
A New Checksum Formula for Error Detecting Decimal
Codes

Mert Bora ALPER
bora@boramalper.org

13 February 2017

Abstract
Decimal codes are used everywhere in modern societies to identify things such as credit

cards, books, and even human beings through passport numbers. All these integers are subject
to various transmission errors, due to machine, and mostly human errors. Hence various error
detection algorithms have been developed to mitigate the issue, even if not completely solve it
through error correction.

This essay addresses the problem of detecting transmission errors in decimal codes using a
single decimal checksum digit. The aim is to develop a new algorithm that can detect most
of the transmission errors while being flexible at the same time so that it can be adapted to
different situations. The scope of the transmission errors are limited to the 6 most common
transmission errors, which constitutes 91.4% of all transmission errors, according to the
Kirtland’s investigation. For the scope of this paper, the new error detection algorithm is
expected to deal with situations where only one transmission error occurs at a time.

In the development of The New Algorithm, a mathematical model of the problem domain
is created using arrays, and afterwards, the conditions which the modelling arrays must satisfy
for detecting errors are identified under the concept of The Ideal Algorithm. Afterwards, each
of the modelling conditions is assigned a score depending on how "detrimental" their violation
will be (which is based on the frequency of the error the condition is interested in), which in
turn allowed computer assisted brute-force method to be used to find the most suitable arrays
for The New Algorithm.

The New Algorithm can detect 91.05% of all transmission errors and yet, thanks to the
mathematical modelling, it can be adapted to different situations in future and different local
contexts.

Word Count
3709

Civanıma, sevgilerimle.1

1To my youngster, with love.

2 of 28

CONTENTS CONTENTS

Contents
1 Introduction 4

2 Common Transmission Errors 4

3 Investigating The Ideal Algorithm 5

4 The New Algorithm 8
4.1 Heuristic Methods in Seeking The Sub-Optimal Triple 8
4.2 The New Algorithm . 11
4.3 Analysis of The New Algorithm . 11

5 Benchmarking 13

6 Conclusion 15

A Programs 17
A.1 Source Code of the Program for Purely Brute-Force Approach 18
A.2 Source Code of Optimized Brute Force . 19
A.3 Source Code for Analyzing a Triple . 22
A.4 Source Code of Benchmarking Script . 24

3 of 28

2 COMMON TRANSMISSION ERRORS

1 Introduction

Since the very early days of civilization, humans have used numbers to count the objects around

themselves but only recently the necessity to identify each of those objects lead to the usage of

numbers as identifiers. Today, identification numbers are ubiquitous. They are used to identify

geographical areas, banknotes, books, cars, weapons, bank accounts, and parts of complex machinery

such as airplanes. Even humans are identified through the usage of passport numbers and/or social

security codes. These numbers might be misread, misheard, misspoken, or miswritten; in other

words, mistransmitted. Errors and their causes are numerous (pardon the pun) and the need for

a (better) error detection mechanism for numbers is increasing each and every day. This essay is

devoted to the development of a new algorithm that can accommodate today’s needs and yet has

the flexibility to endure time.

2 Common Transmission Errors

A study of common transmission errors is essential for any error detection algorithm that aims

to have a practical use, therefore it is crucial for the success of The New Algorithm that the common

transmission errors that are explained here are taken into consideration.

Table 1: Most common transmission errors[2]

Error Type Example Percentage in All Transmission Errors
Single-Digit 7 instead of 4 79.1%
Transposition 23 instead of 32 10.2%
Jump-Transposition 063 instead of 360 0.8%
Twin 77 instead of 44 0.5%
Phonetic 14 instead of 40 0.5%
Jump-Twin 343 instead of 242 0.3%

Total: 91.4%

Single-Digit Errors Single-digit errors occur when a single digit in a code is mistransmitted.

They are often caused by transcription errors, such as pressing the adjacent key on a PIN

pad. Since single-digit errors constitute 79.1% of the all transmission errors, it is a must for

any error detection algorithm to catch all of the single-digit errors that might occur.

Transposition Errors Transposition errors occur when two different digits swap positions (trans-

pose). They are often caused by transcription errors while typing with two or more fingers.

When one of the digits at stake is equal to 1, it is called phonetic error since the pronunciation

of numbers 1D and D1 (for D > 3) is very similar to each other in English (and also in

German). As transposition errors constitute significant amount (10.2%) of the all transmission

errors, and hence it is crucial for any error detection algorithm to catch the majority, if not

4 of 28

3 INVESTIGATING THE IDEAL ALGORITHM

all, of the transposition errors that might occur.

Jump-Transposition Errors Jump-transposition errors occur when two different digits separated

by an adjacent digit swap positions. This is often caused by a transcription error while typing

with three or more fingers.

Twin Errors Twin errors occur when a twice-repeating digit is mistransmitted. This is often

caused by a transcription error while typing from muscle memory, which is usually the case

for many human beings.

Phonetic Errors Phonetic errors occur when two adjacent digits in the form of 1D or D1 is

mistransmitted as D1 or 1D (for D > 3), respectively. Phonetic errors are a special case of

transposition errors since they are caused by the phonetic similarity in the pronunciation of

those numbers in English (and in German) language.

Jump-Twin Errors Jump-twin errors occur when a twice-repeating digit that is separated by

another digit in-between is mistransmitted (the digit in-between stays unaffected). This is

often caused by a transcription error while typing from muscle memory and using three or

more fingers at the same time.

3 Investigating The Ideal Algorithm

Although there might be no ideal error detection algorithm that detects all of the most common

transmission errors, the conception of such an algorithm can guide the development of The New

Algorithm. The sole aim of this investigation is to present the development of The New Algorithm

to the reader, starting from the mathematical modelling of the problem domain.

The idea of an ideal algorithm is far too abstract to be investigated at this point, hence let

us assume that we are using a checksum formula, that is, calculating a single check-digit by

aggregating (which might be an arithmetic summation) all the digits after applying certain, well-

defined operations on them. Afterwards, modular arithmetic will be used to reduce the aggregate

to a single checksum digit.

For the scope of this investigation, The Ideal Algorithm is expected to detect all of the most

common transmission errors, only if only one error occurs at the same time. Also, for the sake

of simplicity and again the scope of this investigation, it is assumed that the check-digit is not

subject to any of the errors, including but not limited to most common transmission errors which

are described in the section 2 (i.e. the checksum never gets corrupt).

Throughout the investigation, let c be the check-digit and dx be the xth digit (or symbol, both

terms are used synonymously) of the decimal code C with l digits (for x ∈ [1, l]).

5 of 28

3 INVESTIGATING THE IDEAL ALGORITHM

All single-digit errors can be detected using the simplest modular arithmetic summation:

c ≡ d1 + d2 + d3 + · · ·+ dl (mod 10)

≡

 l∑
x=1

dx

 mod 10

In the case of a single-digit error, the difference between the correct and the erroneous decimal

digit is necessarily within the range [1, 9]. Since the modulus of the congruence is greater than the

greatest value within the difference range (i.e. since 10 > 9), any single single-digit error in any

place is proved to change the result of the congruence to a different value. This guarantee holds

true as long as the modulus is greater than the greatest possible value a place can hold, hence the

modulus has to be equal to 10 in order to be able to detect all single-digit errors in decimal codes.

Since addition operation in modular arithmetic is commutative, to be able to detect transposition

and jump-transposition errors, the value of a digit must vary depending on its position during

aggregation. The idea, in its most abstract form, is to substitute each digit with a value from the

substitution array, that is associated with the digit’s position, where the index is the digit itself.

