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EXECUTIVE SUMMARY

The CEED co-design center is developing a number of kernels, bake-off / benchmark problems (BPs) and
mini-applications (miniapps) that capture the unique requirements of high-order finite element algorithms
and use them to influence standards, best practices and vendors to generate more portable, better performing
code across diverse hardware designs. This is a main activity in CEED’s Hardware, Applications and Finite
Element thrusts.

CEED’s miniapps, a.k.a. CEEDlings, are small, standalone applications - surrogates for sub-components
of interest from the selected first wave of applications (the MARBL/LLNLApp and ExaSMR projects). The
BPs are even smaller standalone programs that solve a simple physical problem, including discretization,
linear and/or nonlinear solve, and potentially a relatively small number of time steps. A BP may be a
proxy/surrogate for part of a miniapp or another problem of general interest.

In CEED, both miniapps and BPs will be used extensively in the project to evaluate and compare the
performance of algorithms in specific contexts. The parts of the miniapps and BPs that play an important
role in their overall performance will be identified and separated as standalone kernels. These kernels and
their interaction inside BPs, miniapps and the actual applications, will be the main focus of our optimization
efforts. All three standalone pieces of software (miniapps, BPs, and kernels) will serve as a basis for engaging
and collaborating with hardware vendors and software technologies (ST) projects. These partners can start
at the bottom of the hierarchy, e.g. with the kernels, and easily transition to BPs and miniapps as all three
families will be produced in the same CEED environment.

In this milestone we identified the initial kernels, bake-off problems and miniapps and delivered software
and documentation for them through the new CEED website, http://ceed.exascaleproject.org.

We specifically identified the Nekbone miniapp for the ExaSMR application and developed a new miniapp,
Laghos, for the MARBL/LLNLApp application. We also formulated four initial benchmark problems (BP1-
BP4) with clearly defined performance metrics and performed an initial bake-off comparison between the
Nek5000 (spectral element) and MFEM (high-order finite element) technologies. As part of the milestone, we
also engaged vendors (AMD) and ST projects (MPICH, STRUMPACK).

In this document we are reporting some details and results from these R&D activities, as well as additional
project-wide activities performed in Q3 of FY17, including: making CEED software available on GitHub,
developing the project website, and the preparation of CEED’s first annual meeting.
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1. INTRODUCTION

The CEED co-design center is developing a number of kernels, bake-off / benchmark problems (BPs) and
mini-applications (miniapps) that capture the unique requirements of high-order finite element algorithms
and use them to influence standards, best practices and vendors to generate more portable, better performing
code across diverse hardware designs. This is a main activity in CEED’s Hardware, Applications and Finite
Element thrusts.

CEED’s miniapps, a.k.a. CEEDlings, are small, standalone applications - surrogates for sub-components
of interest from the selected 1st wave of applications (the MARBL/LLNLApp and ExaSMR projects). The
bake-off (or benchmark) problems are even smaller standalone programs that solve a simple physical problem,
including discretization, linear and/or nonlinear solve, and potentially a relatively small number of time steps.
A BP may be a proxy/surrogate for part of a miniapp or another problem of general interest.

In CEED, both miniapps and BPs will be used extensively in the project to evaluate and compare the
performance of algorithms in specific contexts. The parts of the miniapps and BPs that play an important
role in their overall performance will be identified and separated as standalone kernels. These kernels and
their interaction inside BPs, miniapps and the actual applications, will be the main focus of our optimization
efforts. All three standalone pieces of software (miniapps, BPs, and kernels) will serve as a basis for engaging
and collaborating with hardware vendors and software technologies (STs). These partners can start at the
bottom of the hierarchy, e.g. with the kernels, and easily transition to BPs and miniapps as all three families
will be produced in the same CEED environment.

2. CEED MINIAPPS

CEED is developing a variety of miniapps encapsulating key physics and numerical kernels of high-order
applications. The miniapps are designed to be used in a variety of co-design activities with ECP vendors,
software technologies projects, as well as external partners. More information about the CEED miniapps can
be found on CEED’s website at http://ceed.exascaleproject.org/miniapps.

2.1 Nekbone

Nekbone is a lightweight subset of Nek5000 that is intended to mimic the essential computational complexity
of Nek5000, relevant to large eddy simulation (LES) and direct numerical simulation (DNS) of turbulence in
complex domains, in relatively few lines of code. It allows software and hardware developers to understand
the basic structure and computational costs of Nek5000 over a broad spectrum of architectures ranging from
software-based simulators running at one ten-thousandth the speed of current processors to exascale platforms
running millions of times faster than single-core platforms. Nekbone has weak-scaled to 6 million MPI ranks
on the Blue Gene/Q Sequoia at LLNL while Nek5000 has strong-scaled to over a million ranks on the Blue
Gene/Q Mira at ANL. Nekbone provides flexibility to adapt new programming approaches for scalability
and performance studies on a variety of platforms without having to understand all the features of Nek5000,
currently supporting OpenACC/CUDA-based GPU variants.

It solves a standard Poisson equation using a conjugate gradient iteration with a simple or spectral
element multigrid preconditioner on a block or linear geometry. In CEED, Nekbone serves as a proxy for
a sub-component of the ExaSMR application. The Nekbone miniapp is available at https://github.com/
Nek5000/Nekbone as well as at the CEED mirror https://github.com/ceed/Nekbone.

2.2 Laghos

Laghos (LAGrangian High-Order Solver) is a new miniapp developed in CEED that solves the time-dependent
Euler equations of compressible gas dynamics in a moving Lagrangian frame using unstructured high-order
finite element spatial discretization and explicit high-order time-stepping. In CEED, Laghos serves as a proxy
for a sub-component of the MARBL/LLNLApp application.

Laghos captures the basic structure and user interface of many other compressible shock hydrocodes,
including the BLAST code at LLNL. The miniapp is build on top of a general discretization library (MFEM),
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thus separating the pointwise physics from finite element and meshing concerns. It exposes the principal
computational kernels of explicit time-dependent shock-capturing compressible flow, including the FLOP-
intensive definition of artificial viscosity at quadrature points. The implementation is based on the numerical
algorithm from [1].

The computational effort of Laghos is focused on constructing and solving the following semi-discrete
system of linear equations:

Mv
dv

dt
= −F · 1 , Me

de

dt
= FT · v . (1)

The mass matrices (Mv and Me) and the force matrix (F ) have the form:

(Mv)ij =

∫
ρwjwi , (Me)ij =

∫
ρφjφi , Fij =

∫
(σ : ∇wi)φj ,

where w and φ are H1 and L2 basis functions, respectively, of arbitrary order. The stress tensor, σ, and
density, ρ, are determined by quadrature point-based computations, which include definitions of artificial
viscosity, length scales and time-step estimates. Currently, Laghos provides two methods for constructing
and solving the linear system (1):

• Full assembly, where Mv, Me and F are fully assembled and stored in compressed sparse row (CSR)
format. The CSR mass matrices are assembled only once at the beginning of the computation, and
they are applied numerous times for every linear system solve. The force matrix is reassembled at each
time step, and the result is applied only twice for constructing the right-hand side of the system.

