods is more complex than
in the case of low order methods. Since most of the existing tools, file formats, etc., have been defined
without full consideration of the needs of high-order methods, it is necessary for CEED to define appropriate
representations of, and methods to interact with, high-order meshes and associated fields. The emphasis
of the CEED high-order mesh and field representation, and associated APIs, is to support the needs of
high-order mesh-based analysis codes and the visualization tools used to examine the results of high-order
mesh simulations.

In this section we introduce CEED’s new high-order ”Field and Mesh Specification” (FMS) interface that
allows a wide variety of applications and visualization tools to represent unstructured high-order meshes with
general high-order finite element fields defined on them. We begin this section with a brief discussion of
the information needed to support fully automated mesh-based simulations that must start from a general
problem definition. Given this, more specific consideration is given to the needs of high-order mesh based
simulation codes and the tools used to visualize the simulation results, leading to a description of the overall
design of the CEED high-order mesh and field representations and interactions that must be supported.
Finally a more detailed discussion of the implementation of the FMS interface is given as well as an initial
demonstration of its application.

2.1 Background on Automated Simulations over Complex Domains

An important consideration in the execution of any simulation solving partial di↵erential equations (PDEs)
over physical domains is the definition of the domain and specification of loads, material properties, boundary
conditions and initial conditions, to be referred to as attributes, that must be specified with respect to
that domain to complete the PDE problem definition. Although the input to a mesh-based analysis is the
mesh with all attributes associated with that mesh, there are a number of advantages to employing a higher
level, ”mesh independent” problem definition. The most convenient precise domain definition is a boundary
presentation. Although using a boundary representations for domains defined in CAD systems supports high
levels of simulation automation, the use of an overall boundary representation of the domain does not require
the inclusion of a CAD system, or any other specific form of domain shape information. However, even in the
case where the only domain information is the mesh, a domain boundary representation provides a natural
means for the specification of the domain and the associated analysis attribute information.

Exascale Computing Project (ECP) 1 CEED-MS18



A boundary representation consists of two components. The first is the model topology which is a general
abstract presentation of the domain. The second is the shape information associated with the topological
entities in the boundary representation.

2.1.1 Domain Topology

Model topology consists of the topological entities that make-up the boundary and interior of the domain
and their adjacencies in terms of the entities that bound a given entity and/or the entities a given entity
bounds. Since analysis domains can include multiple material regions and combinations of lower dimension
entities that do not bound regions, it is desirable to employ boundary representations that can represent
the general combinations of volumes, surfaces, curves and points. The most well known representation for
supporting such non-manifold (more strictly speaking not 2-manifold) representations is the radial-edge data
structure [13].

2.1.2 Domain Shape Information

When using the abstraction of topological entities in a boundary representation it becomes straight forward
to support a wide range of methods for the specification of the geometric information defining the shape
of the entities. Limiting our discussion to 3-D geometric domains in which time can be an easily separable
dimension (the 3-D geometric domain can evolve in time) one can consider entities being parameterized by
the a set of coordinates equal in number to their dimension. Although conceptually a nice idea, there are no
known methods to automatically define useful fitted coordinate parametrization in the case of the full range
of real 3-D objects of interest. CAD systems representations have a simple one coordinate parametrization
of edges, a somewhat complex, unless you interact directly with the CAD system, two coordinate trimmed
parametrization of the faces, and no parametrization of the regions.

Instead of attempting to defining a single generalization to define shape information for all boundary
entities, a more e↵ective approach is to take advantage of the fact it is straight forward to associate various
forms of shape information to model topological entities and to support multiple forms of shape information
with the most useful being:

• The shape can be managed and interacted with directly by maintaining a link to a CAD representation
that provides APIs to support the required geometric interrogations.

• The shape of the model faces and edges is defined as the union of the shapes of the finite element edges
and faces that are used to represent them.

• The shape can be some given analytic expression such as conics or a spline curve or patch.

• The shape may be implicitly defined through some spatial representation (e.g., level sets on a background
grid or overlay mesh).

2.1.3 Analysis Attributes

The analysis attributes of loads, material properties and boundary conditions are best described in terms of
input tensor fields that are defined by some distribution, written in terms of a discrete number of parameters,
that vary over the space of the model entity the attribute is associated with. Thus the only basic di↵erence
between an analysis attribute and a solution field is the solution fields are distributions, written in terms of a
discrete number of parameters, that vary over the space of the appropriate finite element entities instead of a
geometric model entity.

2.1.4 Mesh Definition

The most common description of a mesh used by analysis programs consists of a sets of specific element
types defined as ordered list of nodes, plus the coordinates of the nodes. In this form, all shape information
is defined in terms of the nodal coordinates. The mesh entity topology is captured in the element type code
while the list of nodes defines a single downward adjacency and, when coupled with the nodal coordinates,
element type code and ”geometry shape functions” defines the geometry of the mesh entities. In the case of
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doing a analyses on a fixed mesh this is su�cient information. There are a number of deficiencies with such a
minimal representation for use in the execution of high-order finite element simulations, particularly if one
want to properly support the visualization of properly represented solution fields and when there is a goal of
automating processed of that go from high level problem descriptions adaptively controlled simulation results.

Just as in the case of the overall domain definition, a boundary representation provides an e↵ective
abstraction for use in the description of high-order meshes. There are two assumptions made that allow the
use of mesh topological representations that are far less complex that a full non-manifold geometric model as
is required for the overall analysis domain.

The first assumption is that a single analysis code element is a topological entity with ”no holes”. That is
each mesh edge has vertices at its only its two ends, each mesh face is bounded by a single closed loop of
mesh edges, and mesh region is bounded by a single closed set of mesh faces (one shell). Note: in the case of
a high-order finite element it is possible that the starting and ending vertex of an edge is the same - however
support of this case does require adding complexity to specific mesh manipulation operations. Since each
mesh face has a single loop and each mesh region has a single shell, there is no need to maintain the shell
and loop in the mesh topology.

The second assumption is actually a requirement that the relationship of the mesh entities to the model
entities is defined at the time of mesh generation and is maintained throughout the simulation, including
when the mesh is modified due to mesh adaptation or simulation dictated changes. This relationship is, often
referred to as the classification, is the unique association of each mesh entity to the lowest dimension possible
topological entity in the analysis domain it is associated with [1, 10]. In the case of the classification of a
mesh against an analysis domain: Each region is classified to a model region. Each face is classified to the
model region it is in, or model face it is on. Each edge is classified to the model region it is in, model face
it is on, or model edge it is on. Each vertex is classified to the model region it is in, model face it is on,
model edge it is on, or model vertex it represents. This classification information is critical for supporting
general mesh adaptation procedures, properly supporting meshes on of non-manifold model situations form
the simple case of multiple materials, to a more complex case of representing contact interfaces, without
ad-hoc extensions to the mesh representation. Classification is also useful for the high-level specification and
tracking of analysis attributes.

In the reminder of this section, the term regions, face, edge and vertex refer to mesh regions, mesh faces,
mesh edges and mesh vertices. When discussing the relationship of the mesh entities to the analysis domain
topology, the domain topology entities will be referred to as model regions, model faces, model edges and
model edges. The relationship of a finite element to a model topological entity is based on the geometric
dimension of the elements: 3D elements are regions, 2D element are faces, 1D elements are edges and 0D
elements are vertices. There are various nomenclatures that have been defined to precisely describe mesh
topologies (e.g., [1, 10]) and operations. We will avoid that level of detail in this document.

The decision of which of the of mesh entities of the four possible dimensions (regions, faces, edges and
vertices) to explicitly represent and which of the 12 possible topological adjacencies should be maintained
begins with a determination the functions that must be supported by the codes interacting with the mesh
and how e�ciently one wants to be able to execute those operations.

2.1.5 Design Principles for CEED’s Field and Mesh Specification

CEED’s FMS description is in terms of topological entities and a selected set of adjacencies of those entities,
thus providing a general abstraction for the definition of a mesh. All other information is defined in appropriate
fields that are linked to the mesh entities.

Unlike meshes of straight edged mesh entities or even the somewhat common ”isoparametric quadratic”
element, there are multiple options employed to define the geometric shape information of high-order elements
including (i) interpolation through given points, (ii) Bezier or NURBS curves/splines, (iii) analytic expressions
(e.g., a circular are) or (iv) implicitly with links to an underlying CAD or implicit function (e.g., a zero level
set). To e↵ectively support the variety of options for the definition of element geometry all mesh entity
geometric shape information is maintained as mesh entity fields. Note that even in the most common case of
interpolating geometry, the there are multiple rules employed with respect to the assignment of the local
coordinates to the interpolating points.

To support a full set of capabilities and avoid substantial duplication of field data, field data should be
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associated with the lowest order mesh entities they are defined with respect to. Given that there will be field
data associated with the mesh entities of each dimension, FMS explicitly represents the mesh entities for all
four dimensions (vertices, edges, faces and regions). For the e↵ective implementation of FMS one must also
determine how flexible they intend to be with respect to the topology of faces and regions. Within the already
stated restriction of a single shell for regions and a single loop, the most flexible approach is to define the
faces as a loop of any number of edges and the regions as bounded by any number of faces. However, much
more e�cient implementations can be developed if the face and region topologies are limited to a small set.
Since FMS is targeting high-order method on such meshes, it supports faces with only three or four edges and
the regions are limited a specific set of face configurations. Given this limited set of topologies, FMS will also
employ specific ordering of the entities thus supporting the more e�cient execution of functional evaluations.