Different substitution arrays must be defined for different positions, so that the value of the digit

may vary depending on its position in the decimal code.

Creating a different substitution array for each and every position in decimal codes of a given

length would be a tedious task, and it is also very much unnecessary. Instead, looking at the most

common errors, we can realize that jump-transposition and jump-twin errors involve three adjacent

positions, while other errors involve either two or one positions. Therefore, a triple of substitution

arrays should suffice in detecting all of the most common errors. This also allows us to use same

substitution arrays for all decimal codes, regardless of their lengths.

An ideal triple of substitution arrays (A3n, A3n+1 and A3n+2 for n ∈ [0, 1, 2, . . . , bl/3c]) must

satisfy the following conditions for all possible values of transposing digits dx and dx+1 (where

dx 6= dx+1) if it detects all transposition errors:

A3n[dx] + A3n+1[dx+1] 6≡ A3n[dx+1] + A3n+1[dx] (mod 10) (1)

A3n+1[dx] + A3n+2[dx+1] 6≡ A3n+1[dx+1] + A3n+2[dx] (mod 10) (2)

A3n+2[dx] + A3n[dx+1] 6≡ A3n+2[dx+1] + A3n[dx] (mod 10) (3)

Since the set of conditions for detecting all jump-transposition errors are same as the conditions

for detecting all transposition errors, as shown in the figures below, nothing else needs to be added

to detect all jump-transposition errors.

6 of 28

3 INVESTIGATING THE IDEAL ALGORITHM

Digits: d0 d1 d2 d3 d4 . . .
. . .

Subs. arrays: A3n A3n+1 A3n+2 A3n A3n+1 . . .

. . .

Cond. 1 Cond. 2 Cond. 3 Cond. 1 . . .
Cond. 7 Cond. 8 Cond. 9 Cond. 7 . . .

Figure 1: Conditions for Detecting Transposition (Conditions 1, 2, 3) and
Twin (Conditions 7, 8, 9) Errors

Digits: d0 d1 d2 d3 d4 . . .
. . .

Subs. arrays: A3n A3n+1 A3n+2 A3n A3n+1 . . .

. . .Cond. 3

Cond. 1

Cond. 2 . . .

Cond. 6

Cond. 4

Cond. 5 . . .

Figure 2: Conditions for Detecting Jump-Transposition (Conditions 1, 2, 3) and
Jump-Twin (Conditions 4, 5, 6) Errors

Here are the conditions for detecting all twin errors for every possible x, e pair where x is the

correct and e is the erroneous digit that is not equal to x:

A3n[x] + A3n+1[x] 6≡ A3n[e] + A3n+1[e] (mod 10) (4)

A3n+1[x] + A3n+2[x] 6≡ A3n+1[e] + A3n+2[e] (mod 10) (5)

A3n+2[x] + A3n[x] 6≡ A3n+2[e] + A3n[e] (mod 10) (6)

Since the set of conditions for detecting all jump-twin errors is same as the conditions for

detecting all twin errors, as shown in the figures nos. 1 and 2 above, nothing else needs to be added

to detect all jump-twin errors.

The conditions for detecting all phonetic errors for every digit x > 3 (because 11 repeats the

same digit twice, and twelve [de. zwölf] or twenty [de. zwanzig] cannot be phonetically confused

such as the thirteen-thirty [de. dreizehn-dreizig] and so on):

A3n[1] + A3n+1[x] 6≡ A3n[x] + A3n+1[0] (mod 10) (7)

A3n+1[1] + A3n+2[x] 6≡ A3n+1[x] + A3n+2[0] (mod 10) (8)

A3n+2[1] + A3n[x] 6≡ A3n+2[x] + A3n[0] (mod 10) (9)

The 9 conditions above, grouped in sets by kinds of error, can be used altogether as a set of

7 of 28

4 THE NEW ALGORITHM

conditions to detect all of the all kinds of most common transmission errors described in the section

2.

4 The New Algorithm

In an ideal world, all transmission errors can be detected using ideal substitution arrays, though

in reality, we may need to compromise as there might be no triple of substitution arrays that

satisfy all of the 9 conditions explained in the previous section. The solution is, then, to prioritize

each subset of conditions by the frequency percentage of the error it detects, and assign a penalty

score that is directly proportional to its priority, in case if an instance for which the condition

does not hold true is found. For example, 102 (10.2% ∗ 100) points must be "awarded" to the

triple of substitution array in test for each dx, dx+1 pair that violates a condition for detecting

single-digit errors, multiplied by the amount of violated conditions. After evaluating all possible

triples of substitution arrays, the array(s) with the least penalty score would be the best triple(s)

of substitution arrays (i.e. the one(s) that can detect more errors than any other(s)).

Although using brute-force to scan the search space might be the first thing that comes to mind,

and indeed it is the only possible way to attack the problem, it will be seen that considering the

vastness of the search space, any brute-force method is doomed to fail using today’s technology

given the time constraints; there are 10! different substitution arrays, and 10!C3 ≈ 8× 1018 triples of

substitution arrays which a brute-force approach has to consider. Assuming that we could evaluate

a billion triples per second, it would still take us 252.5 years to finish scanning the problem space!

Nonetheless, source code of a Python program for purely brute-force approach has been included in

the appendix A.1 as a starting point for the sake of completeness; whilst the need for a more clever

approach that can find a sub-optimal solution in a reasonable amount of time is clearly evident,

hence the next section is dedicated to the development of such approach.

4.1 Heuristic Methods in Seeking The Sub-Optimal Triple

By starting with a set of assumptions and propagating constraints, we can prune the search

space significantly while seeking a sub-optimal solution. To begin with, instead of iterating through

the search space in lexicographical order, we can prioritize triples that are expected to have a lower

penalty score than others. Starting from the first triple in lexicographical order and continuing

is indeed extremely inefficient; for every two different positions where the values at the same

positions in any two substitution arrays are equal to each other, one of the conditions for detecting

transposition errors will be violated (since the sum of the different values at different positions in

different arrays would be equal to each other).

8 of 28

4.1 Heuristic Methods in Seeking The Sub-Optimal Triple 4 THE NEW ALGORITHM

Remark. Let x and y be two different positions (i.e. indices) where the values in substitution

arrays A0 and A1 overlap, then the condition for detecting transposition errors that is explained in

section 3 is violated.

A0[x] = A1[x]

A0[y] = A1[y]

Proof by contradiction.

A0[x] + A1[y] 6≡ A0[y] + A1[x] (mod 10)

substitute A0[y] with A1[y], and A1[x] with A0[x]

=⇒ A0[x] + A1[y] 6≡ A1[x] + A0[y] (mod 10)

Therefore it is proved that for every two substitution arrays and two different positions (i.e. indices)

where the values in the arrays overlap, a condition for detecting transposition errors will be violated

(this is also called a defect).

For instance, let us look at the first triple in lexicographical order:

A3n = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A3n+1 = [0, 1, 2, 3, 4, 5, 6, 7, 9, 8]

A3n+2 = [0, 1, 2, 3, 4, 5, 6, 8, 7, 9]

As the first 7 values of the first two arrays overlap, it is hence known that there are at least
7C2 = 21 transposition errors and the total (penalty) score of this triple is at least 21× 102 = 2142

even without considering the other two pairs of arrays.