• Partial assembly, see Section 3.2, where instead of assembling the matrices, the miniapp only defines
their zone-based actions. These actions are used to define the right-hand side of the system and find
its solution by an iterative method. The application of the matrices depends on the quadrature point
data, ρ and σ, which is constant-in-time for the mass matrices Mv and Me, but changes in each time
step for the force matrix F . As the local action is defined by utilizing the tensor structure of the finite
element spaces, the amount of data storage, memory transfers, and FLOPs are lower, especially for
higher orders.

Figure 1: The Sedov blast (left) and the Taylor-Green vortex (right) problems
in the Laghos miniapp.

The Laghos miniapp is available at https://github.com/ceed/Laghos. Coarse results from two of its
test problems, demonstrating shock capturing and high-order deformed meshes can be seen in Figure 1.

2.3 Additional Miniapps

The CEED team is working on several additional miniapps, including the NekCEM CEEDling available
at https://github.com/NekCEM/NekCEM_CEEDling, which is a NekCEM miniapp, solving the time-domain
Maxwell equation for electromagnetic systems, and Holmes, which is an experimental testbed for multi-level
parallel implementations of high-order finite element computations.

Exascale Computing Project (ECP) 2 CEED-MS6

https://github.com/ceed/Laghos
https://github.com/NekCEM/NekCEM_CEEDling


CEED team members are also actively involved in the HPGMG-FE benchmark, which is a Full Multigrid
solver for a third order accurate finite element discretization of an elliptic operator on mapped grids designed
to give a picture of the ”performance spectrum” across a range of problem sizes and thus solution time.

Finally, the MFEM distribution includes 17 MFEM Example Codes that can be viewed as simple
miniapps for model high-order physics.

See http://ceed.exascaleproject.org/miniapps for more details.

3. CEED BAKE-OFF PROBLEMS

A major goal of CEED is to develop a library that will facilitate efficient numerical simulation for broad
range of applications on future high-performance computing (HPC) platforms. An important first step in this
process is to identify optimal implementations of key kernels for high-order discretizations that will deliver
high accuracy at low cost. Specifically, we are seeking the best implementations for a given architecture, the
components that make them perform well, and software expressions that will allow these implementations to
be leveraged on future platforms without change to the application-level software.

To identify candidate formulations, as described in the introduction, CEED team is conducting a series of
performance tests (bake-off/benchmark problems), referred to as BPs here onwards, for several solver kernels.
The initial tests are conducted using existing codes within the CEED project (e.g., Nek5000, MFEM) but
the test specifications and results are established with the goal of allowing the technology comparison to be
a continuing process for future codes and architectures. This section presents a description for the set of
bake-off tests along with preliminary results for Nek5000 and MFEM.

3.1 Bake-off/Benchmark Problems Description

We note that the spirit of the bake-off is to solve problems that reflect actual use cases, rather than to solve
the bake-off problem as fast as possible. Thus, optimizations that exploit specifics of the bake-off problem are
deemed uninteresting and results from such optimizations must be discounted. Unlike an application (which
is a particular instantiation of a given physics problem, using a given code, at a fixed resolution or error
tolerance), a bake-off specification must span many decades of scale and thus be readily describable over such
a large dynamic range. To simplify the specification, we prescribe the mesh topology as a tensor-product
array of E = Ex × Ey × Ez elements, but make no attempt to exploit this structure in either the solution
strategy or the communication patterns. Instead, we use code suited to the fully unstructured cases that are
encountered in practice.

The choice of a tensor-product array of elements is motivated by the need for scalability of the bake-off
problem over a wide range of problem sizes. As our target problems are in fact unstructured domains, one
is not allowed to exploit the global tensor-product structure in the domain. Thus, one must use general
communication kernels and preconditioners as would be applied in the unstructured case. We further assume
(and may later insist) that each element is deformed, which means that one must account for variable
Jacobians, grid-transformation metrics, etc. Consequently, we include all cross terms in the derivative
evaluations as if the geometry were fully deformed. (The cost can be lowered by a factor of two or more if
the elements are undeformed bricks.)

Bake-off Problems. We define our first four bake-off problems, denoted as BPk, k = 1, 2, 3, 4.

• BP1 Solve Bu = f , where B is the mass matrix.

• BP2 Solve the (block-diagonal) vector system, Bui = f
i

(i = 1, 2, 3) where B is as prescribed in BP1.

• BP3 Solve Au = f , where A is the Poisson operator.

• BP4 Solve the (block-diagonal) vector system, Aui = f
i

(i = 1, 2, 3) where A is as prescribed in BP3.

Bake-off Problem Details. The following items describe the details common to all BPs:

• Mesh: use a 3D box mesh with hexahedral elements.
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• Boundary conditions (BCs): either no essential BCs, or essential BCs on the whole boundary.

• Solution space orders: p = 1, 2, 3, . . . , 8, and optionally higher p.

• Quadrature: tensor product Gauss-Legendre (GL) with q = p+ 2 points in each spatial dimension; the
quadrature order is 2q − 1 = 2p+ 3.

• The cases of q = 2, for p = 1, and q = 3, for p = 2, are of interest as they provide a more favorable
ratio of the total number of quadrature points to the total number of unknowns. Note that this ratio is
smaller (and therefore, advantageous in terms of work per unknown) for larger p.

• Use nodal basis with p+ 1 Gauss-Legendre-Lobatto (GLL) points in each spatial dimension.

• Consider mesh orders of pmesh = 1, and/or pmesh = p.

• Elements are assumed to be deformed, meaning that the local element-by-element evaluation cannot
exploit simplifications arising from the absence of cross-terms in the Laplacian, etc.

• Use the QA/PA operator representation, see Sections 3.2 and 3.6.

• Meshes: consider meshes with E = 2s elements with s ∈ N; for a given s, use a 3D Cartesian mesh with
2s1 ×2s2 ×2s3 elements (si ∈ N), where {si} are uniquely determined by the conditions: s1 +s2 +s3 = s
and bs/3c+ 1 ≥ s1 ≥ s2 ≥ s3 ≥ bs/3c.

• For example:

– if s = 15, then s1 = s2 = s3 = 5,

– if s = 16, then s1 = 6 and s2 = s3 = 5,

– if s = 17, then s1 = s2 = 6 and s3 = 5.

• Consider tests with 2t processors, 0 ≤ t ≤ s, and partition the mesh into 2t1 × 2t2 × 2t3 uniform parts,
where {ti} are derived from t the same way {si} are derived from s. Using a partitioning of this type
allows us to consider cases with a small number of elements per MPI rank - down to one element/rank.

• Alternative mesh partitioning algorithms are also acceptable.