This approach provides an e↵ective means store and operate on fields defines over a mesh. In all cases,
the process of accessing the field information for an element in the mesh begins by accessing the element’s
core mesh entity, which is the mesh entity of maximum dimension for that element (i.e., if the element is
a hexahedron, that will be a region, it the element is a triangle it will be a face, etc.). In the case of a L2

element the full set of field parameters will be associated with the core mesh entity. However in the case
where there is C0 (or higher) order continuity between elements that continuity is obtained by using shared
field parameters that are associated with the mesh entities that bound the core mesh entity. Thus the full
description of the field must consider the field parameters associated with the closure of the core mesh entity.
Thus for a C0 high-order hexahedron element the complete field will be defined in terms of field parameters
associated with the core mesh region, the faces that bound that region, the edges that bound those faces, and
the vertices that bound those edges.

It is clear that to e↵ectively construct C0 fields based on fields associated with mesh entities of each
dimension, there is the need to quickly determine the appropriate mesh adjacencies. Since this operation,
and others used when executing an analysis on a given mesh, can be e↵ectively supported by downward
mesh adjacencies, the base adjacencies maintained by FMS are the one-level downward adjacencies of regions-
to-faces, faces-to-edges and edges-to-vertices. (It should be noted that given these adjacencies and proper
mesh classification, it is possible to construct any of the other mesh adjacencies. If other adjacencies are
desired they are can be e↵ectively determines and stored during a mesh traversal.) The mesh adjacency
information is also e↵ective for supporting common post processing operations. For example in cases where
the physics of a problem indicates a field is ”continuous”, but the mesh-based discretization employed L2

fields, is common to construct ”patch wise” C0 projection of that L2 field before visualizing it. The mesh
adjacency information e↵ectively supports the determination of the patches.

It is important to recognize that the discrete field parameters, the dof, alone do not fully qualify how
a field various over the elements in the mesh. The fields are only fully quantified with a knowledge of the
functional form those parameters are used to quantify. Unlike lower order C0 methods where one common set
of functions are used, there are a number of alternative forms used in di↵erent finite element codes, and even
within a single code infrastructure, there are various combinations of functional forms used. For example
MFEM has both C0 and L2 discretization methods that an be used in various combination to solve specific
problem. Since it is not reasonable to provide a specific enumerated library of functions covering all field
types, an API based approach is being adopted to interacting with FMS. The fact that FMS is focused on
elements, the abstraction of topology, and the collections of discrete parameters, makes it straight forward
to interact through the APIs. The use of the API also makes it quite clear as to what is needed for a new
analysis code to interact through FMS, they simply have to provide the portions of the APIs that actually
operate on the fields.

CEED’s FMS also supports non-confirming adaptive mesh refinement through the application of element
level sub-divisions and well as the coarsening of elements back to original starting mesh.

Parallel meshes are supported by placing each of the sets of elements of an non-overlapping partitioning
of the mesh into mesh subsets.

2.2 FMS Implementation

This section contains a description of the initial high-order FMS interface which is intended as a lightweight
format and API that can represent general finite elements within a common, easy to use framework. This
includes high-order solutions and meshes, such as the ones in Figure 1, as well as non-standard finite elements,
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such as Nedelec and Raviart-Thomas elements.

Figure 1: Simple example of a high-order field on a high-order curved mesh.

This mesh has four 12th order elements on which an 11th order discontinuous

field has been defined. CEED’s FMS aims to provide an interface to describe

such complex data so it could be exchanged between applications and visualized

by tools like ParaView and VisIt.

The data described by FMS is a collection of:

1. Mesh topology

2. Set of fields defined on that topology

This separation of mesh geometry and topology is important in many applications (e.g. those with
moving meshes) and allows the FMS format to handle general high-order meshes in a simple and uniform
way. Note that the geometry of the mesh, described by the coordinates of the vertices, for linear meshes, or
the coordinates of the nodes for high-order meshes is specified itself as just another finite element field, called
nodes or coordinates (for example as vector field in an H1-space of appropriate order).

For more details on the CEED FMS interface see http://ceed.exascaleproject.org/fms/ and the
automatically updated Doxygen documentation, https://codedocs.xyz/CEED/FMS. We are interested in
collaborating with application scientists and visualization teams to further improve FMS and make it a viable
option for high-order data exchange and high-order visualization and data analysis.

2.2.1 Mesh Topology

The mesh topology, described by the type FmsMesh below, is represented by the following interconnected mesh

entities:

• 0d-entities = Vertices

• 1d-entities = Edges

• 2d-entities = Faces: Triangles and Quads

• 3d-entities = Elements/Volumes/Regions: Tets, Hexes, Wedges and Pyramids

The topology does not include geometric or finite element information, but does include relations between
the entities and their orientation with respect to reference configurations. The topology can also be split into
domains and components which form a decomposition (e.g. for parallel computations), or select a subset of
physical interest, respectively. In FMS, the Mesh topology is described by objects of type FmsMesh, which can
be constructed with FmsMeshConstruct() and deleted with FmsMeshDestroy().
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Mesh Entities

FMS makes the following assumptions about the mesh:

1. . All entities of all dimensions are represented in the mesh domains, i.e. we expect explicitly
numbered elements, faces, edges and vertices.

2. An entity is described in terms of its sides, where a side is a one dimension lower entity; in other
words an element is described in terms of its faces, a face in terms of its edges and an edge in terms of
its vertices.

The first assumption may seem unusual for finite element codes, but it naturally describes the entities
with which finite element degrees of freedom are associated, making it easy to describe fields (finite element
functions) below.

The second assumption provides a set of downward adjacencies which allows easy reconstruction of
relations like element-vertex, while providing flexibility for algorithms that need to loop over faces and edges.

More specifically, a mesh entity is described by a tuple of its side entity indices. For an entity of dimension
d, its side entities are its boundary entities of dimension d� 1.

For FMS TRIANGLE and FMS QUADRILATERAL, the edges (sides), “abc”/“abcd” and the vertices “012”/“0123”
are ordered counterclockwise, as illustrated in the following diagram:

3--c--2 2
| | / \
d b c b
| | / \
0--a--1 0---a---1

For 3D entities, the ordering of the edges inside the faces should follow the counterclockwise ordering
when looking the face from outside. This rule is followed by the choices given below. For FMS TETRAHEDRON,
the faces (sides), “ABCD”, the edges, “abcdef”, and the vertices, “0123” are ordered as follows:

z=0 y=0 x=0 x+y+z=1
2 3 3 3

/ \ / \ / \ / \
b c d e f d e f

/ A \ / B \ / C \ / D \
1---a---0 0---a---1 2---c---0 1---b---2

For example, vertex “0” has coordinates (x, y, z) = (0, 0, 0), vertex “1” has coordinates (1, 0, 0), etc. For
FMS HEXAHEDRON, the faces (sides), “ABCDEF”, the edges, “abcdefghijkl” and the vertices, “01234567”, are
ordered as follows:
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7--g--6
/| /|

/ l / k z=0 z=1 y=0 y=1 x=0 x=1
h | f | bottom top front back left right

/ 3-/c--2 2--c--3 7--g--6 4--e--5 6--g--7 7--h--4 5--f--6
/ / / / | | | | | | | | | | | |

4--e--5 / b A d h B f i C j k D l l E i j F k
| d | b | | | | | | | | | | | |
i / j / 1--a--0 4--e--5 0--a--1 2--c--3 3--d--0 1--b--2
|/ |/
0--a--1

For example, vertex “0” has coordinates (x, y, z) = (0, 0, 0), vertex “6” has coordinates (1, 1, 1), etc.

Mesh Domains

Mesh domains describe sets of interconnected mesh entities (0d, 1d, 2d and 3d). All entities in the domain
are enumerated locally.

Each mesh domain can be viewed as its own independent mesh, as it provides full description of the
entities inside it (the face of all volumes are described as 2-entities, the edges of all faces are described as
1-entities, etc.)

A typical example to keep in mind is parallel computations, where an MPI tasks can contain one (or
several) domains, which can be processed independently in the interior. Connections between domains are
described using shared entities. Domains are assigned a string name and an integer id. Thus, a domain is
identified uniquely by the tuple: (name, id, partition-id) where the partition id is the one assigned to the
containing mesh.

In FMS, domains are described using objects of type FmsDomain which can only exist as part of an FmsMesh;
they are created using the FmsMeshAddDomain() function. To describe the mesh entities inside the domain, one
uses the functions FmsDomainSetNumVertices(), FmsDomainSetNumEntities(), FmsDomainAddEntities(), etc.

Mesh Components

Mesh components are regions of physical interest defined across the mesh domains, such as materials, sections
of the boundary, di↵erent parts in fluid-structure interaction, etc. The subset of the component on each
domain is a set of entities, which is called a part. Each part is described as a list of entity indices which point
to entities of the associated domain. All entities in the component must have (i) the same dimension and (ii)
specified orientation (relative to the entity as described in its domain).

Note that di↵erent components can overlap and be of di↵erent dimensions. Typically, the whole mesh is
represented by a special component of all elements (3-entities) on all domains. This is the component, for
example, on which the mesh nodes will be defined (see below).

In order to facilitate the definition of fields on the component, the following additional data can be stored
in every part of the component: for all lower dimensional entities that are boundary to the main entities of
the part, define an array that maps the local (to the part) indices to the domain-indices. These arrays plus
the main array (the one describing the highest dimensional entities of the component) define local numberings
of all entities inside each part. These numberings will be used to define the ordering of the degrees of freedom
of a field. When the main entity array is NULL (indicating that all entities in the domain are used) then the
lower dimensional entities will also be NULL because there is no need to have local numbering of the entities —
the original numbering defined by the domain can be reused.