While this new array generation method can speed up the brute-forcing process significantly, it

is not of much use without knowing when to stop; next thing to do is to find how can we understand

whether we are satisfied with a result or not. Looking at most common transmission errors in

Table 1, it can be seen that transposition and jump-transposition errors are more frequent than less

frequent transmission errors by an order of magnitude; the greatness of this difference in frequencies

makes less frequent transmission errors more tolerable compared to transposition errors. This

means, we can skip checking triples with n + 1 transposition error detection defects, without even

checking for other conditions, if we are aware of another triple with n transposition error detection

9 of 28

4.1 Heuristic Methods in Seeking The Sub-Optimal Triple 4 THE NEW ALGORITHM

defects and with a total sum of penalty scores for other kinds of errors being less than or equal to 1

transposition error penalty score (102 points).

To sum up and incorporate what has been said so far, let us describe how the search space will

be iterated in such a way that ineffective triples can be pruned at the very beginning:

1. For every possible A3n array which can be any permutation of 10 digits,

2. Every possible A3n+1 array will be generated in a such a way that during the generation

process, it is ensured that the resultant array doesn’t have any values that overlap with the

reference array A3n.

3. If there are any unordered (dx, dx+1) pairs that violates the condition for detecting transposi-

tion errors more than once in total (A3n being the first array in the condition), create a new

A3n+1.

• It is assumed that it is possible to find a pair of substitution arrays with 1 transposition

error detection defect and with the total sum of penalty scores for the other kinds of

errors being less than or equal to 102, so that other pairs with more than 1 transposition

error detection defects can be skipped.

4. Repeat the step 2 and 3 for generating A3n+2 array, testing A3n+2 together with A3n, and

A3n+1 afterwards. As in the previous steps, A3n+2 cannot have more than two transposition

error detection defects in total compared to the previous arrays.

5. Now a triple of substitution arrays is generated, with the total number of 3 transposition

error detection defects.

6. If there is at least one triple with total sum of penalty scores for minor (jump-transposition,

twin, phonetic, and jump-twin) error detection defects is less than or equal to 102, it is

guaranteed that no triple with more than 3 transposition error detection defects can have a

better score than the aforementioned triple.

• This is the assumption that we have made at step 3. Given enough time, the process

can prove its assumption through empirical evidence if the assumption holds true.

7. Keep searching to discover whether there is another triple with a better score, for an indefinite

period of time.

There are several assumptions taken into consideration in the process described above:

• Since substitution arrays are generated sequentially one after another instead of in triples

altogether, it might be that there are triples with less than 1 + 1 + 1 = 3 transposition error

10 of 28

4.2 The New Algorithm 4 THE NEW ALGORITHM

detection defects, although I do not have any proof or counter-proof to claim so or otherwise.

During my prior investigation, despite all the different brute-force approaches I have tried, I

did not encounter any triples of substitution arrays which have less than 3 transposition error

detection defects, despite all the different brute-force methods I have tried.

• In the heuristic process, no values are allowed to overlap with another value at the same

position in another array, although as described above, one transposition error detection

defect requires two overlaps, and thus pairs of substitution arrays with 1 overlap, and 1 or

0 transmission error detection defect is entirely possible. Although, for the sake of brevity

and more importantly for the speed of the computer program, the above-described process

adheres to no overlaps rule very strictly and allows no overlaps at all.

• The search was terminated after 12 hours due to limited time and resources, assuming that

the time given would be enough to find a good enough sub-optimal solution.

If one modifies the aforementioned process to eliminate the assumptions explained above, the

process is guaranteed to find the best solution given enough time provided that 6th step of the

process holds true (again, which can be evidenced by the process itself if such a case exist; and it

does exist).

4.2 The New Algorithm

Let A3n, A3n+1, and A3n+2 be three substitution arrays:

A3n = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A3n+1 = [1, 7, 9, 6, 3, 0, 8, 5, 2, 4]

A3n+2 = [9, 6, 0, 2, 7, 5, 3, 8, 4, 1]

Using the sub-optimal arrays above that are found after computer assisted brute-force following

the aforementioned methodology, The New Algorithm is as follows:

c =
l∑

x=1

(
A3n+((x−1) mod 3)[dx]

)
mod 10

=
(

A3n[d1] + A3n+1[d2] + A3n+2[d3] + A3n[d4] + . . . + A3n+(l mod 3)[dl]
)

mod 10

4.3 Analysis of The New Algorithm

Analysing the triple of substitution arrays used in The New Algorithm for the error detection

defects, the following table is created:

11 of 28

4.3 Analysis of The New Algorithm 4 THE NEW ALGORITHM

Table 2: Error Detection Defects in the Triple of Substitution Arrays used in The New Algorithm

Error Type Amount of Defects Defects (x, y)
A3n ↔ A3n+1 A3n ↔ A3n+2 A3n+1 ↔ A3n+2

Singe-Digit 0 ∅ ∅ ∅
Transposition 3 (5, 9) (0, 3) (5, 6)
Jump-Transposition 3 (5, 9) (0, 3) (5, 6)
Twin 8 (0, 2) (0, 6), (2, 8)

(3, 7), (5, 9)
(0, 4), (1, 7)
(5, 9)

Phonetic (x) 2 ∅ (8) (8)
Jump-Twin 8 (0, 2) (0, 6), (2, 8)

(3, 7), (5, 9)
(0, 4), (1, 7)
(5, 9)

Since conditions for detecting transposition, jump-transposition, twin, and jump-twin errors are

defined for a pair of violating digits, there are 45 different unordered (x, y) pairs where x 6= y which

might violate one of the conditions for detecting errors; instances of such pairs for each error type

that they violate are given in the table above, grouped by the pairs of substitution arrays where

the violation occurs. Conditions for detecting phonetic errors, on the other hand, are defined for a

single digit x ∈ {3, 4, 5, 6, 7, 8, 9}; hence there are only 7 different x values which might violate one

of the conditions for detecting phonetic errors.

As an example, let us calculate the percentage of undetected twin errors in all twin errors: for

instance, if the double zeroes (or twos) are mistransmitted as double twos (or zeroes) -represented

by the pair (0, 2)- and if this occurs at the positions 3n and 3n+1, then a twin error would slip

undetected, as can be seen in the table. Translating into formal language, this is equal to the

probability of getting the pair (0, 2) among 45 unordered (x, y) pairs (1/
(45

1
)

= 1/45) and the

probability of this happening at the pair of substitution arrays A3n and A3n+1 (1/
(3

2
)

= 1/3), thus

altogether 1/45 ∗ 1/3 = 1/135. By repeating the process for the remaining 7, the percentage of all

undetected twin errors in all twin errors can be calculated as follows:

= 1
45 ∗

1
3 + 4

45 ∗
1
3 + 3

45 ∗
1
3

= 8
135

= 5.93%

The percentages for the rest of the error types are calculated using the same method.

12 of 28

5 BENCHMARKING

Table 3: Percentages of Undetected Errors

Error Type Num. of Defects
Percentage of (1) Errors in All (2) Errors

(1) Undetected (1) Detected
(2) Error Type (2) Error Type (2) Transmission

Single-Digit 0 0% 100% 79.10%
Transposition 3 2.22% 97.78% 9.97%
Jump-Transposition 3 2.22% 97.78% 0.78%
Twin 8 5.93% 94.07% 0.47%
Phonetic 2 9.52% 90.48% 0.45%
Jump-Twin 8 5.93% 94.07% 0.28%

Total: 91.05%

It is hence shown that The New Algorithm will detect around 91.05% of all transmission errors

if check-digit is not subject to any errors (an assumption made in section 3).