• Consider runs with “large” number of processors and vary the number of mesh elements per MPI rank
starting from 1 and gradually increasing to a number where performance saturation is observed. This
suite of benchmarks thus captures both the strong-scale and weak-scale performance limits under the
assumption that the underlying code is scalable.

3.2 Mathematical Formulations

The first set of test problems calls for parallel solution of a sequence of linear systems arising from spectral/finite
element discretization of the (positive definite) Helmholtz equation,

− ∇ · µ∇u + γ u = f in Ω, ∇u · n̂ = 0 on ∂Ω, (2)

where γ and µ may be non-negative functions of x ∈ Ω. Before proceeding with the details, we remark that
the discretization of (2) leads to the symmetric positive definite (SPD) system

Hu := Au + Bu = b, (3)

with the stiffness matrix A corresponding to the variable-coefficient Poisson operator in (2) and mass matrix
B corresponding to the term involving γ. For the first bake-off problem (BP1), we take µ = 0, γ = 1, so the
problem reduces to solving Bu = b. For the third problem (BP3), we take µ = 1, γ = 0, corresponding to the
solution of the discrete Poisson equation, Au = b. We assume homogeneous Neumann conditions for all cases.
BP3 is singular in this case and the singularity is removed by constraining the solution to have zero mean.
We further remark that one has several options when implementing quadrature for the variational forms
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introduced below. The standard spectral element approach is to use equal-order Gauss-Lobatto-Legendre
(GLL) bases and quadrature, in which case B is diagonal and trivially inverted. In some applications, however,
it is advantageous to use higher-order quadrature and it was thus agreed among the bake-off participants to
use Gauss-Legendre (GL) quadrature on q = p+ 2 points.

The variational formulation for (2) is, Find u ∈ Xp ⊂ H1 such that

a(v, u) + (v, u)γ = (v, f) ∀ v ∈ Xp, (4)

where, for sufficiently regular v, u, and f , we have:

(v, u)γ :=

∫
Ω

v γ u dx, a(v, u) :=

∫
Ω

µ∇v · ∇u dx, (v, f) :=

∫
Ω

v f dx. (5)

Following the standard finite/spectral element approach, we formally expand all functions in terms of basis
functions, such as

u(x) =

n∑
j=1

uj φj(x), v(x) =

n∑
i=1

vi φi(x). (6)

The coefficients {uj} and {vi} are the finite element degrees of freedom (DOFs). Insertion of (6) into (5)
leads to the inner-products

a(v, u) = vTAu, (v, u)γ = vTBu, (v, f) = vT b. (7)

Here, we have introduced the stiffness matrix, A, the (weighted) mass matrix, B, and the right-hand side, b,

Aij := a(φi, φj), Bij := (φi, φj)γ , bi := (φi, f), (8)

each defined for index sets i, j ∈ {1, . . . , n}. The system to be solved is thus

Hu = b, where H := A + B. (9)

The system (9) denotes a generic Galerkin discretization of (4). The point of departure for the finite
element (FE)/spectral element (SE) formulation is in the choice of basis functions, φi, and choice of quadrature
rules for the inner products (5). We give a brief description here; more details are provided in [2].

We begin by noting that (9) will be solved iteratively, typically with some type of preconditioned
Krylov-subspace-projection method such as conjugate gradients or GMRES. In this case, one requires only
matrix-vector products of the form w = Hp, and not explicit formation of H itself. This crucial observation
allows one to avoid not only global assembly of H but also local formation of H, which, for an pth-order
method on tensor-product (curvilinear brick) elements reduces the work from O(p6) to O(p4) and the storage
from O(p6) to O(p3), as noted in the seminal paper of Orszag [3]. For reasons of efficiency, the local stiffness
matrices are never formed. As with the mass matrix, one has the option of performing the quadrature on the
O(p) GLL points or interpolating to a finer set of q GL points.

Matrix-Free Formulation. With the preceding definitions, we now consider the fast tensor-product
evaluations of the inner products introduced in (7). To begin, we assume Ω =

⋃E
e=1 Ωe, where the non-

overlapping subdomains (elements) Ωe are images of the reference domain, Ω̂ := [−1, 1]3, given by

x|Ωe = xe(r, s, t) =

p∑
k=0

p∑
j=0

p∑
i=0

xeijk hi(r)hj(s)hk(t), [r, s, t] ∈ Ω̂, (10)

where the his are assumed to be cardinal Lagrange polynomials based on the Gauss-Lobatto-Legendre (GLL)
quadrature points, ξj ∈ [−1, 1], j = 0, . . . , p. This choice of points yields relatively well-conditioned operators
and affords the option of direct (GLL) quadrature, if desired. We expand u and v in the same basis as the
geometry. Starting with the mass matrix, we have

vTBu :=

∫
Ω

γ v u dV =

E∑
e=1

∫
Ωe

γ v u dV =

E∑
e=1

(ve)TBeue = vTLBLuL, (11)
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where BL is the block-diagonal matrix comprising unassembled local mass matrices, Be, e = 1, . . . , E. Because
u and v are both continuous, the global-to-local map implies existence of vectors u and v such that

vTLBLuL = vTQTBLQu = vTBu, (12)

from which we deduce that the assembled mass matrix is B = QTBLQ. Technically, there is usually one
additional step in defining B, namely, restriction of u and v to functions that satisfy appropriate Dirichlet
conditions [2]. The local mass matrices are derived by integrating expansions of the form ueijk = u|xe

ijk
for u

and v over Ωe, subject to the mapping (10). In the tensor-product notation, Be has entries

Be
(ijk),(ı̂̂k̂)

=

∫
Ωe

hi(r)hj(s)hk(t) hı̂(r)ĥ(s)hk̂(t) γ dx (13)

=

∫
Ω̂

hi(r)hj(s)hk(t) hı̂(r)ĥ(s)hk̂(t) γe(r)J e(r) dr, (14)

with J e the Jacobian associated with the mapping (10). Unless γe and J e are separable, no further
simplification of (14) is possible without resorting to quadrature. The standard approach for the SE method
[4, 5] is to use tensor-product quadrature on the order p GLL nodes, in which case Be (and B) are diagonal.
For any (q + 1)-point one-dimensional quadrature rule with nodes r̂l and weights ρl, define

Be
(ijk),(ı̂̂k̂)

=

q∑
n=0

q∑
m=0

q∑
l=0

ρlρmρn hi(r̂l)hj(ŝm)hk(t̂n) hı̂(r̂l)ĥ(ŝm)hk̂(t̂n) γ̃elmn J̃ elmn,

where γ̃elmn and J̃ elmn represent evaluations of γe and J e on the quadrature points.