In addition to the parts, a component also stores relations to other components. A relation to a component
of lower or higher dimension indicates a boundary or interface relation, i.e. the lower dimensional component
describes a subset of the boundary entities of the higher dimensional component. A relation to another
component of the same dimension is acceptable but has no specified meaning.

A component has an associated coordinates or nodes field, of type FmsField, which may be NULL. Mesh
tags (discussed below) are defined on the set of all main entities in a mesh component.

Discrete fields are defined on mesh components. Unlike tags, discrete fields generally associate data not
only with the main entities described by the mesh component but also with the lower-dimensional boundary
entities of the main component entities.
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In FMS, components are described using objects of type FmsComponent which only exist as part of an FmsMesh

and are created using the FmsMeshAddComponent() function. Parts and their entities can be added to the compo-
nent with the functions FmsComponentAddPart(), FmsComponentAddPartEntities(), FmsComponentAddRelation(),
etc.

Mesh Tags

A mesh tag is an array of integers describing the main entities in a given component. Optionally, the
integer tags can be assigned string descriptions. Tags could be used to mark di↵erent boundary conditions,
di↵erent materials in the mesh, store the orders (polynomial degrees) associated with the component entities
in variable-order discrete spaces, etc. Each tag naturally defines a non-overlapping decomposition of the
associated component. The array with the integer tags is ordered part-by-part within the mesh component.

In FMS, tags are described using objects of type FmsTag which exist only as a part of a mesh and
can be created using the FmsMeshAddTag() function and described by the functions FmsTagSetComponent(),
FmsTagSet(), FmsTagAddDescriptions(), etc.

2.2.2 Fields

The fields, described by the type FmsField below, are high-order finite element functions given in terms of
their degrees of freedom associated with the interior of each of the mesh entities. These fields can be specified
only on mesh components, and can describe any scalar or vector function in the de Rham complex (H1,
H(curl), H(div) and L2 elements). As noted above, the coordinates of the mesh nodes, specifying the actual
mesh shape in physical space, are just a special field on the whole mesh.

In FMS, each field is specified by defining a FmsFieldDescriptor that contains the associated mesh
component, the basis type describing the field and type of the field itself i.e. continuous, discontinuous
etc. Two options are available for storing vector field data, either by dimension, FMS BY VDIM or by nodes
FMS BY NODES. In the former, the pair of indices (i,j) of degree of freedom i and vector component j are
mapped to a 1D array by the formula i*vdim+j; in latter choice (FMS BY NODES), the indices (i,j) are mapped
using the formula i+num dofs*j.

FMS fields and their descriptors are stored in, and only exist as part of, objects of type FmsDataCollection

which in turn can be created on top of an FmsMesh object using the function FmsDataCollectionCreate(). Ob-
jects of types FmsField and FmsFieldDescriptor can be created with the functions FmsDataCollectionAddFieldDescriptor()
and FmsDataCollectionAddField().

2.2.3 Example of a Simple Mesh

Below is a complete example of using the FMS interface to describe a simple mesh.

1 // Example of using the FMS interface to describe the following 1-element mesh
2 //
3 // <3>----(2) ----<2>
4 // | |
5 // | |
6 // (3) [0] (1)
7 // | |
8 // | |
9 // <0>----(0) ----<1>

10 //
11 // where <V> = vertex id, (E) = edge id and [Q] = quadrilateral id. The edge and
12 // element orientation are counter -clockwise:
13 //
14 // (0) = <0>,<1> ; (1) = <1>,<2> ; (2) = <2>,<3> ; (3) = <3>,<0>
15 // [0] = (0), (1), (2), (3)
16 //
17 // The mesh has one domain and two components: a volume containing element [0]
18 // and boundary containing edge (2). The volume component is tagged with the
19 // "material" tag.
20

21 #include <fms.h>
22
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23 int main(int argc , const char *argv []) {
24

25 // Create the Mesh object
26 FmsMesh mesh;
27 FmsMeshConstruct (&mesh);
28 // FmsMeshSetPartitionId(mesh , 0);
29

30 // Mesh Domains
31 FmsDomain *domain;
32 FmsMeshAddDomains(mesh , "domains", 1, &domain);
33

34 FmsDomainSetNumVertices(domain [0], 4);
35 FmsDomainSetNumEntities(domain [0], FMS_EDGE , FMS_INT32 , 4);
36 FmsDomainSetNumEntities(domain [0], FMS_QUADRILATERAL , FMS_INT32 , 1);
37

38 // Edges
39 const int edge_vert [] = {0,1, 1,2, 2,3, 3,0};
40 FmsDomainAddEntities(domain [0], FMS_EDGE , NULL , FMS_INT32 , edge_vert , 4);
41

42 // Faces
43 const int quad_edge [] = {0, 1, 2, 3};
44 FmsDomainAddEntities(domain [0], FMS_QUADRILATERAL , NULL ,
45 FMS_INT32 , quad_edge , 1);
46

47 // Mesh Components
48 FmsComponent volume;
49 FmsMeshAddComponent(mesh , "volume", &volume);
50 FmsComponentAddDomain(volume , domain [0]);
51

52 FmsComponent boundary;
53 FmsMeshAddComponent(mesh , "boundary", &boundary);
54 FmsInt part_id;
55 FmsComponentAddPart(boundary , domain [0], &part_id);
56 const int bdr_edge [] = {2};
57 FmsComponentAddPartEntities(boundary , part_id , FMS_EDGE , FMS_INT32 ,
58 FMS_INT32 , FMS_INT32 , NULL , bdr_edge , NULL , 1);
59

60 FmsComponentAddRelation(volume , 1); // 1 = index of "boundary" component
61

62 // Mesh Tags
63 FmsTag material;
64 FmsMeshAddTag(mesh , "material", &material);
65 FmsTagSetComponent(material , volume);
66 const int material_tags [] = {1};
67 FmsTagSet(material , FMS_INT32 , FMS_INT32 , material_tags , 1);
68

69 // Finalize the construction of the Mesh object
70 FmsMeshFinalize(mesh);
71 // Perform some consistency checks.
72 FmsMeshValidate(mesh);
73

74 // Coordinates Field
75 // Defdine data collection
76 FmsDataCollection dc;
77 FmsDataCollectionCreate(mesh , "data collection", &dc);
78

79 // Define field descriptor
80 FmsFieldDescriptor coords_fd;
81 FmsDataCollectionAddFieldDescriptor(dc, "coords descriptor", &coords_fd);
82 FmsFieldDescriptorSetComponent(coords_fd , volume);
83 FmsInt coords_order = 1;
84 FmsFieldDescriptorSetFixedOrder(coords_fd , FMS_CONTINUOUS ,
85 FMS_NODAL_GAUSS_CLOSED , coords_order);
86

87 // Define the coordinates field
88 FmsField coords;
89 FmsDataCollectionAddField(dc, "coords", &coords);
90 const double coords_data [] = {
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91 0.,0.,
92 1.,0.,
93 1.,1.,
94 0.,1.
95 };
96 FmsInt sdim = 2; // A 2D mesh embedded in "sdim"-dimensional space.
97 FmsFieldSet(coords , coords_fd , sdim , FMS_BY_VDIM , FMS_DOUBLE , coords_data);
98

99 FmsComponentSetCoordinates(volume , coords);
100

101 // Use the mesh to perform computations
102

103 // Destroy the data collection: destroys the FmsMesh and all other linked Fms
104 // objects.
105 FmsDataCollectionDestroy (&dc);
106

107 return 0;
108 }

2.3 Demonstration of FMS Data Exchange

To illustrate the usage of CEED’s FMS interface in practice, we consider a data exchange between the PUMI
and MFEM packages in CEED. Given a PUMI mesh, an FmsMesh is constructed using PUMI and the FMS
API. This mesh is then used to load an MFEM mesh and solve a benchmark problem. This scenario tests the
capability of the FMS interface to both write a mesh in its format, given a PUMI mesh as input, and read it
to a new format, MFEM in this case.

For the sake of simplicity, a one-domain, one-component mesh is considered. The input is a 3D quadratic

unstructured tetrahedral mesh in PUMI ‘smb’ format classified on the corresponding CAD model, see Figure 2.

Figure 2: FMS interface example: a curved geometry discretized with a quadratic

mesh

The first step after loading the PUMI mesh is to define the topology. FMS requires all mesh entities,
i.e. vertices, edges, faces and elements, to be explicitly defined in order to establish the one-level downward
adjacencies (the relations element–face, face–edge and edge–vertex). As the PUMI mesh data structure
supports one-level downward adjacencies already, this task simplifies to using the PUMI API to loop over
each entity type, get the bounding side IDs for each entity and then call the FMS API to construct the
corresponding entity. Below is a code segment that writes all triangle faces of an FMS mesh based on their
bounding edges.