5 Benchmarking

Through benchmarking The New Algorithm with well-established standards, we can test its

claimed efficiency in real-life situations. To simulate such situations, a computer program that

generates 12 digits long (check-digit not included) decimal codes, measures how many random

errors of a kind a given algorithm can detect. For each type of error and per algorithm, one million

integers are randomly generated and randomly corrupted to create an erroneous integer of a wanted

kind. Then program checks whether the check digits of the correct and erroneous integers are same

or not. At the end of each test process, the total number and the ratio of the undetected errors is

presented, together with the total performance of the error detection algorithm at the end of all

error detection tests. Since many error detection algorithms are devised by the premise that the

check digit will never be subject to corruption, although in reality it is, the program can simulate

both cases; to be used both as a statistical analysis tool and as a stress-test in real-life situations.

13 of 28

5 BENCHMARKING

Table 4: Ratio of undetected errors to all (check-digit incorruptible)

Algorithm Error Type
S.-Digit Trans. J.-Trans. Twin Phonetic J.-Twin Weighted Total1

The New 0.00% 2.24% 2.14% 5.41% 8.57% 6.14% 0.33%
Damm 0.00% 0.00% 10.52% 8.69% 0.00% 11.39% 0.16%
Verhoeff 0.00% 0.00% 5.81% 4.49% 20.17% 5.82% 0.19%
Luhn 0.00% 2.13% 100% 6.79% 8.00% 11.11% 1.12%

Table 5: Ratio of undetected errors to all (check-digit corruptible)

Algorithm Error Type
S.-Digit Trans. J.-Trans. Twin Phonetic J.-Twin Weighted Total1

The New 7.68% 2.05% 1.93% 5.18% 8.28% 5.86% 6.38%
Damm 7.67% 0.00% 9.55% 8.29% 0.00% 10.79% 6.22%
Verhoeff 7.72% 0.00% 5.25% 4.34% 19.64% 5.49% 6.28%
Luhn 7.71% 1.94% 90.89% 6.50% 7.73% 10.57% 7.13%

Damm algorithm Damm algorithm is developed by H. Michael Damm in 2004 in his doctorate

thesis named Total anti-symmetrische Quasigruppen (en. Totally anti-symmetric quasigroups).

It depends on the non-commutativity of totally anti-symmetric quasigroups to detect all

transposition errors.[1] There are totally anti-symmetric quasigroups which can be used to

detect all phonetic errors as well.

Verhoeff algorithm Verhoeff algorithm is developed by Jacobus Verhoeff in 1969. Being able to

detect all single-digit errors and all transposition errors, it was the first of its kind. Verhoeff

also made his groundbreaking investigation by classifying errors he observed in Dutch postal

system, creating the table that is used throughout this essay as well. Verhoeff algorithm

takes advantage of the non-commutative property of dihedral group of order 10, to detect all

phonetic as well as single-digit errors.[5]

Luhn algorithm Luhn algorithm, also known as Luhn formula, is described by Hans Peter Luhn

in 1954 in his patent application (US2950048 A) named Computer for verifying numbers[3].

It is designed primarily to detect single-digit and transposition errors. Luhn algorithm is now

in the public domain and enjoys a widespread use, for instance, to detect errors in credit-card

numbers of major issuers such as Visa, MasterCard, and many others.

1The percentage of undetected 6 most common transmission errors that are mentioned in section 2. Smaller is

better.

14 of 28

6 CONCLUSION

6 Conclusion

Using the statistics about the percentages of most common transmission errors, a new algorithm

has been developed from scratch. As can be seen in the results of the benchmark as well, the new

algorithm has performed very closely to the established industry standards, and in some cases

performs much better than them. The greatest flexibility of the new algorithm lies in usage of

substitution arrays where different kinds of errors that might be encountered in the future can be

modelled too (or if the percentages of the most common transmission errors are realized to be

much different than thought, a new triple of substitution arrays can be brute-forced).

Finding the optimum way (i.e. the fastest) to brute-force triple of substitution arrays will lead

to the discovery of The Best Version of the New Algorithm, although this being in the domain of

computer science, is beyond the scope of this essay and left as an exercise for the reader.

15 of 28

REFERENCES REFERENCES

References

[1] H. Michael Damm. Totally anti-symmetric quasigroups for all orders n 6=2,6. Discrete Mathe-

matics, 307(6):715 – 729, 2007.

[2] Joseph Kirtland. Identification Numbers and Check Digit Schemes. The Mathematical Associa-

tion of America, first edition, jan 2001.

[3] Hans Peter Luhn. Computer for verifying numbers, aug 1960. US Patent 2,950,048.

[4] David Salomon. Coding for Data and Computer Communications. Springer, 2005.

[5] Jacobus Verhoeff. Error detecting decimal codes. (mathematical centre tracts, 29). ZAMM -

Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und

Mechanik, 51(3):240–241, 1971.

16 of 28

A PROGRAMS

A Programs

Source codes of all of the programs that are mentioned in the essay are presented in this section

for the sake of completeness of the essay and the hope that they might be helpful. All of the

programs are written solely by the author of this essay and only for this essay. All of the programs

are tested using Python® 3.5.2 on Ubuntu® 16.04 LTS (although any operating system where

Python® interpreter can run should suffice); none of the programs has additional dependencies.

"Python" and the Python logos are trademarks or registered trademarks of the Python Software

Foundation, used by the author of this essay with permission from the Foundation.

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

17 of 28

A.1 Source Code of the Program for Purely Brute-Force Approach A PROGRAMS

A.1 Source Code of the Program for Purely Brute-Force Approach

1 from i t e r t o o l s import combinations , permutat ions
2 from math import i n f
3

4

5 de f main () :
6 b e s t _ t r i p l e = None
7 best_score = i n f # Set best s c o r e to I n f i n i t y so that we won ’ t miss any
8 # t r i p l e (s i n c e I n f i n i t y i s always g r e a t e r than any
9 # i n t e g e r , by d e f i n i t i o n) .

10

11

12 f o r A3n , A3n1 , A3n2 in combinat ions (permutat ions (range (1 0)) , 3) :
13 s c o r e = 0 # Reset s c o r e to 0 f o r every new t r i p l e .
14 f o r x , y in combinations (range (1 0) , 2) :
15 # Transpos i t i on and Jump−Transpos i t i on Errors
16 i f (A3n [x] + A3n1 [y]) % 10 == (A3n [y] + A3n1 [x]) % 10 : # Condit ion 1
17 s c o r e += (102 + 8)
18 i f (A3n1 [x] + A3n2 [y]) % 10 == (A3n1 [y] + A3n2 [x]) % 10 : # Condit ion 2
19 s c o r e += (102 + 8)
20 i f (A3n2 [x] + A3n [y]) % 10 == (A3n2 [y] + A3n [x]) % 10 : # Condit ion 3
21 s c o r e += (102 + 8)
22

23 # Twin and Jump−Twin Errors
24 i f (A3n [x] + A3n1 [x]) % 10 == (A3n [y] + A3n1 [y]) % 10 : # Condit ion 4
25 s c o r e += (5 + 3)
26 i f (A3n1 [x] + A3n2 [x]) % 10 == (A3n1 [y] + A3n2 [y]) % 10 : # Condit ion 5
27 s c o r e += (5 + 3)
28 i f (A3n2 [x] + A3n [x]) % 10 == (A3n2 [y] + A3n [y]) % 10 : # Condit ion 6
29 s c o r e += (5 + 3)
30