The derivation for the stiffness matrix parallels that of the mass matrix. One starts with the bilinear form

a(v, u) :=

∫
Ω

∇v · ∇u dV =

E∑
e

∫
Ωee

∇v · ∇u dV,

and invokes function continuity to yield

a(v, u) := vTLALuL = vTQTALQu = vT Āu,

with AL =block-diagonal(Ae) the unassembled matrix comprising the local stiffness matrices, Ae, e = 1, . . . , E.
Here Ā is the assembled stiffness matrix. We typically refer to Ā as the Neumann operator as it corresponds
to the singular matrix associated with pure Neumann boundary conditions. The singularity can be addressed
by projecting constant-mode out of each search direction in the Krylov-subspace projection method (e.g.,
p = p− e eTp/(eT e), with e the vector of all 1s) or, in the case of Dirichlet conditions, defining the restricted

matrix A = RART , where RT is the prolongation matrix that extends by zero any vector of values in the
domain interior to include the boundary values. The system Au = b corresponds to solving a problem with
homogeneous Dirichlet conditions and the corresponding solution (including the zeros on the boundary) is
given by ū = RTu = RTA−1b. In the case of Neumann conditions, R is the identity matrix and we assume
that the singular mode is controlled by some means such as projection.

For reasons of efficiency, the local stiffness matrices are never formed. As with the mass matrix, one has
the option of performing the quadrature on the O(p) GLL points or interpolating to a finer set of M GL
points. (For the constant-coefficient 1D case, the result is the same [5].) While there is clear potential for a
gain in accuracy with over-integration for the mass matrix [6], it is not clear that similar accuracy gains are
realized when solving the Poisson equation. Similarly, while stability considerations favor over-integration of
the advection operator [7], improved quadrature does not qualitatively alter the spectrum of the diffusion
operator, which remains positive definite whether one over-integrates or not.

3.3 Benchmark Repository

In additions to the bake-off problem specifications, we have also developed a user-friendly software repository
that can be used to run the BPs, as well as lower-granularity high-order kernels and experimental tests on a
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variety of HPC architectures. The CEED benchmarks repository is available at https://github.com/CEED/
benchmarks as part of the CEED software suite, a collection of software benchmarks, miniapps, libraries and
APIs for efficient exascale discretizations based on high-order finite element and spectral element methods.
Some of its features are:

• Simple build system for the CEED software stack.

• Variety of machine configurations, with machine-specific compilers, job scheduler commands, etc.

• Number of kernels and benchmark tests, including implementations of the 4 CEED BPs for both MFEM
and Nek5000.

• Unified post-processing and data visualization scripts.

The benchmarks repository is an easy way to evaluate different CEED technologies in a consistent manner
across different hardware. The bake-off results reported in the following sections have been generated using
these benchmarks tools. For more details on the CEED benchmarks see http://ceed.exascaleproject.

org/bps/.

3.4 Bake-off Between Nek5000 and MFEM

In this section, we demonstrate bake-off results with preliminary test data for Nek5000 and MFEM.
The results are plotted as the rate-of-work per unit-resource, given by [DOFs × CG Iterations] / [compute

nodes × seconds], versus the “scalar” size of the problem on each compute node, denoted as [Points per
compute node].

The definition of points is “DOFs/vector dimension”, so points and DOFs are the same for BP1 and BP3,
but points = DOFs/3 for BP2 and BP4. (This way it is easier to compare BP1 and BP2 results on the same
mesh.)

We measure the rate of work in DOFs-per-second (dps) or more frequently in millions-of-DOFs-per-second
(MDOFs, or megadofs). Two of the principal metrics of interest are the peak rate of work per unit resource,
rmax, and the n 1

2
—the local problem size on the node required to realize one-half of the peak rate of work

per unit resource. Note that n 1
2

is defined in terms of DOFs, not points.

The importance of n 1
2
, rmax and their scaled ratio t 1

2
= 2n 1

2
/rmax is discussed further in Section 3.5.

3.4.1 Results on Intel Xeon Phi (2nd Generation)

Bake-Off problems BP1 and BP2 were run on a 2nd generation Intel® Xeon Phi processor (Knights Landing,
referred to as KNL here onwards). The KNL processor we used has 64 cores spread in 36 tiles arranged in a
2D mesh. A tile contains 2 cores and 2 vector processing units. 2 cores in a given tile share 16-way L2 cache
of size 1 MB. Apart from a DDR4 memory of size 96 GB, the KNL also have an additional high bandwidth
memory of size 16 GB known as MCDRAM (Multi-Channel DRAM). In the benchmark runs, MCDRAM
used as a last level cache. All the benchmarks were performed under CentOS version 7.3.

32 MPI ranks were used in this benchmarks instead of 64 to avoid disturbances to timing data due to OS
processes. Each bake-off problem was compiled using the GCC (version 4.8.5) and the Intel (version 17.0)
compilers. Figure 2 shows the performance of Nek5000 and MFEM for BP1 and BP2 in KNL using the GCC
compiler. Figure 3 has the respective results for the Intel compiler.

Using the GCC compiler in BP1, for Nek5000 we observe an rmax of 100 MDOFs with n 1
2

of 20K for
corresponding t 1

2
of 0.400ms. Using the GCC compiler in BP2, for Nek5000 we observe an rmax of 100

MDOFs with n 1
2

of 50K for corresponding t 1
2

of 1.000ms. Using the GCC compiler in BP1, for MFEM we
observe an rmax of 100 MDOFs with n 1

2
of 8K for corresponding t 1

2
of 0.160ms. Using the GCC compiler in

BP2, for MFEM we observe an rmax of 100 MDOFs with n 1
2

of 15K for corresponding t 1
2

of 0.300ms.

Using the Intel compiler in BP1, for Nek5000 we observe an rmax of 200 MDOFs with n 1
2

of 15K for
corresponding t 1

2
of 0.150ms. Using the Intel compiler in BP2, for Nek5000 we observe an rmax of 200 MDOFs

with n 1
2

of 30K for corresponding t 1
2

of 0.300ms. Using the Intel compiler in BP1, for MFEM we observe an
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rmax of 150 MDOFs with n 1
2

of 30K for corresponding t 1
2

of 0.400ms. Using the Intel compiler in BP2, for
MFEM we observe an rmax of 100 MDOFs with n 1

2
of 15K for corresponding t 1

2
of 0.300ms.