1 // Faces
2 FmsInt nedges = 3; // Triangle face has 3 edges
3 int face[nedges ];
4 int entDim = 2; // Face dimension
5 itr = pumi_mesh ->begin(entDim);
6 // Loop over PUMI mesh faces
7 while ((ent = pumi_mesh ->iterate(itr)))
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8 {
9 // Get Edges

10 apf:: Downward edges;
11 pumi_mesh ->getDownward(ent , apf::Mesh::EDGE , edges);
12

13 //Get the Edge IDs
14 for (FmsInt ed = 0; ed < nedges; ed++){
15 face[ed] = apf:: getNumber(edge_num_local , edges[ed], 0, 0);
16 }
17

18 // Create a face in FmsMesh mesh
19 FmsDomainAddEntities(domain [0], FMS_TRIANGLE , 0, FMS_UINT32 , face , 1);
20 }
21 pumi_mesh ->end(itr);

Note that FmsDomainAddEntities() allows the definition of entity reordering in its third argument. As
both PUMI and FMS use the same ordering for faces, i.e. same order in bounding edges, the reordering is set
to zero. However, as the codes use di↵erent ordering for tetrahedral elements, a FmsEntityReordering array
needs to be defined. This array describes which face of a tetrahedral element in PUMI matches with which
corresponding face of the FMS tetrahedral element:

1 // Define entity reordering for FMS_TETRAHEDRON
2 FmsEntityReordering EntReord;
3

4 // PUMI order for tet element faces
5 FmsInt nfaces = 4;
6 int tetOrd[nfaces] = {0,1,3,2};
7 EntReord[FMS_TETRAHEDRON] = &tetOrd [0];
8

9 // Loop over PUMI tetrahedron elements and add
10 {
11 .....
12 FmsDomainAddEntities(block[0], FMS_TETRAHEDRON , EntReord , FMS_UINT32 , elem , 1);
13 }

Once topology definition is completed, the mesh shape (geometry) is defined using the coordinate field.
Each field in FMS has a field descriptor that defines field properties such as continuity, basis type and order
of the field. For the coordinate field in this example we choose a second order, continuous field with open
nodal Gauss basis:

1 // Define coordinate field
2 FmsFieldDescriptor CrdFieldDesc;
3

4 // Define fixed order field descriptor
5 FmsFieldDescriptorSetFixedOrder(CrdFieldDesc , FMS_CONTINUOUS , FMS_NODAL_GAUSS_CLOSED , 2)

The order of data storage in a field is: first vertex data, followed by data associated with the nodes
classified on edges, data associated with the nodes classified on faces, and finally data associated with volume
elements. In our example of a quadratic tetrahedral mesh we only have coordinate data associated with
vertices and edges.

1 // Vector containing vertices and nodes coordinates
2 std::vector <double > allPumiCrds;
3

4 // Loop over all pumi vertices and add coordinates to allPumiCrds
5 ...
6 // Loop over all pumi edges and add coordinates of node classified on them
7 ...
8 // Set the coordinate field of FmsMesh mesh
9 FmsFieldSet(FmsCrdField , CrdFieldDesc , numVecComp , FMS_BY_VDIM , FMS_DOUBLE ,

10 &allPumiCrds)

Adding the coordinate field completes the definition of the mesh. The remaining task now is to define
possible boundary components and assign material entity tags if needed.

In our elasticity example we are assuming a Dirichlet and a load boundary condition. Each boundary
condition is added as a new mesh component to FMS, i.e. for the Dirichlet BC we have,
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1 FmsComponent Dir_boundary;
2 FmsMeshAddComponent(mesh , "DirBoundary", &Dir_boundary);
3 FmsComponentAddPart(Dir_boundary , domain [0], &part);

Then the IDs of the corresponding boundary entities are collected. This is done easily in PUMI using
reverse classification in which a query of the model face returns mesh faces classified on it, once the IDs are
obtained the entities are added to the component as:

1 // Dir_ents contains the FMS_TRIANGLE Dirichlet face IDs
2 FmsComponentAddPartEntities(Dir_boundary , part , FMS_TRIANGLE , FMS_UINT32 ,
3 FMS_INT_TYPE , FMS_INT_TYPE ,
4 NULL , &Dir_ents , NULL , Dir_cnt);

This completes the description of the PUMI mesh in the FMS interface. We next demonstrate, how this
mesh can be read in MFEM and used to perform a simple elasticity simulation.

The convertion of the FMS data collection to an MFEM mesh begins with the extraction of the FmsMesh

from the FmsDataCollection, dc:

1 // Extract the FmsMesh from the FmsDataCollection
2 FmsMesh fms_mesh;
3 FmsDataCollectionGetMesh(dc, &fms_mesh);

The second step is to extract the dimension, number of vertices, number of elements, and number of boundary
elements in the mesh. Since we assumed a one-domain mesh, we can simply query the first domain in the
FmsMesh:

1 // Extract the dimension , Dim , number of vertices , NVert and number of
2 // elements , NElem from domain 0.
3 FmsDomain *domains;
4 FmsMeshGetDomains(fms_mesh , 0, &name , &num_domains , &domains);
5 FmsDomainGetDimension(domains [0], &Dim);
6 FmsDomainGetNumVertices(domains [0], &NVert);
7 FmsDomainGetNumEntities(domains [0], FMS_TETRAHEDRON , &NElem);

Extracting the number of boundary elements requires reading and adding the number of entries from the
mesh components "DirBoundary" and "LoadBoundary" which have dimension Dim-1:

1 NBdrElem = 0;
2 FmsInt num_comp;
3 FmsMeshGetNumComponents(fms_mesh , &num_comp);
4 for (FmsInt i = 0; i < num_comp; i++) {
5 FmsComponent comp;
6 FmsMeshGetComponent(fms_mesh , i, &comp);
7 FmsInt comp_dim;
8 FmsComponentGetDimension(comp , &comp_dim);
9 if (comp_dim == Dim -1) {

10 FmsComponentGetNumEntities(comp , &num_ents);
11 NBdrElem += num_ents;
12 }
13 }

Next, we can initialize the an mfem::Mesh object:

1 // Begin construction of the MFEM mesh.
2 mfem::Mesh mesh(Dim , NVert , NElem , NBdrElem);

After that, we query FMS for the vertices of all tetrahedral entities in domain 0 and push them in the MFEM
mesh:

1 FmsInt num_ents;
2 FmsEntityType et = FMS_TETRAHEDRON;
3 FmsDomainGetNumEntities(domains [0], et , &num_ents);
4 mfem::Array <int > ents_verts(num_ents*FmsEntityNumVerts[et]);
5 FmsDomainGetEntitiesVerts(domains [0], et, NULL , FMS_INT32 ,
6 0, ents_verts.GetData (), num_ents);
7 for (FmsInt i = 0; i < num_ents; i++) {
8 mesh.AddTet (& ents_verts [4*i]);
9 }
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Table 1: Bake-O↵ Kernel/Problem Summary

System Form BCs Quadrature Points Nodal Points

BK1/BP1 Bu = r scalar homogeneous Neumann (p+ 2) GL (p+ 1) GLL

BK2/BP2 Bui= ri vector homogeneous Neumann (p+ 2) GL (p+ 1) GLL

BK3/BP3 Au = r scalar homogeneous Dirichlet (p+ 2) GL (p+ 1) GLL

BK4/BP4 Aui = ri vector homogeneous Dirichlet (p+ 2) GL (p+ 1) GLL

BK5/BP5 Au = r scalar homogeneous Dirichlet (p+ 1) GLL (p+ 1) GLL

BK6/BP6 Aui = ri vector homogeneous Dirichlet (p+ 1) GLL (p+ 1) GLL

Proceeding in a similar fashion, we can transfer the boudary elements as well. To complete the transfer, we
need to read and convert the mesh coordinates: first we find the unique Dim-dimensional component and
extract its coordinates field using:

1 FmsField coords;
2 FmsComponentGetCoordinates(vol_comp , &coords);

Then, we extract the data from the coords field:

1 FmsInt num_vec_comp;
2 FmsFieldDescriptor coords_fd;
3 FmsScalarType coods_data_type;
4 const void *coords_data;
5 FmsFieldGet(coords , &coords_fd , &num_vec_comp , NULL , &coods_data_type ,
6 &coords_data);

To interpret the coords data, we can query the field-descriptor coords fd and perform necessary reordering of
the coords data which is necessary due to the fact that MFEM generates and uses its own internal numbering
for the edges and the faces in the mesh.

3. CEED KERNELS AND BENCHMARKS

Performance test and analysis are central to HPC software development. One of the foundational components
of CEED is a sequence of PDE-motivated bake-o↵ problems to establish best practices across a variety of
architectures. The main idea is to pool the e↵orts of several high-order development groups, both internal
and external to CEED, in order to identify optimal code optimization strategies for a given architecture.
Our first round of tests features comparisons from the CEED projects Nek5000, MFEM, and Holmes, and
from the deal.II group in Germany. (The Dune team in Heidelberg has also recently expressed interest in
participating.)

In the following sections, we present the bake-o↵ specifications; the first round of results for Nek5000,
MFEM, and deal.II using the gcc compiler; updated values using xlc; and very recent results for MFEM
using vectorization intrinsics. We also present OCCA-driven Holmes results on Summit, using the Nvidia
V100 GPUs on Summit and comparisons of MFEM on EPYC and Skylake processors. In addition to peak
performance, we seek to understand scalable performance, which means we are concerned with the rate
of results produced per node when the amount of work per node is relatively small. Elevating this rate
is essential for reducing run time on HPC platforms whenever the problem fits on any subset of the total
machine because the user can (and will) in this case use more processors to reduce time to solution.

We note that the MFEM intrinsic developments were motivated by the impressive performance of deal.II.
The switch to intrinsics+xlc resulted in a two- to four-fold performance gains for MFEM over the original
gcc-only variants. We can thus conclude that the original intent of the bake-o↵s is already being

fulfilled: information-sharing is generating performance gains across the spectrum of CEED

codes and dependent ECP applications.