31 # Phonetic Errors
32 f o r x in range (3 , 1 0) :
33 i f (A3n [1] + A3n1 [x]) % 10 == (A3n [x] + A3n1 [1]) % 10 : # Condit ion 7
34 s c o r e += 5
35 i f (A3n1 [1] + A3n2 [x]) % 10 == (A3n1 [x] + A3n2 [1]) % 10 : # Condit ion 8
36 s c o r e += 5
37 i f (A3n2 [1] + A3n [x]) % 10 == (A3n2 [x] + A3n [1]) % 10 : # Condit ion 9
38 s c o r e += 5
39

40 i f s c o r e < best_score :
41 best_score = s c o r e
42 b e s t _ t r i p l e = (A3n , A3n1 , A3n2)
43

44 p r i n t ("New Best Score : " , s c o r e)
45 p r i n t (" \tA3n " , A3n)
46 p r i n t (" \tA3n1 " , A3n1)
47 p r i n t (" \tA3n2 " , A3n2)
48

49 p r i n t ("The Best Score : " , best_score)
50 p r i n t (" \tA3n " , A3n)
51 p r i n t (" \tA3n1 " , A3n1)
52 p r i n t (" \tA3n2 " , A3n2)
53

54 i f __name__ == ’__main__ ’ :
55 t ry :
56 main ()
57 p r i n t (" Completed ! ")
58 except KeyboardInterrupt :
59 p r i n t (" \nStopped ! ")

18 of 28

A.2 Source Code of Optimized Brute Force A PROGRAMS

A.2 Source Code of Optimized Brute Force

1 from i t e r t o o l s import combinations , permutat ions
2 from math import i n f
3

4

5 de f main () :
6 best_score = i n f # Set best s c o r e to I n f i n i t y so that we won ’ t miss any
7 # t r i p l e (s i n c e I n f i n i t y i s always g r e a t e r than any
8 # i n t e g e r , by d e f i n i t i o n) .
9

10 p r i n t (" Computing . . . " , end=" \ r ")
11

12 f o r A3n in permutat ions (range (1 0)) :
13 f o r A3n1 in array_generator (r e l a t i v e _ t o=A3n) :
14 # Skip cur rent A_{3n+1} s u b s t i t u t i o n array i f i t has more than one
15 # t r a n s p o s i t i o n e r r o r d e t e c t i n g d e f e c t with r e f e r e n c e to A_{3n} .
16 i f count_transpos i t i on_de f ec t s (A3n , A3n1) > 1 :
17 cont inue
18

19 f o r A3n2 in array_generator (r e l a t i v e _ t o=A3n1) :
20 # Skip cur rent A_{3n+2} s u b s t i t u t i o n array i f i t has more than
21 # one t r a n s p o s i t i o n e r r o r d e t e c t i n g d e f e c t per r e f e r e n c e
22 # (with r e f e r e n c e s to A_{3n} and A_{3n+1}) .
23 i f count_transpos i t i on_de f ec t s (A3n , A3n2) > 1 \
24 or count_transpos i t i on_de f ec t s (A3n1 , A3n2) > 1 :
25 cont inue
26

27 # Skip cur rent A_{3n+2} s u b s t i t u t i o n array i f the t o t a l sum of
28 # penal ty s c o r e s f o r minor (Jump−Transpos i t ion , Twin , Phonetic ,
29 # and Jump−Twin) e r r o r d e t e c t i n g d e f e c t s i s g r e a t e r than 102 .
30 minor_defects_score = ca lcu late_minor_defects_score (A3n ,
31 A3n1 ,
32 A3n2)
33 i f minor_defects_score > 102 :
34 cont inue
35

36 p r i n t ("A_{{3n}} {} " . format (A3n))
37 p r i n t ("A_{{3n+1}} {} " . format (A3n1))
38 p r i n t ("A_{{3n+2}} {} " . format (A3n2))
39

40 s c o r e = 3 ∗ 102 + minor_defects_score
41 i f s c o r e < best_score :
42 p r i n t ("New Best Score : {} ({} minor)\n "
43 . format (score , minor_defects_score))
44 best_score = s c o r e
45 e l i f s c o r e == best_score :
46 p r i n t (" Another Best Score : {} ({} minor)\n "
47 . format (score , minor_defects_score))
48 e l s e :
49 p r i n t (" Score : {} ({} minor) [bes t : {}]\ n "
50 . format (score , minor_defects_score , best_score))
51

52 p r i n t (" Computing . . . " , end=" \n " , f l u s h=True)
53

54

55 # I n t e r f a c e o f array gene ra t i on procedure .
56 #
57 # Generates a new array which none o f i t s va lue s at any p o s i t i o n o v e r l a p s with
58 # another va lue at the same p o s i t i o n in the ‘ r e l a t i v e _to ‘ array .
59 de f array_generator (r e l a t i v e _ t o) :
60 # Matr ices are generated r e c u r s i v e l y ; s t a r t r e c u r s i v e p r o c e s s .
61 i t e r a t o r = _array_generator_r (r e l a t i ve_to , ())
62 whi le True :
63 t ry :
64 y i e l d next (i t e r a t o r)
65 except S t o p I t e r a t i o n :
66 r e turn
67

68

69 de f _array_generator_r (r e l a t i ve_to , current_array) :
70 # Terminating c o n d i t i o n f o r r e c u r s i o n .
71 i f l en (current_array) == 10 :

19 of 28

A.2 Source Code of Optimized Brute Force A PROGRAMS

72 y i e l d current_array # Yie ld the r e s u l t . . .
73 r e turn # and terminate r e c u r s i o n .
74

75 # Set o f decimal d i g i t s ; c u r l y bracke t s are used to c r e a t e s e t s .
76 d i g i t s = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9}
77

78 p o s s i b i l i t i e s = d i g i t s \
79 − (s e t (current_array) | { r e l a t i v e _ t o [l en (current_array)] })
80

81 # A p o s s i b l e next d i g i t i s any d i g i t that :
82 # 1) i s not equal to the value at the same p o s i t i o n in
83 # ‘ r e l a t i v e _to ‘ array ,
84 # 2) did not occur b e f o r e in ‘ cur r ent _array ‘ .
85 f o r pos s ib l e_next_d ig i t in \
86 d i g i t s − (s e t (current_array) | { r e l a t i v e _ t o [l en (current_array)] }) :
87 # | +−−−−−−− 2 −−−−−−−+ +−−−−−−−−−−−−−− 1 −−−−−−−−−−−−−−+|
88 # | +−−−−−−−−−−−−−−−−−−−−− Set Union −−−−−−−−−−−−−−−−−−−−−−+
89 # +−−−−−−−−−−−−−−−−−−−−−−− Set D i f f e r e n c e −−−−−−−−−−−−−−−−−−−−−−−−+
90

91 i t e r a t o r = _array_generator_r (r e l a t i ve_to ,
92 current_array + (poss ib l e_next_dig i t ,))
93 whi le True :
94 t ry :
95 y i e l d next (i t e r a t o r)
96 except S t o p I t e r a t i o n :
97 break
98