These values, as well as similar results in the following sections are summarized in a Table 1 in Section
3.4.4. We observe that the Intel compiler gives a significant boost to Nek5000, in particular for BP2, while
GCC is more favorable to the MFEM implementation. More detailed in-depth analysis of these and the other
results from this section will be a near-term focus for the team.
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(a) BP1 Nek5000
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(c) BP2 Nek5000
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Config: MFEM linux (1 node, 32 tasks/node), gcc, bp2a_v1, PA
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(d) BP2 MFEM

Figure 2: BP1 and BP2 results on a KNL machine using the GCC compiler
and various polynomial orders (p), number of quadrature points (q). The x- and
y-axes indicate the “scalar” problem size and performance (dps) respectively.
The slanted lines corresponds to fixed CG iterations per second, indicating actual
computational time.
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(a) BP1 Nek5000

101 102 103 104 105 106 107

Points per compute node

105

106

107

108

109

[D
OF

s 
x 

CG
 it

er
at

io
ns

] /
 [c

om
pu

te
 n

od
es

 x
 s

ec
on

ds
]

Config: MFEM linux (1 node, 32 tasks/node), intel, bp1_v1, PA

p=1, q=p+2
p=1, q=p+1
p=2, q=p+2
p=2, q=p+1
p=3, q=p+2
p=4, q=p+2

p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
600 iter/s
6000 iter/s

(b) BP1 MFEM

101 102 103 104 105 106 107

Points per compute node

105

106

107

108

109

[D
OF

s 
x 

CG
 it

er
at

io
ns

] /
 [c

om
pu

te
 n

od
es

 x
 s

ec
on

ds
]

Config: Nek5000 linux (1 node, 32 tasks/node), intel, bp2, PA

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2

p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
200 iter/s
2000 iter/s

(c) BP2 Nek5000
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(d) BP2 MFEM

Figure 3: BP1 and BP2 results on a KNL machine using the Intel compiler
and various polynomial orders (p), number of quadrature points (q). The x- and
y-axes indicate the “scalar” problem size and performance (dps) respectively.
The slanted lines corresponds to fixed CG iterations per second, indicating actual
computational time.
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3.4.2 Results on a BG/Q Cluster

In this section we report the results for BP1 and BP2 on Vulcan which is a BG/Q machine at LLNL. BG/Q
is a single chip processor which has 16 compute cores and 16 GB DDR 3 memory. In Figure 4 we present the
Nek5000 and MFEM results for BP1 and BP2 with 512 nodes with 32 MPI task per node using the GCC
compiler. For Nek5000, we observe an rmax of 35 MDOFs with n 1

2
of 15K for corresponding t 1

2
of 0.857ms.

For BP2, rmax stays roughly the same for Nek5000 with n 1
2

of 21K and t 1
2

of 1.200ms For MFEM, the BP1
results are 40 MDOFs, 10K and 0.50ms for BP1 and 30 MDOFs, 10K and 0.666ms for BP2. We observe that
Vulcan is 3–5 × weaker than the KNL box in terms of maximal performance, but has similar strong-scaling
characteristics in terms of n 1

2
resulting 2–3 × slower t 1

2
.
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(d) BP2 MFEM

Figure 4: BP1 and BP2 results on the Vulcan at LLNL using the GCC compiler
and various polynomial orders (p), number of quadrature points (q). The x- and
y-axes indicate the “scalar” problem size and performance (dps) respectively.
The slanted lines corresponds to fixed CG iterations per second, indicating actual
computational time.
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Additional MFEM results: In the next set of results, we investigate the effects on performance of
using different compilers and numbers of MPI tasks per node on Vulcan, see Figure 5.
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(a) BP1
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Config: vulcan (512 nodes), bp2a_v1, PA
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(b) BP2

Figure 5: Comparison of BP1/BP2 MFEM results with different compilers (GCC
v4.7.2 and xlC v12.01) and varying number of MPI tasks per node (t/n). The
performance numbers (y-axis) are taken as the maximum over all grid resolutions.

Clearly, the MFEM test code is sensitive to the compiler with widely varying results depending on
the polynomial order. This type of strong dependence on the compiler is partially due to the use of C++
templating to fix the order-dependent sizes of inner-most loop at compile time. Improving the sensitivity
of our kernels with respect to the compiler and specific optimization options will be one of the goals of our
optimization work.

With regards to the impact of using a larger number of MPI tasks per node, we can see that this is
beneficial, for the MFEM test code, in almost all cases. This effect is due to the use of multiple hardware
threads per core on the BG/Q platform. Since this characteristic will be present (and actually enhanced to 8
hardware threads per core) in the upcoming Sierra and Summit machines at LLNL and ORNL, we plan to
continue to use this technique of over-subscribing the cores with multiple MPI tasks.
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BP3 and BP4 MFEM results. In Figure 6, we show the summary results (over the various grid
resolutions) for BP3 and BP4 using the MFEM benchmark tests. As can be expected, the overall performance
is lower compared to BP1 and BP2, due to the more computationally intensive kernels. However, the overall
variations with respect to the order and number of MPI tasks per node remain very similar.

In Figure 7, we show the more detailed results for BP3 and BP4 as functions of the resolution (in terms
of DOFs per compute node), in the case of 64 MPI tasks per node.
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Figure 6: Summary results for BP3 in MFEM with GCC (left) and xlC (right)
and varying number of MPI tasks per node (t/n). The performance numbers
(y-axis) are taken as the maximum over all grid resolutions.
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(a) BP3 MFEM with GCC
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Config: MFEM vulcan (512 nodes, 64 tasks/node), xlc, bp3_v1, PA
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(b) BP3 MFEM with xlC
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Config: MFEM vulcan (512 nodes, 64 tasks/node), gcc, bp4a_v1, PA

p=1, q=p+2
p=1, q=p+1
p=2, q=p+2
p=2, q=p+1
p=3, q=p+2
p=4, q=p+2
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(c) BP4 MFEM with GCC

Figure 7: BP3 and BP4 MFEM results using GCC and xlC compilers, various
polynomial orders (p), and number of quadrature points (q). The slanted lines
corresponds to fixed CG iterations per second, indicating the same computational
time for varying problem sizes (points) per compute node.
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3.4.3 Results on an Early-access GPU Testbed

In this section we report the BP1 results on Ray, an early-access GPU testbed at LLNL, similar to SummitDev.
We run the benchmark on one node of the machine, which has two IBM Power8 CPUs, each with 10 cores
with 8 threads per core (the node GPUs were not used for this test). In Figure 8 we present the Nek and
MFEM results with 32 MPI tasks using the GCC compiler. For Nek5000, we observe an rmax of 400 MDOFs
with n 1

2
of 15K for corresponding t 1

2
of 0.075ms. For MFEM, we get rmax of 300-400 MDOFs, n 1

2
of 30K-40K

and t 1
2

of 0.2ms. In Figure 9 we compare the BP1 results with MFEM when using different compilers (GCC

vs. xlC) and different number of MPI tasks on the node. The plot shows that compiler optimization can play
an increasing role at higher orders, where xlC can be up to 3 times faster than GCC.
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Config: Nek5000 ray (1 node, 32 tasks/node), gcc, bp1, PA
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(a) Nek5000
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Config: MFEM ray (1 node, 32 tasks/node), gcc, bp1_v1, PA

p=1, q=p+2
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(b) MFEM

Figure 8: BP1 results on Ray using the GCC compiler and various polynomial
orders (p), number of quadrature points (q). The x- and y-axes indicate the
problem size and performance (dps) respectively. The slanted lines corresponds
to fixed CG iterations per second, indicating actual computational time.
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Config: ray (1 node), bp1_v1, PA

gcc, 32 t/n, q=p+2
xlc, 32 t/n, q=p+2
gcc, 64 t/n, q=p+2
xlc, 64 t/n, q=p+2
gcc, 128 t/n, q=p+2
xlc, 128 t/n, q=p+2

gcc, 32 t/n, q=p+1
xlc, 32 t/n, q=p+1
gcc, 64 t/n, q=p+1
xlc, 64 t/n, q=p+1
gcc, 128 t/n, q=p+1
xlc, 128 t/n, q=p+1

Figure 9: BP1 results for MFEM on one node of Ray comparing the GCC and
xlC compilers with various polynomial orders (p), number of quadrature points
(q), and number of MPI tasks (32, 64 and 128). The x- and y-axes indicate
polynomial order (p) and performance (dps) respectively.
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Table 1: Performance results for various machines using metrics defined in Sec.
3.5. Each entry corresponds to Nek/MFEM results. Results sorted by problem
and t 1

2
performance.