3.1 Bake-O↵ Specifications

The first suite of problems is focused on run-time performance, measured in degrees-of-freedom per second
(DOFs) for bake-o↵ kernels (BKs) and bake-o↵ problems (BPs). The BKs are defined as the application of a
local (unassembled) finite-element operator to a scalar or vector field, without the communication overhead
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associated with assembly. These tests essentially demonstrate the vectorization performance of the PDE
operator evaluation (i.e., matrix-free mat-vecs) and provide an upper bound on realizable floating-point
performance (MDOFS or MFLOPS) for an application based on such implementations. The BPs are mock-up
solvers that use the BKs inside a diagonally-preconditioned conjugate gradient (CG) iteration. The point of
testing the BKs inside CG is to establish realistic memory-access patterns, to account for communication
overhead of assembly (i.e., nearest-neighbor exchange), and to include some form of global communication
(i.e., dot products) as a simple surrogate for global coarse-grid solves that will be requisite for exascale linear
system solves. To meet these goals in a measurable way, it was decided to run all BPs on 16384 ranks (512
nodes in -c32 mode) of the BG/Q Cetus at ALCF. The range of problem sizes was chosen to span from the
performance-saturated limit (a lot of work per node) to beyond the strong-scale limit (very little work per
node)

To date, there are six BKs and six BPs. Kernels BK1, BK3, and BK5 operate on scalar fields while BK2,
BK4, and BK6 are corresponding operators applied to vector fields having three components each. Each BPj,
j = 1, . . . , 6 corresponds to CG applied to the assembled BKj system, using a matrix-free implementation
if that is faster. The vector-oriented kernels allow amortization of matrix-component memory references
across multiple operands, and provide a realistic optimization for vector-based applications such as fluid
dynamics (three fields) and electromagnetics (six fields). The vector-based implementations can also benefit
from coalesced messaging, thus reducing the overhead of message latency, which is important when running
in the fast (strong-scale) limit.

The BPs include solution of the mass matrix, Bu = r (BP1–BP2), and the sti↵ness matrix, Au = r
(BP3–BP6). Here, Aij = (r�i,r�j)q, and Bij = (�i,�j)q, for nodal basis functions �i in the standard
Qp approximation spaces in lR3 and (·, ·)q denotes the discrete L2 inner product based on q points in each

direction on the reference domain ⌦̂ := [�1, 1]3. Approximation orders are p = 1, . . . , 15, and corresponding
quadrature rules for each problem are given in Table 1. There are a total of E elements, E = 214–221,
arranged in a tensor-product array. As the tests are designed to mimic real-world applications, the benchmark
codes are to assume that the elements are full curvilinear elements and are not allowed to exploit the global
tensor-product structure of the element layout.

3.2 Bake-O↵ Problems on BGQ

Here we present bake-o↵ results with preliminary test data for Nek5000, MFEM and deal.II on ALCF’s
BG/Q, Cetus, using 512 nodes in -c32 mode (16384 MPI ranks). The initial runs were based on the gcc
compiler. On BG/Q, however, the performance of gcc is much lower than the native xlc compiler, so the
battery of tests was rerun using xlc, save for deal.II, which at the time of this report still is not linking
properly with the xlc compiler on Cetus.

We measure the rate of work in DOFs-per-second (DOFS) or more frequently in millions-of-DOFs-per-
second (MDOFS, or megadofs). Two of the principal metrics of interest are the peak rate of work per unit
resource, rmax, and n 1

2
—the local problem size on the node required to realize one-half of the peak rate of

work per unit resource. Note that n 1
2
is defined in terms of points. The importance of n 1

2
, rmax, and their

scaled ratio, t 1
2
= 2n 1

2
/rmax, is discussed below. All results are plotted as the rate-of-work per unit-resource,

given by [DOFs ⇥ CG Iterations] / [compute nodes ⇥ seconds], versus the number of [Points per compute
node]. (To simplify the notation, we will simply refer to the performance variable–the y axis–as MDOFS in
the text below.) Choosing number of points (rather than number of DOFs) as the independent variable on
the x-axis leads to a data collapse in the case where the systems are solved independently: one obtains a
single curve for any number of independent systems. When the systems are solved simultaneously, as in BP2,
BP4, and BP6, benefits such as increased data-reuse or amortized messaging overhead should manifest as
shifts up-and-to-the-left in the performance curves. We note that, for BP1, BP3, and BP5, points and DOFs
are the same.

Figures 3–11 present the BP results using the gcc and xlc compilers for Nek5000, MFEM, and deal.II.
On each figure, each line represents a di↵erent polynomial order. In all cases, performance is strongly tied
the number of gridpoints, n. In the case of the gcc compilers, Nek5000 and MFEM generally exhibit a
performance plateau as n increases whereas deal.II shows a distinct peak. In the discussion that follows, we
focus primarily on the saturated (i.e., peak observable) performance towards the right side of the graphs.
On the left side, performance levels drop o↵ to uninteresting values that users would never see. This low

Exascale Computing Project (ECP) 14 CEED-MS18



(a) BP1 Nek5000 (b) BP1 MFEM (c) BP1 deal.II

Figure 3: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

(a) BP1 Nek5000 (b) BP1 MFEM (c) BP1 deal.II

Figure 4: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

performance regime corresponds to relatively few points per node and is easily avoided on distributed-memory
platforms by using fewer processors. While the definition is not precise, the point of rapid performance roll-o↵
represents the strong-scale limit to which most users will gravitate in order to reduce time-to-solution. This
transition point is thus arguably the most significant part of the domain and its identification is an important
part of the BP exercise. A convenient demarcation is n 1

2
, which indicates the number of points per node

where the performance is one-half the realizable peak, though most users will choose a number of processors
such that n > n 1

2
in order to realize better than 50% e�ciency.

3.2.1 BP1–BP2

Figures 3–5 present the BP results for the mass-matrix problem, BP1 and BP2. Figure 3 uses the gcc
compilers, while Figs. 4–5 are based on xlc for Nek5000 and MFEM. (At this moment deal.II does not link
with xlc.) Nek5000+gcc sustains 27-33 MDOFS for polynomial orders p > 4, save for p = 14 and 15, which
saturate around 25 MDOFS. For MFEM, a peak performance of 42 MDOFS is realized for p = 3, which
corresponds to 4 ⇥ 4 ⇥ 4 bricks for each element. MFEM realizes > 32 MDOFS for p = 2–4, and ⇡ 20
MDOFS for the majority of the higher order cases. With gcc, deal.II delivers an impressive 54–64 MDOFS
for p > 4. The highest values are attained for n > 450, 000. The n 1

2
for deal.II is also quite high, however.
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(a) BP2 Nek5000 (b) BP2 MFEM (c) BP2 deal.II

Figure 5: BP2 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

(a) BP3 Nek5000 (b) BP3 MFEM (c) BP3 deal.II

Figure 6: BP3 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

(a) BP3 Nek5000 (b) BP3 MFEM (c) BP3 deal.II

Figure 7: BP3 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.
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(a) BP4 Nek5000 (b) BP4 MFEM (c) BP4 deal.ii

Figure 8: BP4 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

(a) BP5 Nek5000 (b) BP5 MFEM (c) BP5 deal.ii

Figure 9: BP5 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 1). The number cpu cores P = 8, 192.

(a) BP5 Nek5000 (b) BP5 MFEM (c) BP5 deal.ii

Figure 10: BP5 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 1). The number cpu cores P = 8, 192.
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(a) BP6 Nek5000 (b) BP6 MFEM (c) BP6 deal.ii

Figure 11: BP6 results of Nek5000 (left), MFEM (center), and deal.ii (right)

on BG/Q with varying polynomial order (p = 1, ..., 16) with the numbder of

quadrature points (q = p+ 1). The number cpu cores P = 8, 192.

For example, for n = 100, 000, performance is below 30 MDOFS for all p > 9. The rapid fall-o↵ is related to
the way deal.II distributes elements to MPI ranks. The partitioner insists on having at least 8 elements per
rank, rather than insisting on a balanced load. Having 8 elements per rank guarantees that 8-wide vector
instructions can be issued for any polynomial order but rails against strong-scale performance.

Figure 4 again shows the BP1 results, but now using the xlc compiler for Nek5000 and MFEM. In addition
to the xlc compiler, the Nek5000 results are using assembly-coded matrix-matrix product routines for the
tensor contraction. Separate timings (not shown) indicate that most of the performance gains derive from
the xlc compiler, with an additional 5 to 30 % coming from the assembly code, depending on p. We see the
advantage of the xlc compiler, which boosts the Nek5000 peak to 59 MDOFS for p = 7 at n = 180, 000 and
MFEM to 54 MDOFS at n = 190, 000 for p = 9. An interesting observation is that with xlc, p = 3 is the
lowest performer (30 MDOFS) for MFEM (ignoring p = 1), whereas it was the highest (43 MDOFS) with gcc.

For BP2, we consider only the xlc results as shown in Fig. 5. For Nek5000, the peak is now 61 MDOFS
(p = 8) and there is a significant performance boost in the n ⇡ 50, 000 region with p = 6–9 realizing >
54 MDOFS. Remarkably, some of the performance curves, such as p = 15 show a reduction in peak. For
MFEM, the BP2 performance is similar to BP1. The p = 4 case is noteworthy in that it shows roughly a 10%
performance gain throughout the saturated (n > 60, 000) regime. BP2-gcc for deal.II leads to a reduction in
peak performance, but in some cases (e.g., p = 5) there is a shift to the left that indicates more potential for
strong scaling.