99

100 de f count_transpos i t i on_de f ec t s (A0 , A1) :
101 count = 0
102

103 f o r x , y in combinat ions (range (1 0) , 2) :
104 # Condit ion f o r Detect ing Transpos i t i on Errors
105 # (As Explained in Sec t i on 3) .
106 i f (A0 [x] + A1 [y]) % 10 == (A0 [y] + A1 [x]) % 10 :
107 count += 1
108

109 r e turn count
110

111

112 de f ca lcu late_minor_defects_score (A3n , A3n1 , A3n2) :
113 penalty_score = 0
114

115 f o r x , y in combinat ions (range (1 0) , 2) :
116 # Set o f Condit ions f o r Detect ing Jump−Transpos i t i on Errors :
117 i f (A3n [x] + A3n2 [y]) % 10 == (A3n [y] + A3n2 [x]) % 10 : # Condit ion 3
118 penalty_score += 8
119 i f (A3n1 [x] + A3n [y]) % 10 == (A3n1 [y] + A3n [x]) % 10 : # Condit ion 1
120 penalty_score += 8
121 i f (A3n2 [x] + A3n1 [y]) % 10 == (A3n2 [y] + A3n1 [x]) % 10 : # Condit ion 2
122 penalty_score += 8
123

124 # Set o f Condit ions f o r Detect ing Twin and Jump−Twin Errors :
125 i f (A3n [x] + A3n1 [x]) % 10 == (A3n [y] + A3n1 [y]) % 10 : # Condit ion 4
126 penalty_score += (5 + 3)
127 i f (A3n1 [x] + A3n2 [x]) % 10 == (A3n1 [y] + A3n2 [y]) % 10 : # Condit ion 5
128 penalty_score += (5 + 3)
129 i f (A3n2 [x] + A3n [x]) % 10 == (A3n2 [y] + A3n [y]) % 10 : # Condit ion 6
130 penalty_score += (5 + 3)
131

132 f o r x in range (3 , 1 0) :
133 # Set o f Condit ions f o r Detect ing Phonetic Errors :
134 i f (A3n [1] + A3n1 [x]) % 10 == (A3n [x] + A3n1 [1]) % 10 : # Condit ion 7
135 penalty_score += 5
136 i f (A3n1 [1] + A3n2 [x]) % 10 == (A3n1 [x] + A3n2 [1]) % 10 : # Condit ion 8
137 penalty_score += 5
138 i f (A3n2 [1] + A3n [x]) % 10 == (A3n2 [x] + A3n [1]) % 10 : # Condit ion 9
139 penalty_score += 5
140

141 r e turn penalty_score
142

143

144 i f __name__ == ’__main__ ’ :

20 of 28

A.2 Source Code of Optimized Brute Force A PROGRAMS

145 t ry :
146 main ()
147 p r i n t (" Completed ! ")
148 except KeyboardInterrupt :
149 p r i n t (" \nStopped ! ")

21 of 28

A.3 Source Code for Analyzing a Triple A PROGRAMS

A.3 Source Code for Analyzing a Triple

1 from c o l l e c t i o n s import d e f a u l t d i c t
2 from i t e r t o o l s import combinat ions
3

4

5 de f main () :
6 # T r i p l e to be analyzed :
7 A3n = (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9)
8 A3n1 = (1 , 7 , 9 , 6 , 3 , 0 , 8 , 5 , 2 , 4)
9 A3n2 = (9 , 6 , 0 , 2 , 7 , 5 , 3 , 8 , 4 , 1)

10

11 d e f e c t s = d e f a u l t d i c t (l i s t)
12

13 f o r x , y in combinations (range (1 0) , 2) :
14 # Set o f Condit ions f o r Detect ing Transpos i t i on Errors :
15 i f (A3n [x] + A3n1 [y]) % 10 == (A3n [y] + A3n1 [x]) % 10 : # Condit ion 1
16 d e f e c t s [" Transpos i t i on "] . append (("A3n<−>A3n1" , x , y))
17 i f (A3n1 [x] + A3n2 [y]) % 10 == (A3n1 [y] + A3n2 [x]) % 10 : # Condit ion 2
18 d e f e c t s [" Transpos i t i on "] . append (("A3n1<−>A3n2" , x , y))
19 i f (A3n2 [x] + A3n [y]) % 10 == (A3n2 [y] + A3n [x]) % 10 : # Condit ion 3
20 d e f e c t s [" Transpos i t i on "] . append (("A3n2<−>A3n" , x , y))
21

22 # Set o f Condit ions f o r Detect ing Jump−Transpos i t i on Errors :
23 i f (A3n [x] + A3n2 [y]) % 10 == (A3n [y] + A3n2 [x]) % 10 : # Condit ion 3
24 d e f e c t s ["Jump−Transpos i t i on "] . append (("A3n<−>A3n2" , x , y))
25 i f (A3n1 [x] + A3n [y]) % 10 == (A3n1 [y] + A3n [x]) % 10 : # Condit ion 1
26 d e f e c t s ["Jump−Transpos i t i on "] . append (("A3n1<−>A3n" , x , y))
27 i f (A3n2 [x] + A3n1 [y]) % 10 == (A3n2 [y] + A3n1 [x]) % 10 : # Condit ion 2
28 d e f e c t s ["Jump−Transpos i t i on "] . append (("A3n2<−>A3n1" , x , y))
29

30 # Set o f Condit ions f o r Detect ing Twin Errors :
31 i f (A3n [x] + A3n1 [x]) % 10 == (A3n [y] + A3n1 [y]) % 10 : # Condit ion 4
32 d e f e c t s [" Twin "] . append (("A3n<−>A3n1" , x , y))
33 i f (A3n1 [x] + A3n2 [x]) % 10 == (A3n1 [y] + A3n2 [y]) % 10 : # Condit ion 5
34 d e f e c t s [" Twin "] . append (("A3n1<−>A3n2" , x , y))
35 i f (A3n2 [x] + A3n [x]) % 10 == (A3n2 [y] + A3n [y]) % 10 : # Condit ion 6
36 d e f e c t s [" Twin "] . append (("A3n2<−>A3n" , x , y))
37

38 # Set o f Condit ions f o r Detect ing Jump−Twin Errors :
39 i f (A3n [x] + A3n2 [x]) % 10 == (A3n [y] + A3n2 [y]) % 10 : # Condit ion 6
40 d e f e c t s ["Jump−Twin "] . append (("A3n<−>A3n2" , x , y))
41 i f (A3n1 [x] + A3n [x]) % 10 == (A3n1 [y] + A3n [y]) % 10 : # Condit ion 4
42 d e f e c t s ["Jump−Twin "] . append (("A3n1<−>A3n" , x , y))
43 i f (A3n2 [x] + A3n1 [x]) % 10 == (A3n2 [y] + A3n1 [y]) % 10 : # Condit ion 5
44 d e f e c t s ["Jump−Twin "] . append (("A3n2<−>A3n1" , x , y))
45

46 f o r x in range (3 , 1 0) :
47 # Set o f Condit ions f o r Detect ing Phonetic Errors :
48 i f (A3n [1] + A3n1 [x]) % 10 == (A3n [x] + A3n1 [0]) % 10 : # Condit ion 7
49 d e f e c t s [" Phonetic "] . append (("A3n<−>A3n1" , 1 , x))
50 i f (A3n1 [1] + A3n2 [x]) % 10 == (A3n1 [x] + A3n2 [0]) % 10 : # Condit ion 8
51 d e f e c t s [" Phonetic "] . append (("A3n1<−>A3n2" , 1 , x))
52 i f (A3n2 [1] + A3n [x]) % 10 == (A3n2 [x] + A3n [0]) % 10 : # Condit ion 9
53 d e f e c t s [" Phonetic "] . append (("A3n2<−>A3n" , 1 , x))
54