Machine/Problem rmax (MDOFs) n 1
2

(KDOFs) t 1
2

(ms)

Ray/BP1-gcc 400/350 15/35 0.075/0.200
KNL32/BP1-intel 200/150 15/30 0.150/0.400
KNL32/BP1-gcc 100/100 20/8 0.400/0.160
Vulcan/BP1-gcc 35/40 15/10 0.857/0.500

KNL32/BP2-intel 200/100 30/15 0.300/0.300
KNL32/BP2-gcc 100/100 50/15 1.000/0.300
Vulcan/BP2-gcc 35/30 21/10 1.200/0.666

Vulcan/BP3-gcc /30 /10 /0.666
Vulcan/BP3-xlc /20 /10 /1.000

Vulcan/BP4-gcc /20 /10 /1.000

3.4.4 Summary of Initial Bake-Off Results

We summarize the bake-off performance results on various machines in Table 1 below. We emphasize that
these are initial results that we will continue to investigate and benchmark against. These results will also
serve as a foundation for future performance improvements and API unification efforts in the CEED center.

3.5 Performance Metrics

Assessment and modeling of parallel performance on emerging architectures is essential for the CEED team
to reach their objectives. In this section we look at the challenges in assessing the performance across a wide
variety of hardware and come up with three different metrics that provide a reasonable assessment about
the performance of a given computer system. Three metrics, rmax, n 1

2
, and t 1

2
, were identified in the initial

bake-off studies of the preceding sections. Here, we define them and explain their relevance.

A significant challenge in assessing future parallel platforms stems from the wide variance in the type and
performance of prospective node architectures. (for example, GPUs vs. traditional multi-core machines). An
obvious first step in such a comparison is to measure the rate of computation that a node delivers for a given
application code (which, in the HPC context, we presume is tuned for each architecture) for given per-node
cost or per-node power consumption.

In fact, such a measurement would return three values of interest. Let us suppose that the problem to
be solved is a partial differential equation in space and time having N gridpoints in space and taking Ns
timesteps. For fixed N , the rate of work, R, will be the number of timesteps per second of wall-clock time,
which is readily measurable by a user and (often) predictable on a prospective future platform through use
of a simulator. Assuming that the algorithmic cost is linear in N , it is often useful to define an intrinsic
rate of work, r := N ·R, having units of (number-of-points × number-of-steps) per wall-clock second. Note
that r is a multiple of the realized FLOPs rate. For example, using geometric multigrid to solve the 3D
Poisson equation with a 7-point finite difference stencil requires about 50 FLOPs per V-cycle per gridpoint,
so r = f/50, where f is the flop rate and Ns is interpreted as the number of V-cycle iterations. Typically,
r asymptotes to a constant rmax for large N and drops towards zero for small N . With these definitions,
interesting figures of merit include

• rmax, the peak observable rate of execution,

• rmax/cost, the rate of execution per dollar invested,

• rmax/watt, the rate of execution per unit of energy required , and
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• M , the amount of available memory.

Knowing the rate r, the user can predict the time to solution, T = (NsN)/r for a given number of steps, Ns,
and gridpoints, N .

For someone purchasing a single node, the above list would likely constitute the most important consid-
erations in evaluating a candidate architecture (aside from the software development overhead, which we
assume is already resolved). In an HPC context, however, users are never running on a single node, for two
primary reasons. The first is memory. HPC applications will generally not fit on a single node. Fortunately,
distributed memory (DM) parallel computing provides a P -fold increase in available memory when P identical
nodes are used instead of one. The second is speed. DM architectures offer a P -fold increase in number
of cores and in memory bandwidth to the cores. Leadership computing facilities support anywhere from
P = 104 to 105 nodes, which gives a very large multiplier in R and M but not much direct variation in the
relative measures of R/cost or R/watt. (Aside perhaps from some economies of scale, one would expect a
machine with 2× 104 nodes to cost roughly twice that of a machine with 104 nodes.)

If one can realize a P -fold speed up by using P nodes instead of one, a natural question that arises is,
why not set P equal to the number of nodes in the machine? In traditional DM architectures, the answer is
well known. For a fixed problem size, N , the parallel work scales as N/P , which goes to zero with increasing
P , but the serial work and communication overhead does not go to zero and may in fact increase with P .
At some value of N/P , the parallel efficiency falls off to an unacceptable level and the user will choose,
at runtime, to set P to be less than this unacceptable value. Thus, the user is ultimately controlling the
granularity (N/P ) of the problem and it is generally in his best interest to set P as large as possible, that is,
at this strong-scale limit where the parallel efficiency is acceptable.

Under the strong-scale conditions to which most applications will gravitate, one has to add an important
figure of merit to the preceding list. For HPC applications, each node sees a local problem size of only N/P ,
rather than N . It is thus important to consider a node’s performance rate as a function of local problem size
N/P . Most often, this functionality is characterized by n 1

2
, the problem size where the node performance

for the given application, r, drops below one-half of its peak value. Thus, even neglecting communication
overhead, there is a strong-scale limit imposed on P that is governed by n 1

2
. If the problem size is N , and P

satisfies

N

P
= n 1

2
,

we can anticipate that the maximum parallel execution rate will be rss = 1
2Prmax, and the DM parallel

time-to-solution will be

Tmin =
NsN

rss
=

NsN
1
2P rmax

= 2Ns
n 1

2

rmax
. (15)

Although increases in model complexity or fidelity will often increase the number of time steps Ns, the best
we can hope for the ratio

t 1
2

= 2
n 1

2

rmax
,

the fastest execution time per time step at acceptable efficiency, is to remain constant. This is the time
seen by the end user, and it is therefore a critical parameter in the design of HPC systems. Note that the
pre-factor of 2 stems from the particular choice of 1

2 as the acceptable level of efficiency. One could equally
well choose some other acceptable efficiency, say ε = 0.8, and the same argument would carry through with
subdomain size nε and associated time tε = ε−1nε/rmax.