3.2.2 BP3–BP4

Figures 6–8 present the BP results for the sti↵ness-matrix problem, Au = r, with integration based on
q = p+ 2 points in each direction for each element. The results are similar to BP1–BP2. With gcc, Nek5000
realizes 15 MDOFS for p > 5; MFEM achieves a peak of 18 MDOFS for p = 4 and deal.II reaches a peak
of 28 MDOFS. With xlc, the peak for Nek5000 reaches 30–35 MDOFS for p = 6–8 and 10; MFEM reaches
20–22 MDOFS for p = 7–10. For the vector form, BP4-xlc, Nek5000 is boosted to 36 MDOFS for p = 6 at
n = 50, 000; MFEM realizes a gain from 18 to 21 MDOFS in moving from BP3 to BP4; and the results are
mixed for the deal.II BP4-gcc data.

3.2.3 BP5–BP6

BP5 and BP6 solve a Poisson problem using the standard spectral element sti↵ness matrix in which quadrature
is based on the point set that forms the nodal basis, that is, the Gauss-Lobatto quadrature points. The
advantage of this approach is that one only needs to evaluate tensor contractions to apply derivatives and their
transposes. No contractions are required for interpolation to quadrature points. The net result is nearly a
two-fold increase in MDOFS across all cases. Respectively for Nek5000, MFEM, and deal.II, BP5-gcc realizes
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peaks of 32, 30, and 60 MDOFS in contrast to 18, 18, and 28 for BP3-gcc. For BP5-xlc, the corresponding
peaks are 70 and 25 for Nek5000 and MFEM (something anomalous with MFEM that we are investigating).
For BP6, the Nek5000 peak at 68 MDOFS is slightly lower, but is realized for n = 90, 000.

A particularly salient point, is that Nek5000 BP6-xlc realizes 58 MDOFS for n = 44, 000 whereas deal.II
achieves 58 MDOFS for n = 180, 000. The net result is that, for the same FLOPS per node, whether
measured in total energy consumed or node hours spent, the ability to strong scale implies that the Nek5000
implementation will run fully 4⇥ faster. The importance of low n 1

2
values cannot be underestimated in an

HPC environment.
The point of the proceeding argument is not to argue that one code is superior to another. In fact, we do

not yet have the xlc data for deal.II and expect that it could improved substantially. The point is to stress
the importance of low n 1

2
in reducing time to solution. In fact, it is a straightforward exercise to show that,

for a given set of parameters, time to solution at fixed cost (e.g., charged node hours or energy consumed) is
governed by an equation of the following form,

Twall-clock = C
n 1

2

S
, (1)

where C is a problem dependent constant, S is the peak realizable speed (e.g., the MDOFS shown in Figs.
(3–11), and n 1

2
is a value of n where performance matches the user’s tolerable e�ciency level. The smaller the

value of n 1
2
(at fixed e�ciency), the more processors that can be used and the faster the calculation will run.

We further remark on some of the cross-code performance variations. One of the optimizations used by
deal.II is to exploit the bilateral symmetry of the GL and GLL points to cut the number of operations in
the tensor contraction by a factor of two using an even-odd decomposition [4]. The other, as previously
mentioned, organizes the data into 8-element blocks to combine favorable vector sizes which helps in realizing
improved peak (“S” in (1)) but inhibits strong scaling (“n 1

2
” in (1)). Moreover, as the objective of CEED is

to develop poly-algorithmic back-ends that will deliver the best performance to the end users, our objective
is to realize the optimal hull of performance over the various implementations. All scaling analysis, therefore,
must be based on the best-realized values, not on the values realized by a particular implementation. Thus,
n 1

2
must be based on the peak values such as achieved by deal.II when discussing the prospective performance

envelope.

3.2.4 Improvements Due to the Bakeo↵ Runs

Motivated by the deal.ii results the CEED team added explicit vectorization over the elements to the MFEM
code. Coupled with intrinsics, these resulted in a two- to four-fold speed-up over the original gcc-based results
and nearly a 50% speed-up attained with xlc alone. These results are very recent and are still being analyzed.
The major point of this story, however, is that cooperation among the BP participants has
resulted in performance gains across the board. The bake-o↵s are a dynamic process, rather than a
static benchmark and we fully expect that they will continue to contribute to performance gains as exascale
platforms are deployed. Results for BP1 are presented in Figure 12.

3.3 Bakeo↵ Kernels on Summit

With multinode scaling issues addressed through the BP studies, we turn now to node scaling on next-
generation accelerator-based architectures. Specifically, we consider the performance of BK5 implemented on
the NVIDIA V100 core on Summit using OCCA ([7]). In order to understand performance tuning on the
V100, we presently consider only the kernel (BK5), not the full miniapp (BP5), which means we are ignoring
communication and device-to-host transfer costs. Clearly, these issues will be important in the final analysis.
Our intent here is to understand the potential and the limits of GPU-based implementations of the SEM. We
seek to understand what is required to get a significant fraction of the V100 peak performance in the context
of a distributed memory parallel computing architecture such as Summit.

The BK5 performance kernel amounts to evaluating the matrix-vector product wL = ALuL, where
AL=block-diag(Ae), e = 1, . . . , E. This kernel is fully parallel because AL represents the unassembled sti↵ness
matrix. The local matrix vector products, we := Aeue are implemented in the matrix free form outlined in
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(a) BP1 MFEM-before (b) BP1 MFEM-after (c) BP1 deal.II

Figure 12: BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center),

and deal.ii (right) on BG/Q with varying polynomial order (p = 1, ..., 16) with
the number of quadrature points (q = p+ 2). The number cpu cores P = 8, 192.

(4.4.7) of [3],
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Here, the derivative matrices involve tensor products of the (Nq⇥Nq) identity (Î) and derivative (D̂) matrices:

D1 = Î ⌦ Î ⌦ D̂, D2 = Î ⌦ D̂ ⌦ Î, D3 = D̂ ⌦ Î ⌦ Î, where Nq = N + 1 is the number of nodal points in each
direction within an element. The geometric factors are diagonal matrices of size N3

q ⇥N3
q . G is a symmetric

tensor, Gij = Gji, so only 6N3
q memory references are required per element, in addition to the N3

q reads

required to load ue. D̂ requires only N2
q reads, which are amortized over multiple elements and therefore

discounted in the analysis. For E elements, the work complexity for (2) is W = 12N4
q + 15N3

q , with the
leading order O(N4

q ) term comprising tensor contractions that can be cast as e�cient BLAS3 kernels.
Figure 13a shows the performance for (2) on a single GPU core of Summit through a sequence of OCCA

tuning steps. The number of elements is E = 4096 and the polynomial order N varies from 1 to 15 (Nq=2 to
16). Each kernel is run for multiple times and the time for the kernel is taken by dividing total time by the
total number of iterations. This is done to smooth out the noise and to be sure that we are not misguided
by the clock resolutions on di↵erent systems. We note in particular that Nq = 8 and 16 see significant
performance gains for K8.

The tuning curves of Fig. 13a were for the case E = 4096, which is the largest we considered. On
leadership class platforms, users are typically interested in reduced time-to-solution for any given problem
(i.e., of fixed global size, ng), which means they will increase the node (i.e., GPU) count, P , to the point
where parallel e�ciency reaches an intolerable level (e.g., < 70%). Under this strong-scaling scenario, the
local number of points per node, n = ng/P , is reduced. There is ultimately a point of marginal return where
each GPU lacks su�cient work to keep busy (or to o↵set communication). To understand this strong-scale
limit, we performed a sequence of timings for E = 1, 2, 4, . . . , 4096, and analyze the data as a function of
the local number of gridpoints (for a single GPU), n := EN3.

Figure 13b shows the V100 TFLOPS for BK5 as a function of n for N = 1 to 15. The tight data collapse
demonstrates that n is a leading indicator of performance, but the polynomial order is also seen to be
important, with N = 15 realizing a peak of 2 TFLOPS. Cursory inspection of Fig. 13b indicates that n 1

2

for this kernel is roughly 105, implying that a simulation with ng points could realize a speedup of at most
1
2ng/105 at the 50% parallel e�ciency level. We take a closer look at this question in the next two plots.

Figure 13c shows the execution time for the cases of Fig. 13b. The expected linear dependence is evident
at the right side of these graphs while, to the left, the execution time approaches a constant as n �! 1.
Interestingly, the execution time in the linear regime is very weakly dependent on N , which typically argues
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(a) BK5 Tuning (b) BK5 Tflops

(c) BK5 Timings (d) BK5 Timings per point

Figure 13: (a) TFLOPS for di↵erent kernel tunings. (b) TFLOPS versus

problem size n for di↵erent polynomial orders, N . (c) Execution time versus n
for varying N . (d) Execution time per point versus number of points, n.

for larger values of N (and hence more accuracy) and correspondingly smaller values of E such that the
resolution requirements (ng) are met for the given simulation. Other considerations, such as meshing or
timestep size, inhibit using excessively high polynomial orders and experience has shown N = 5 to 9 to be
most practical for production simulations.

With this background, deeper insight to the (N,E, P ) performance trade-o↵s can be gained by looking
at the execution time per point, shown in Fig. 13d, which also shows the minimal time and the 2⇥ line,
which is twice the minimal execution time per point. For a fixed total problem size, ng, moving horizontally
on this plot corresponds to reducing n and increasing P such that ng = P n. In the absence of (yet to be
included) communication overhead, one gains a full P -fold reduction in the execution if the time per point
does not increase when moving to the left. We see in this plot that N = 7 appears to o↵er the best potential
for high performance, where even at n = 30, 000 the execution time per point is within a small multiple of
the minimum realized over all cases. This low value of n is in sharp contrast with the N = 14 and 15 cases,
which cross the 2⇥ line at n = 200, 000. Thus, through additional inter-node parallelism, the N = 7 case
a↵ords a potential 200/30 ⇡ 7-fold performance gain over the larger N cases.