55 p e n a l t i e s = {
56 " Transpos i t i on " : 102 ,
57 "Jump−Transpos i t i on " : 8 ,
58 " Twin " : 5 ,
59 " Phonetic " : 5 ,
60 "Jump−Twin " : 3
61 }
62

63 t o t a l _ s c o r e = sum(l en (d e f e c t s [defect_type])
64 ∗ p e n a l t i e s [de fect_type] f o r defect_type in d e f e c t s)
65 p r i n t (" Resu l t s : {} p o i n t s " . format (t o t a l _ s c o r e))
66

67 f o r defect_type in d e f e c t s :
68 s c o r e = len (d e f e c t s [defect_type]) ∗ p e n a l t i e s [de fect_type]
69

70 p r i n t (" \ t {} : {} d e f e c t s , {} p o i n t s \n\ t \ t "
71 . format (defect_type , l en (d e f e c t s [de fect_type]) , s c o r e) , end=" ")

22 of 28

A.3 Source Code for Analyzing a Triple A PROGRAMS

72 f o r d e f e c t in d e f e c t s [de fect_type] :
73 p r i n t (de f ec t , end=" ")
74 p r i n t (" \n")
75

76 i f __name__ == ’__main__ ’ :
77 main ()

23 of 28

A.4 Source Code of Benchmarking Script A PROGRAMS

A.4 Source Code of Benchmarking Script

1 from math import log10
2 from random import SystemRandom
3 import re
4

5 random = SystemRandom ()
6

7

8 # CONFIGURATION
9 # =============

10

11 # Length (\ (l \)) o f the decimal codes without check d i g i t inc luded .
12 l ength = 12
13

14 # I t e r a t i o n s per type o f e r r o r .
15 i t e r a t i o n s = 10 ∗∗ 6
16

17 # Set i t to True i f check d i g i t too i s s u b j e c t to e r r o r s
18 check_dig i t_inc luded = True
19

20

21 de f main () :
22 a lgor i thms = [the_new_algorithm , damm, luhn , v e r h o e f f]
23 t e s t s = [t e s t _ s i n g l e _ d i g i t , t e s t _ t r a n s p o s i t i o n , test_jump_transpos it ion ,
24 test_twin , test_phonet ic , test_jump_twin]
25

26 p r i n t (" Ratio o f uncaught . . . to a l l ({ : , d} "
27 " i t e r a t i o n s per e r r o r type per a lgor i thm) : " . format (i t e r a t i o n s))
28

29 f o r a lgor i thm in a lgor i thms :
30 p r i n t (" \ tAlgorithm : {} " . format (a lgor i thm .__doc__))
31 r e s u l t s = []
32 f o r t e s t in t e s t s :
33 r e s u l t = t e s t (a lgor i thm)
34 p r i n t (" \ t \ t { : 2 5 } : { : 6 . 2 f}% ({} undetected) "
35 . format (t e s t .__doc__, r e s u l t / i t e r a t i o n s ∗ 100 , r e s u l t))
36 r e s u l t s . append (r e s u l t / i t e r a t i o n s ∗ 100)
37

38 weighted_tota l = r e s u l t s [0] ∗ 79 .1 \
39 + r e s u l t s [1] ∗ 10 .2 \
40 + r e s u l t s [2] ∗ 0 .8 \
41 + r e s u l t s [3] ∗ 0 .5 \
42 + r e s u l t s [4] ∗ 0 .5 \
43 + r e s u l t s [5] ∗ 0 .3
44 p r i n t (" \ t \ t { : 2 5 } : { : 6 . 2 f}% (l e s s i s b e t t e r)\n " . format (" Weighted Total " ,
45 weighted_tota l / 100))
46

47 de f the_new_algorithm (num) :
48 " " " The New Algorithm " " "
49

50 A3n = (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9)
51 A3n1 = (1 , 7 , 9 , 6 , 3 , 0 , 8 , 5 , 2 , 4)
52 A3n2 = (9 , 6 , 0 , 2 , 7 , 5 , 3 , 8 , 4 , 1)
53

54 sum_ = 0
55

56 f o r x , d in enumerate (num, 0) :
57 dx = i n t (d)
58 i f x % 3 == 0 :
59 sum_ += A3n [dx]
60 e l i f x % 3 == 1 :
61 sum_ += A3n1 [dx]
62 e l s e :
63 sum_ += A3n2 [dx]
64

65 x += 1
66

67 r e turn s t r (sum_ % 10)
68

69

70 de f damm(num) :
71 " " "Damm" " "

24 of 28

A.4 Source Code of Benchmarking Script A PROGRAMS

72

73 t = ((0 , 3 , 1 , 7 , 5 , 9 , 8 , 6 , 4 , 2) ,
74 (7 , 0 , 9 , 2 , 1 , 5 , 4 , 8 , 6 , 3) ,
75 (4 , 2 , 0 , 6 , 8 , 7 , 1 , 3 , 5 , 9) ,
76 (1 , 7 , 5 , 0 , 9 , 8 , 3 , 4 , 2 , 6) ,
77 (6 , 1 , 2 , 3 , 0 , 4 , 5 , 9 , 7 , 8) ,
78 (3 , 6 , 7 , 4 , 2 , 0 , 9 , 5 , 8 , 1) ,
79 (5 , 8 , 6 , 9 , 7 , 2 , 0 , 1 , 3 , 4) ,
80 (8 , 9 , 4 , 5 , 3 , 6 , 2 , 0 , 1 , 7) ,
81 (9 , 4 , 3 , 8 , 6 , 1 , 7 , 2 , 0 , 5) ,
82 (2 , 5 , 8 , 1 , 4 , 3 , 6 , 7 , 9 , 0))
83

84 i n t e r im = 0
85

86 f o r d in num:
87 d = i n t (d)
88 i n t e r im = t [in te r im] [d]
89

90 r e turn s t r (in te r im)
91

92

93 de f luhn (num) :
94 " " " Luhn " " "
95

96 o2 = " "
97

98 f o r i , d in enumerate (num) :
99 i f i % 2 == 0 :

100 o2 += d
101 e l s e :
102 o2 += s t r (i n t (d) ∗ 2)
103

104 sum_ = 0
105

106 f o r d in o2 :
107 sum_ += i n t (d)
108

109 r e turn s t r ((sum_ ∗ 9) % 10)
110

111

112 de f v e r h o e f f (num) :
113 " " " Verhoe f f " " "
114

115 d = ((0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) ,
116 (1 , 2 , 3 , 4 , 0 , 6 , 7 , 8 , 9 , 5) ,
117 (2 , 3 , 4 , 0 , 1 , 7 , 8 , 9 , 5 , 6) ,
118 (3 , 4 , 0 , 1 , 2 , 8 , 9 , 5 , 6 , 7) ,
119 (4 , 0 , 1 , 2 , 3 , 9 , 5 , 6 , 7 , 8) ,
120 (5 , 9 , 8 , 7 , 6 , 0 , 4 , 3 , 2 , 1) ,
121 (6 , 5 , 9 , 8 , 7 , 1 , 0 , 4 , 3 , 2) ,
122 (7 , 6 , 5 , 9 , 8 , 2 , 1 , 0 , 4 , 3) ,
123 (8 , 7 , 6 , 5 , 9 , 3 , 2 , 1 , 0 , 4) ,
124 (9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0))
125