Clearly, order-unity values of n 1
2

are never going to be realizable. If the node supports Pn cores, one
certainly must have n 1

2
> Pn. Pipelined execution and devices such as hyperthreading to cover memory latency

all help to boost rmax, which is good. But they often simultaneously increase n 1
2
. Communication overheads,

including on-node and off-node overheads incurred by load-balancing techniques like overdecomposition, may
have negligible impact on rmax but generally increase n 1

2
, thus also t 1

2
. Similarly, while coprocessors often

greatly increase rmax, they also incur overheads that usually increase t 1
2
. The crucial point is that future

architectures and algorithm development must be evaluated with respect to t 1
2
, i.e. both rmax and n 1

2
if one

wishes to maintain or improve time to solution.
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Figure 10: Left to right: T-vector, L-vector, and E-vector representations.

3.6 CEED Library Terminology and Notation

In addition to developing benchmarks and miniapps, the CEED team has been working to identify a
unifying framework coupled with central kernels that will provide flexibility and high performance for efficient
discretization on future architectures. The following sections describe initial definitions in this space. As
mentioned earlier, identifying and improving upon the performance of these kernels, within realistic use
settings, is one of the objectives of the bake-off exercise and forms an important part of our outreach to the
ECP software groups and vendors.

The principal decomposition of fast matrix-free discretizations is broken down into the following vector-
representation/storage-categories (see Figure 10):

• True degrees of freedom/unknowns, T-vector:

– each unknown i has exactly one copy, on exactly one processor, rank(i)

– this is a non-overlapping vector decomposition

– usually includes any essential (fixed) DOFs.

• Local true degrees of freedom/unknowns, L-vector:

– each unknown i has exactly one copy on each processor that owns an element containing i

– this is an overlapping vector decomposition with overlaps only across different processors - there is
no duplication of unknowns on a single processor

– the shared DOFs/unknowns are the overlapping DOFs, i.e. the ones that have more than one
copy, on different processors.

• Per element decomposition, E-vector:

– each unknown i has as many copies as the number of elements that contain i

– usually, the copies of the unknowns are grouped by the element they belong to.

• In the case of hanging nodes (giving rise to hanging DOFs):

– there is another representation similar to L-vector which stores the hanging/dependent DOFs in
addition to the true DOFs, H-vector

– the additional hanging DOFs are duplicated when they are shared by multiple processors.

• In the case of variable order spaces:

– the dependent DOFs (usually on the higher-order side of a face/edge) can be treated just like the
hanging/dependent DOFs case

– have both L- and H-vector representations.
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• Quadrature point vector, Q-vector:

– this is similar to E-vector where instead of DOFs, the vector represents values at quadrature
points, grouped by element.

• In many cases it is useful to distinguish two types of vectors:

– X-vector, or primal X-vector, and X’-vector, or dual X-vector

– here X can be any of the T, L, H, E, or Q categories

– for example, the mass matrix operator maps a T-vector to a T’-vector

– the solutions vector is a T-vector, and the RHS vector is a T’-vector

– using the parallel prolongation operator, one can map the solution T-vector to a solution L-vector,
etc.

Discretized PDE operators can similarly be broken down into the following representation/storage/action
categories:

• Full true-DOF parallel assembly, TA, or A:

– ParCSR or similar format

– the T in TA indicates that the data format represents an operator from a T-vector to a T’-vector.

• Full local assembly, LA:

– CSR matrix on each rank

– the parallel prolongation operator, P , (and its transpose) should use optimized matrix-free action

– note that P is the operator mapping T-vectors to L-vectors.

• Element matrix assembly, EA:

– each element matrix is stored as a dense matrix

– optimized element and parallel prolongation operators

– note that the element prolongation operator is the mapping from an L-vector to an E-vector.

• Quadrature-point/partial assembly, QA or PA:

– precompute and store w det(J ), or det(J ) (in the case of mass matrix) at all quadrature points in
all mesh elements

– the stored data can be viewed as a Q-vector.

• Unassembled option, UA or U:

– no assembly step

– the action uses directly the mesh node coordinates, and assumes specific form of the coefficient,
e.g. constant, piecewise-constant, or given as a Q-vector (Q-coefficient).

3.6.1 Low-Level Kernels

We have developed a set of reference implementations for kernels performing the action of mass and diffusion
finite element operators in 2D and 3D. These implementations are available in the CEED benchmarks repository
in the directory tests/mfem experiments, where they can be tested in an example based on MFEM. The
reference implementations can easily be replaced in the example with other optimized implementations to
facilitate benchmarking of future performance improvement work.

We have also begun the work of combining these low-level kernels in a standalone low-level API library
(working name: libCEED) that is the topic of a upcoming milestone (CEED-MS10).
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3.6.2 Batched BLAS Kernels

We identified a number of initial low-level kernels that are fundamental for the performance portability of
high-order finite element computations. In particular, these are the tensor contractions used in the tensor
formulations of the high-order FE algorithms. Further, we managed to classify and restrict these contractions
to three main cases. This allowed us to directly target these discrete cases for optimization on various
architectures. We analyzed these main kernels to show the trade-offs between the various implementations,
how different tensor kernel implementations perform on different architectures, and what tuning parameters
can have a significant impact on performance. In all cases, we organize the tensor contractions to minimize
their communications by considering index reordering that enables their execution as highly efficient batched
matrix-matrix multiplications (DGEMMs). For example, contractions by the first index as in

Ci1,i2,i3 =
∑
k1

Ak1,i1Bk1,i2,i3 ,

can be written as Reshape(C)nd1×(nd2nd3) = AT Reshape(B)nq1×(nd2nd3).

We derived performance models and bounds for the maximum performance that can be achieved under
the maximum data-reuse scenario, and showed that our implementations achieve 90+% of these theoretically
derived peaks on advanced multi-core x86 CPU, ARM, GPU, and Xeon Phi architectures. These results
significantly outperform what is available today in vendor libraries. In particular, we show average performance
speedups of 1.3× and 2× compared to Intel MKL on two 10-core Haswell CPUs and KNL Xeon Phi, respectively,
and 3× when compared to NVIDIA CUBLAS on the latest P100 NVIDIA GPU [8].

(a) Fixed sizes

(b) Variable sizes

Figure 11: Batched BLAS API – example interfaces for the batched matrix-
matrix multiplication in double precision (DGEMM) for fixed-size matrices (top)
and variable-size matrices (bottom).