We note that the conclusion that N = 7 is superior to N = 15 in this context runs contrary to standard
intuition, which suggests that, with an O(N) flop-to-byte ratio for (2), performance would be best served
by increasing N . Such a conclusion would in fact be correct in the saturated limit, where N -independent
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time is seen at the right of the graphs in Fig. 13c. In an HPC context, however, we are interested in running
problems that are as small as possible on each node. We can see in Fig. 13c that the low-N curves continue
to trend downward when the large-N curves flatten out as n is reduced. Thus, in the strong scale limit, a
modest value of N proves to be the most scalable.

Naturally, this analysis needs to be repeated to include other parts of the Navier-Stokes solver, including
host-device transfers and internode communication, but the analysis approach will be essentially the same.
One needs to understand where the strong-scale limits are to make informed discretization and algorithmic
choices.

OCCA results on Summit for BK1 and BK3 are shown in Figure 14.

(a) BK1 Summit (b) BK3 Summit

Figure 14: BK1 and BK3 V100 performance: TFLOPS versus problem size n
for di↵erent polynomial orders, N .

3.4 AMD EPYC vs. Intel Skylake Performance

The MFEM benchmark from the suite of CEED benchmarks (https://github.com/CEED/benchmarks/
tree/master/tests/mfem_bps) was executed on dual socket, 48 core, 96 thread, Intel Skylake-SP Xeon
Platinum 8160 and AMD EPYC 7451 nodes. These nodes represent the leading x86-compatible processors.
The IBM Power9 and ARM processors are excluded from this comparison. Note that, as of this report, the
retail cost of the Skylake processor we used is about 60% more than that of the EPYC processor.

Testing indicates that Skylake is up to 3.5 times faster than EPYC (excluding one apparent outlier at 96
processes for the p = 1, q = p+2 case). For problems with over 100 thousand points, the Skylake advantage is
at most 60%. At problem sizes over 10 million points using one or two processes per core, EPYC outperforms
Skylake by about 10%.

A strong scaling test of MFEM across many nodes would be necessary to determine the range of problem
sizes for maximum e�ciency and time to solution. The largest problem in the benchmark consumes less than
20% of the available memory on the Skylake and EPYC nodes. Using the majority of available memory
would be required to study weak scaling performance on large problems. Given the trends in this test, the
EPYC system would be better suited to this use case.

Figure 15 shows the performance ratio of Skylake to EPYC on a mesh with up to 25 million hexahedral
elements. The left column of plots show the entire range of evaluated problem sizes. The vertical axis in
the following plots is the ratio of Skylake, stampede2, to EPYC, ipa, performance. The horizontal axis is
the size of the linear system being solved. The problem size is based on the number of entities in the mesh
and the amount of work (flops) per mesh entity; higher values of p have more work per entity. Figure 16
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Figure 15: MFEM BP1 Skylake-to-EPYC performance ratio versus problem

size.

shows performance versus basis function order. Both systems reach a peak of around a billion DOFs ⇤ CG
iterations per second (1 GDOF).

The 2018 Intel compilers, with the -O3 compilation flag, and MPI implementation were used for all MFEM

Exascale Computing Project (ECP) 23 CEED-MS18



Figure 16: MFEM BP1 performance on Skylake and EPYC versus basis function

order.

Figure 17: STREAM triad memory bandwidth using two di↵erent a�nity

settings for thread placement on EPYC (left) and Skylake (right).

tests. GCC 7.1, and AOCC 1.2 produced lower performance on EPYC, especially at smaller problem sizes.
The OpenMP variant of the STREAM triad benchmark was also executed. Skylake achieves a peak

memory bandwidth of 211 GB/s and EPYC reaches 197 GB/s; a 7% di↵erence. Figure 17 shows the
bandwidth on EPYC and Skylake. The GCC 6.1 compiler and 2018 Intel compiler with flags -O3 -fopenmp

-D OPENMP were used to compile the STREAM on EPYC and Skylake, respectively.
Additional details, plots, scripts, and run logs from the MFEM BP1 and STREAM tests are available on

GitHub: https://github.com/cwsmith/epyc_vs_skylake.

4. CEED LIBRARIES AND APPLICATIONS

4.1 Improvements in the CEED API library, libCEED

The CEED API library, libCEED, was released in milestone CEED-MS10 as a lightweight portable library
that allows a wide variety of ECP applications to share highly optimized discretization kernels.

A main component of the CEED 1.0 e↵ort, was the continued improvement of libCEED and specifically
improving the performance of the MAGMA backend and redesigning the API for operators and qfunctions to
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facilitate usability and increase robustness.

Active/Passive API

The libCEED API was updated for operators and qfunctions. The opaque qdata field was replaced with
the ability to add input and output fields to the qfunctions and operators individually. The example below
demonstrates the new API:

1 // Create a QFunction for the mass matrix
2 CeedQFunctionCreateInterior(ceed , 1, mass , __FILE__ ":mass", &qf_mass);
3 CeedQFunctionAddInput(qf_mass , "rho", 1, CEED_EVAL_NONE);
4 CeedQFunctionAddInput(qf_mass , "u", 1, CEED_EVAL_INTERP);
5 CeedQFunctionAddOutput(qf_mass , "v", 1, CEED_EVAL_INTERP);
6

7 // Create an operator for the mass matrix
8 CeedOperatorCreate(ceed , qf_mass , NULL , NULL , &op_mass);
9 CeedOperatorSetField(op_mass , "rho", CEED_RESTRICTION_IDENTITY ,

10 CEED_BASIS_COLOCATED , rho);
11 CeedOperatorSetField(op_mass , "u", Erestrictu , bu , CEED_VECTOR_ACTIVE);
12 CeedOperatorSetField(op_mass , "v", Erestrictu , bu , CEED_VECTOR_ACTIVE);
13

14 CeedOperatorApply(op_mass , u, v, CEED_REQUEST_IMMEDIATE);

Inputs and outputs are added to qfunctions with and associated field name, dimension, and basis evaluation
operation. Fields are added to operators with an associated field name, restriction, basis, and vector.

This new API will facilitate multiphysics coupling. For instance, with a coupled velocity-pressure operator
for incompressible flow a single active input vector could be used in multiple operator fields with di↵erent
restrictions to give both pressure and velocity inputs to the qfunction. Previously, only one basis and
restriction could be associated with each operator.

Additionally, this API change allows users to clearly update additional outputs from a qfunction. Modifi-
cations to the qdata were less visible in the previous API.

Overall, this redesign of the API is more extensible, provides clearer and more self-documenting code,
and is less brittle. Furthermore, it will facilitate future development of the library capabilities and enable
composition of operators.

4.2 Application Engagements

In this section we report on the progress in the CEED team engagement with the ExaSMR and Urban ECP
applications, We address the algorithmic development and performance improvements, related to the needs
of these applications, as well as the potential collaborations extended to the E3SM and ExaWind teams.

4.2.1 ExaSMR

As is the case with many of the exascale applications, ExaSMR is characterized by a wide range of temporal
and spatial scales that require modeling to be realistically surmountable, even in the context of an exascale
computing platform. For the thermal-hydraulics analysis, hundreds of thousands of flow channels comprise
turbulent flow with very fine solution scales. The channels are typically hundreds of hydraulic diameters in
length. For full reactor-core simulations, the ExaSMR strategy is to use Reynolds-Averaged Navier Stokes
(RANS) in the majority of the core with more detailed large eddy simulations (LES) in critical regions. In
addition, while the turbulence is challenging to resolve, it tends to reach a statistically fully-developed state
within just a few channel diameters, whereas thermal variations take place over the full core size.

Jacobian-free Newton Krylov Method Implementation into Nek5000. To accelerate the time to
solution, CEED is assisting the ExaSMR team in developing fully implicit and steady state solvers for thermal
transport and RANS. For thermal transport, we have imported the Jacobian-free Newton Krylov (JFNK)
routines from NekCEM drift-di↵usion solver [12] to Nek5000 and performed the prelimiary tests for the flow
problems demonstrated in Figure 18. Figure 19 shows fast converging to the steady state solutions with the
small number of pseudo-time steps (left). Our approach includes an inexact formulation representing the
action for the Jacobian matrix-vector multiplication that involves GMRES iterations during the Newton
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Figure 18: Jacobian-free Newton Krylov pseudo-time stepping, applied for

conjugate heat transfer for cylinder, annulus and vortex problems for both

PN � PN and PN � PN�2 formulations of Nek5000.

iteration step. The iteration counts for Newton and GMRES in each pseudo-time step are demonstrated
(right). In order to reduce the GMRES iterations for the convection-di↵usion operator, we are currently
working on preconditioning techniques involving overlapping Schwarz, tensor-product preconditioners, and
spectral-element multigrid.

Figure 19: Jacobian-free Newton Krylov pseudo-time steppings, converging to

steady-state solutions for cylinder, annulus and vortex problems while demon-

strating how the physical time (log scale) increases in each pseudo-time step (left).

Newton iteration counts per pseudo-time step and the GMRES iteration counts

per each Newton iteration (right) for vortex problem.

RANS Model in Nek5000 with Jacobian-free Newton Krylov Method. We extend the JFNK
method for a RANS model [11] that is a 5-equation model, defined as the following with the turbulent kinetic
k and the specific dissipation rate ! in addition to the velocity field v, to represent the turbulent properties
of the incompressible flows:

k =
hu02i+ hv02i+ hw02i

2
(3)

where u0, v0 and w0 are fluctuation component of velocity vector around the ensemble-averaged mean velocity
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vector v = (u, v, w), where

@(⇢v)

@t
+r · (⇢vv) = �rp+r ·


(µ+ µt)

✓
rv +rvT � 2

3
r · v

◆�
(4)

@(⇢k)

@t
+r · (⇢kv) = r · (�krk) +Gk � Yk + Sk (5)

@(⇢!)