126 p = ((0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) ,
127 (1 , 5 , 7 , 6 , 2 , 8 , 3 , 0 , 9 , 4) ,
128 (5 , 8 , 0 , 3 , 7 , 9 , 6 , 1 , 4 , 2) ,
129 (8 , 9 , 1 , 6 , 0 , 4 , 3 , 5 , 2 , 7) ,
130 (9 , 4 , 5 , 3 , 1 , 2 , 6 , 8 , 7 , 0) ,
131 (4 , 2 , 8 , 6 , 5 , 7 , 3 , 9 , 0 , 1) ,
132 (2 , 7 , 9 , 3 , 8 , 0 , 6 , 4 , 1 , 5) ,
133 (7 , 0 , 4 , 6 , 9 , 1 , 3 , 2 , 5 , 8))
134

135 inv = (0 , 4 , 3 , 2 , 1 , 5 , 6 , 7 , 8 , 9)
136

137 c = 0
138 f o r i , n in enumerate (r e v e r s e d (num + " 0 ")) :
139 ni = i n t (n)
140 c = d [c] [p [i % 8] [n i]]
141

142 r e turn s t r (inv [c])
143

144

25 of 28

A.4 Source Code of Benchmarking Script A PROGRAMS

145 de f t e s t _ s i n g l e _ d i g i t (a lgor i thm) :
146 " " " S ing l e −Di g i t Errors " " "
147

148 uncaught = 0
149

150 f o r i in range (i t e r a t i o n s) :
151 number = random_number (l ength)
152 number += algor i thm (number)
153

154 whi le True :
155 error_index = random . rand int (0 ,
156 l en (number) − (1 i f check_dig i t_inc luded e l s e 2))
157 erroneous_number = number [: error_index] + s t r (random . rand int (0 , 9))\
158 + number [error_index + 1 :]
159

160 i f number != erroneous_number :
161 break
162

163 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
164 uncaught += 1
165

166 r e turn uncaught
167

168

169 de f t e s t _ t r a n s p o s i t i o n (a lgor i thm) :
170 " " " Transpos i t i on Errors " " "
171

172 uncaught = 0
173

174 f o r i in range (i t e r a t i o n s) :
175 number = random_number (l ength)
176 number += algor i thm (number)
177

178 whi le True :
179 error_index = random . rand int (0 ,
180 l en (number) − (2 i f check_dig i t_inc luded e l s e 3))
181 erroneous_number = number [: error_index] + number [error_index + 1] \
182 + number [error_index] + number [error_index + 2 :]
183

184 i f number != erroneous_number :
185 break
186

187 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
188 uncaught += 1
189

190 r e turn uncaught
191

192

193 de f test_jump_transpos i t ion (a lgor i thm) :
194 " " " Jump−Transpos i t i on Errors " " "
195

196 uncaught = 0
197

198 f o r i in range (i t e r a t i o n s) :
199 number = random_number (l ength)
200 number += algor i thm (number)
201

202 whi le True :
203 error_index = random . rand int (0 ,
204 l en (number) − (3 i f check_dig i t_inc luded e l s e 4))
205 erroneous_number = number [: error_index] + number [error_index + 2] \
206 + number [error_index + 1] + number [error_index] \
207 + number [error_index + 3 :]
208

209 i f number != erroneous_number :
210 break
211

212 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
213 uncaught += 1
214

215 r e turn uncaught
216

217

26 of 28

A.4 Source Code of Benchmarking Script A PROGRAMS

218 de f test_twin (a lgor i thm) :
219 " " " Twin Errors " " "
220

221 uncaught = 0
222

223 f o r i in range (i t e r a t i o n s) :
224 whi le True :
225 number = random_number (l ength)
226 number += algor i thm (number)
227

228 i f check_dig i t_inc luded :
229 r e s u l t = re . s earch (r " (\d)\1 " , number)
230 e l s e :
231 r e s u l t = re . s earch (r " (\d)\1 " , number [: − 1])
232

233 i f r e s u l t :
234 index = r e s u l t . span () [0]
235 break
236

237 e r roneous_d ig i t = s t r (random . c h o i c e (tup l e (s e t (range (1 0))
238 − { i n t (number [index]) })))
239 erroneous_number = number [: index] + 2 ∗ er roneous_d ig i t \
240 + number [index + 2 :]
241

242 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
243 uncaught += 1
244

245 r e turn uncaught
246

247

248 de f te s t_phonet i c (a lgor i thm) :
249 " " " Phonetic Errors " " "
250

251 uncaught = 0
252

253 f o r i in range (i t e r a t i o n s) :
254 whi le True :
255 number = random_number (l ength)
256 number += algor i thm (number)
257

258 i f check_dig i t_inc luded :
259 r e s u l t = re . s earch (r " (1 [3 − 9]) | ([3 − 9] 0) " , number)
260 e l s e :
261 r e s u l t = re . s earch (r " (1 [3 − 9]) | ([3 − 9] 0) " , number [: − 1])
262

263

264 i f r e s u l t :
265 index = r e s u l t . span () [0]
266 match = r e s u l t . group ()
267 break
268

269 i f number [index] == " 1 " :
270 erroneous_number = number [: index] + number [index + 1] + " 0 " \
271 + number [index + 2 :]
272 e l i f number [index] >= " 3 " :
273 erroneous_number = number [: index] + " 1 " + number [index] \
274 + number [index + 2 :]
275

276 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
277 uncaught += 1
278

279 r e turn uncaught
280

281

282 de f test_jump_twin (a lgor i thm) :
283 " " " Jump−Twin Errors " " "
284

285 uncaught = 0
286

287 f o r i in range (i t e r a t i o n s) :
288 whi le True :
289 number = random_number (l ength)
290 number += algor i thm (number)

27 of 28

A.4 Source Code of Benchmarking Script A PROGRAMS

291

292 i f check_dig i t_inc luded :
293 r e s u l t = re . s earch (r " (\d)\d\1 " , number)
294 e l s e :
295 r e s u l t = re . s earch (r " (\d)\d\1 " , number [: − 1])
296

297 i f r e s u l t :
298 index = r e s u l t . span () [0]
299 break
300

301 e r roneous_d ig i t = s t r (random . c h o i c e (tup l e (s e t (range (1 0))
302 − { i n t (number [index]) })))
303 erroneous_number = number [: index] \
304 + erroneous_d ig i t \
305 + number [index + 1] \
306 + erroneous_d ig i t \
307 + number [index + 3 :] \
308

309 i f a lgor i thm (number [: − 1]) == algor i thm (erroneous_number [: − 1]) :
310 uncaught += 1
311

312 r e turn uncaught
313

314

315 de f random_number (l ength) :
316 r e turn s t r (random . rand int (10 ∗∗ (l ength − 1) , 10 ∗∗ l ength − 1))
317

318

319 i f __name__ == ’__main__ ’ :
320 main ()

28 of 28

	Introduction
	Common Transmission Errors
	Investigating The Ideal Algorithm
	The New Algorithm
	Heuristic Methods in Seeking The Sub-Optimal Triple
	The New Algorithm
	Analysis of The New Algorithm

	Benchmarking
	Conclusion
	Programs
	Source Code of the Program for Purely Brute-Force Approach
	Source Code of Optimized Brute Force
	Source Code for Analyzing a Triple
	Source Code of Benchmarking Script