The use of vendor-optimized BLAS has been successfully used in many applications and numerical libraries
like LAPACK, ScaLAPACK, and MAGMA (among many other libraries), to provide performance portability
across architectures. Similarly, the availability of highly optimized Batched BLAS for various architectures
can provide tensor contractions, and consequently high-order applications, performance portability. Therefore,
we have been working with vendors and the community on defining a Batched BLAS API. The progress in
that direction is promising after we organized two workshops on the topic and started work on proposing an
API for Batched BLAS [9]. An illustration for the Batched BLAS interfaces is given in Figure 11 for the case
of batched matrix-matrix multiplications in double precision (DGEMM). The matrices in the batch can be
the same (fixed) size (Figure 11, Top) or variable sizes (Figure 11, Bottom).
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We have developed, optimized, and released through MAGMA, see http://ceed.exascaleproject.org/

magma, all Level 3 Batched BLAS routines for both fixed and variable size matrices. A number of Level 2
Batched BLAS are also developed and released (SYMV and GEMV), as well as a number of other Batched
BLAS kernels, as needed in the development of tensor contractions.

4. ENGAGEMENTS WITH VENDORS AND ST PROJECTS

4.1 ECP Vendors

CEED has begun engaging ECP vendors in several directions. For example, Ian Karlin visited AMD and
ARM to discuss the CEED technologies including our miniapps and future plans. The vendors shared details
of what they are doing (removed from this report due to NDA issues) and we established initial connections
for future co-design. We have sent the new Laghos miniapp to AMD to begin collaboration with them. In
addition, CEED participated in a meeting with HP that was hosted at LLNL discussing the networking part
of their PathForward contract. We are also beginning to engage actively with Intel and will send several
participants to the July 2017 co-design meeting at Intel’s Hudson MA facility.

Most of the PathForward vendors will have representatives at CEED’s annual meeting, see Section 5.3.

4.2 MPICH

Nek5000 and MPICH teams have shared milestones including Nek5000 performance and analysis for standard
vs. light-weight MPICH. The results have been submitted to SC17 and have been accepted for publication [10].

Figure 12 shows Nek5000 performance results on the ALCF BG/Q Cetus. The underlying mesh is a
tensor product array of brick elements, each of order N (i.e. p from the previous sections), and the problem
is perfectly load balanced, with E = 2k, for k = 14, ..., 21. Here, we consider N = 3, 5, 7, such that n/P , the
problem size per processor, is in the range n/P ∈ [27, 43904]. Earlier MPICH analysis suggests that BG/Q
should yield order-unity efficiency for this problem with n/P > 1000–2000, a transition point well within the
range covered here. In Figure 12 (left), for large n/P the problem becomes work-dominated; for small n/P it
is communication dominated. The dashed lines show the performance for the standard MPICH, while the
solid lines show results for light-weight MPICH. Each pair of curves reflect a different value of N . We see
that the lower value of N does not perform well, which is in part due to caching and vectorization strategies
in Nek5000, but also due to the O(M3N) interpolation overhead, which is large when N is small. In all cases,
light-weight MPICH is seen to outperform standard MPICH, save for the very largest values of n/P , where
they are equal.
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Figure 12: Mass-matrix inversion performance for Nek5000 on Cetus: (left)
performance vs. n/P for MPICH/Original (solid lines) and MPICH/CH4 (dashed
lines); (right) performance ratio for N = 5 and N = 7.
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4.3 STRUMPACK

We have integrated support for the sparse direct solver and preconditioner STRUMPACK in MFEM.
STRUMPACK is being developed at LBNL [11] and is part of the ECP project ”Factorization Based Sparse
Solvers and Preconditioners” (Xiaoye Sherry Li and Pieter Ghysels). The STRUMPACK solver is based
on multifrontal sparse Gaussian elimination and uses hierarchically semi-separable matrices to compress
fill-in. It can be used as an exact direct solver or as an algebraic, robust and parallel preconditioner
for a range of discretized PDE problems. A new solver class STRUMPACKSolver was added to MFEM
wrapping the STRUMPACK solver. Example usage is illustrated by the ex11p example, where STRUMPACK
can be used as a preconditioner for the LOBPCG eigensolver. STRUMPACK options can be set via the
STRUMPACKSolver class interface or via command line arguments that are passed to STRUMPACK. The
MFEM documentation, installation instructions, website, changelog, build scripts, etc, have been updated
accordingly. An extensive performance evaluation will be performed in the near future and results will be
reported at the CEED annual meeting, see Section 5.3.

5. OTHER PROJECT ACTIVITIES

5.1 CEED Software on GitHub

All CEED software products described in the previous sections are available as open-source projects on
GitHub, or will be made available soon after a review process at LLNL. The CEED presence on GitHub
now includes a user forum at https://github.com/CEED/Forum and mirrors of the major CEED packages
at https://github.com/CEED.

In Q3 FY17, we also released GSLIB, Nek5000’s gather-scatter library, as a standalone library on GitHub
at https://github.com/gslib/gslib. GSLIB provides efficient nearest neighbor data exchanges for spectral
element, finite element, and finite-difference applications. It can also be used for efficient transpose and
reduction operations and for smoothing, prolongation, and restriction in AMG and other solvers. See
http://ceed.exascaleproject.org/gslib for more details.

5.2 Public-facing Project Website

The CEED team developed a public-facing website that provides information about the project, documents
benchmark problems and miniapps and can serve in the future as a hub for the high-order community
(milestone CEED-MS4). The website is available at http://ceed.exascaleproject.org, see Figure 13.
The site includes pages for the four CEED R&D thrusts, the CEED’s software packages and the project

Figure 13: Main page of CEED’s public-facing website.

efforts in high-order meshing, high-order physics discretization, linear algebra and high-order visualization.
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To encourage frequent contributions by the whole team, the site is build on simple Markdown files and is
hosted on GitHub, integrating naturally with the rest of the CEED workflow.

5.3 Planning of the CEED First Annual Meeting

We started preparations for CEED’s first annual meeting, to be held August 15–17 at the HPC Innovation
Center of Lawrence Livermore National Laboratory. The goal of the 3-day meeting is to report on the progress
in the center, deepen existing and establish new connections with ECP hardware vendors, ECP software
technologies projects and other collaborators, plan project activities and brainstorm/work as a group to
make technical progress. In addition to gathering together many of the CEED researchers, the meeting will
include representatives of the ECP management, hardware vendors, software technology and other interested
projects. The current list of attendees includes 60 researchers from 20+ different institutions.

6. CONCLUSION

In this milestone we identified CEED’s initial kernels, bake-off problems and miniapps and delivered software
and documentation for them through the new CEED website, http://ceed.exascaleproject.org.

We specifically identified the Nekbone miniapp for the ExaSMR application and developed a new miniapp,
Laghos, for the MARBL/LLNLApp application. We formulated four initial benchmark problems (BP1-BP4)
with clearly defined performance metrics and performed an initial bake-off comparison between the Nek
(spectral element) and MFEM (high-order finite element) technologies. As part of the milestone, we engaged
ECP vendors (AMD) and ST projects (MPICH, STRUMPACK).

In this report, we also described additional CEED activities performed in Q3 of FY17, including:
making CEED software available at https://github.com/ceed, the new public-facing project website
http://ceed.exascaleproject.org and the preparation of CEED’s first annual meeting.
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