@t
+r · (⇢!v) = r · (�!r!) +G! � Y! + S!, (6)

where µ is the molecular viscosity and µt is the turbulent viscosity with the continuity equation for incom-
pressible flow

r · v = 0. (7)

4.2.2 Urban Systems

Nek5000 Simulations for Goose Island Geometry of Chicago. In collaboration between Urban and
CEED teams, Nek5000 simulations were performed for a portion of Goose Island geometry of Chicago.
Approximately 1/6 of the target area has been generated as spectral element meshes using Cubit. The initial
tests have been conducted with various resolutions on ALCF/Mira. We are currently investigating how to
improve the boundary layers near the ground and around the building in order to produce the reference LES
solution up to high Reynolds numbers.

Mesh Flexibility with Nek-Nek Overlapping. Next step is to build the various meshes and start
increasing the domain size to cover the whole area of Goose Island, improve boundary condition modeling, and
run the setup on ALCF/Theta. CEED team’s e↵ort will include providing flexibility with mesh generation
and design optimization of the city block geometry through Nek-Nek overlapping mesh approach.

Figure 20: Volume rendering of streamwise velocity from the preliminary

Nek5000 LES flow over a portion of Chicagos Goose Island geometry.

4.2.3 Other Applications

We are currently engaging the ExaWind and E3SM teams for potential collaborations. ExaWind has
particularly challenging requirements that might be addressed through ongoing developments in Nek5000. In
particular, Exawind is exploring LES and RANS models with boundary layer elements that have extremely
high (> 103) aspect ratios. Nek5000 advances in FEM-SEM preconditioners, steady-state and implicit
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unsteady RANS solvers, and GPU-based solvers have the potential for significant breakthroughs in this area.
Concerning E3SM, the CEED team will be participating in a joint mini-symposium with Mark Taylor at the
International Conference on Spectral and High-Order Methods (ICOSAHOM 18) next month (July 2018)
http://www.icosahom2018.org, where we will have a chance to demonstrate the progress made with the
bake-o↵ problems and with libCEED as a viable exascale development vehicle.

4.2.4 Nek5000 GPU Porting on OLCF/Summit

Nek5000 supports extended portability to multiple (GPUs), currently using pragma-based OpenACC and
CUDA Fortran for local parallelization of the computing-intensive operator evaluations. The Nek5000
communcation library, gslib, http://github.com/gslib/gslib, supports all operations (local-gather, global-
scatter, global-gather, local-scatter operations) on the GPU with direct communication between remote
GPUs using OpenACC pragmas, which eliminates the data movement between GPU and CPU.

Summit/OLCF Early Science Program (ESP) Proposal with ExaSMR. Together with the ExaSMR
team, CEED team members (Fischer, Min) have submitted OLCF Summit Early Science program on Core-

Level High Fidelity Simulations: Toward Exascale Simulations of Nuclear Reactor Flows.

Nek5000 GPU Performance on Summit without Optimization. Over 95% of the operations in
Nek5000 consist of tensor contractions, which are e↵ectively implemented through BLAS3 calls on CPUs. On
GPUs, further parallelization is needed, as already developed in our OpenACC work [5, 6, 9] with which we
began initial porting of Nek5000 on OLCF Summit. Figure 21, shows the results for Nek5000 on Summit
vs. number of nodes, with 42 CPUs per node for the CPU curve and 6 GPUs per node for the GPU curve.
The case is a 17⇥17 pin geometry with E = 221600 elements of order N = 11 (n = EN3 = 294, 949, 600). It
is clear that the GPU runs outperform the CPU case by a factor of two in the peak-performance-per-node
limit. Table 2 shows the solution times, parallel e�ciency and number of points per rank for the Summit
results of Figure 21. We observe in Table 2(a) superlinear speedup in the CPU case because of performance
variance for the 20-node run, which can result from less cache reuse or system noise. For n/P ⇡ 70, 000, the
CPU continues to deliver order unity e�ciency. Table 2(b) reveals that the e�ciency for the GPUs is ⇡ 60%
parallel when n/P ⇡ 500, 000, which is also in keeping with expectations, given the standard performance
fall-o↵ for GPUs, which have a relatively high n 1

2
.

4.2.5 GPU Support Progress of Nek5000 + libCEED

Plans towards Integration of Nek5000 with libCEED. Current steps towards enhanced GPU perfor-
mance include incorporation of the libCEED library. Nek5000 will utilize libCEED for further performance

# of Nodes on Summit Time (seconds) E�ciency on CPUs n/P
20 991 1.00 351130
40 415 1.19 175565
60 268 1.23 117043
80 203 1.22 87782
100 172 1.15 70226

(a) CPU Performance (42 Cores)

# of Nodes on Summit Time (seconds) E�ciency on GPUs n/P
20 452 1.00 2457913
40 270 0.84 1228956
60 207 0.73 819304
80 170 0.66 614478
100 152 0.59 495182

(b) GPU Performance (6 GPUs)

Table 2: Strong Scalings on Summit.
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Figure 21: Nek5000 strong-scale results on OLCF/Summit CPUs & GPUs.

improvement. libCEED provides multiple back-ends dedicated to performant hardware, as well as support
for heterogeneous MPI configurations, which on Summit would include some cores driving GPUs and some
acting as compute cores.

Current Stage of Nek5000 Integration with libCEED. We initiated Nek5000 integration with libCEED
using BP1 example which is inline with MFEM and PETSc. We extended the example to BP3, and currently
these changes are to be merged with master branch. We note that Nek5000 stores its local data in E-vector
format which does not require the conversion step from L-vector to E-vector when applying a CeedOperator.

5. OTHER PROJECT ACTIVITIES

5.1 OCCA v1.0 Release

OCCA v1.0 was released with many new features, including:

• Updated API to expose backend-specific features in a generic way.

• New OKL Parser better suited for language transforms and error handling.

See https://github.com/libocca/occa for more details. A number of CEED packages, including libCEED
and libParanumal are being updated to use the new features.

5.2 MFEM v3.4 Release

MFEM v3.4 was released with many new features, including:

• Significantly improved non-conforming unstructured AMR scalability.

• Integration with PUMI, the Parallel Unstructured Mesh Infrastructure from RPI.

• Block nonlinear operators and variable order NURBS.

• Conduit Mesh Blueprint support

• General high-order-to-low-order refined field transfer.

• New specialized time integrators (symplectic, generalized-alpha).

• Twelve new examples and miniapps.
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• And many more, see http://mfem.org for details.

MFEM is also now o�cially part of OpenHPC, a Linux Foundation project to provide software components
required to deploy and manage HPC Linux clusters, including a variety of scientific libraries.

5.3 MAGMA v2.4.0 Release

We released MAGMA 2.4.0 on June 25, 2018. This release included performance improvements as well
as some new dense and sparse numerical linear algebra routines and functionalities (see http://icl.cs.

utk.edu/magma/software/). Most notably, as related to CEED, we developed and released performance
improvements across many batch routines, including batched TRSM, batched LU, batched LU-nopiv, and
batched Cholesky.

5.4 FEM-SEM Preconditioning

CEED researchers have performed extensive test and development of finite-element (FE) based preconditioners
for Poisson problems based on the spectral element method (SEM). Because of their spectral equivalence,
FE preconditioning of the SEM o↵ers the prospect of nearly bounded iteration counts. While the method
dates back to the origins of high-order elements [8], practical implementations have to date been lacking
because the corresponding FEM problem is di�cult to solve. New low-order discretization developments
presented in [2], coupled with e�cient and scalable algebraic multigrid implementations from Hypre, have
led to an approach that, for particularly challenging geometries, can yield as much as a 40% reduction in
Navier-Stokes solution times over the hybrid-Schwarz multigrid solvers currently used in Nek5000.

5.5 Outreach

CEED researchers were involved in a number of outreach activities in Q3 of FY18,, including: the Intel
co-design meeting in Santa Clara, Apr 10-12 (six CEED representatives attended), keynote at the 6th
European Seminar on Computing and Nek5000’s 6th User Meeting held Apr 17-18 at the University of
Florida. We submitted 4 papers for publication, and CEED’s Panayot Vassilevski was named a SIAM fellow
for 2018. The team is also making final preparations for the upcoming CEED-organized minisymposium,
”E�cient High-Order Finite Element Discretizations at Large Scale”, at the International Conference in
Spectral and High-Order Methods (ICOSAHOM18) and CEED’s 2nd annual meeting to be held August 8-10,
2018 at the University of Colorado, Boulder.

6. CONCLUSION

In this milestone, we developed a high-order Field and Mesh Specification (FMS) interface that allows a
wide variety of applications and visualization tools to represent unstructured high-order meshes with general
high-order finite element fields defined on them.

The artifacts delivered include a simple API library and documentation for the new FMS interface, freely
available in the CEED’s FMS repository on GitHub. See the CEED website, http://ceed.exascaleproject.
org/fms and the CEED GitHub organization, http://github.com/ceed for more details.

In this report, we also described additional CEED activities performed in Q3 of FY18, including:
extensive benchmarking of CEED Bake-O↵ problems and kernels on BG/Q, GPU and AMD/EPYC platforms,
improvements in libCEED, results from application engagements, progress on FEM-SEM preconditioning,
three new software releases, and other outreach e↵orts.
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