
H2020 - REASSURE Dataset AES-128 32bit FPGA

Implementation (v1.1)

Davide Bellizia
Université Catholique de Louvain - Crypto Group

(davide.bellizia@uclouvain.be)
http://reassure.eu/

16th January 2019

1 Introduction

The dataset included in this package has been collected for the T3.1 ”Dataset for AES”
of the H2020 project 731591, acronym REASSURE, by UCLouvain Crypto Group. The
aim of the task T3.1 is to provide datasets for researchers and developers to test their
algorithms on real datasets.

2 Experiment

The dataset included in this package contains 1M of power consumption traces collected
on AES-128 hardware implementation, divided in 50 files of 20k traces each. These
traces have been collected adopting the following equipment:

• Oscilloscope: PicoTechnologies PicoScope 5244B;

• Probe: Tektronix CT-1, 1GHz inductive probe;

• Test Board: Sakura-G Board (R1);

• Device Under Test (DUT): Xilinx Spartan-6 LX75 (FPGA);

• Connectors: Rodhe&Schwarz HZ-22, BNC 50Ω adapter.

The CT-1 probe has been connected on the JP2 header of the SAKURA-G board, and
through the 50Ω adapter to the input Channel A of the PicoScope. The power supply for
the core of the FPGA has been set to the nominal voltage of 1.2V through the on-board
trimmer VR1.The clock frequency has been set to 4MHz.

The traces have been collected by using a custom script in Python 2.6, adopting a
custom script,and using the following libraries:

1



• picoscope;

• serial;

• numpy;

• scipy.io.

The communication between the PC and the DUT has been implemented through
UART communication at 57.6kbaud/s. The trigger signal is raised to level ‘high’ at the
beginning of the encryption operation. It maintains level ‘high’ till the end of the cryp-
tographic processing, to not alter the probing on the power supply. After the encryption,
the trigger is signal is set to logic ‘low’. This signal has been routed to pin 1 of CN3
of the SAKURA-G board, and it is then connected to ”Ext” input of the oscilloscope
through BNC probe cable, in order to provide synchronization.

2.1 Oscilloscope Parameters

The oscilloscope parameters used to produce this dataset are reported in Table 1.

Parameter Value

Ch.A Range +/−20mV
Ch.A Offset 0mV

Ch.A Coupling DC
Trigger Ch. EXT

Trigger Level 1V
Trigger Delay 0s

Trigger Direction Rising Edge
Sampling Frequency 125MS/s

Resolution 14bit

Table 1: Oscilloscope parameters.

2.2 Input vectors

The 128bit key has been fixed at the beginning of the experiment, and it is contained
in each file REASSURE H2020 731591 traces AES128 32bit X.mat of the dataset. The
hexadecimal representation of the key is reported in the following:

key = CA08070605040302010A0B0C0D0E0FA0 (1)

Regarding the plaintext vectors, they have been generated randomly from a uniform
pool, by means of the function numpy.random.randint in the Python script.

2



4x 

AES 

SBOX

0.25x 

Mix

Columns

Switcher 

KeyScheduler 

(32-bit)

Plaintext

Key
Ciphertext

32

32

3
2

3
2

32 3232

32

32

32

C
K

C
K

C
K

C
K

Controller

Figure 1: Target architecture.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s] 10-4

-20

0

20

40

C
ur

re
nt

 [
A

]

Figure 2: Example of power trace.

3 Implementation

In this experiment, we wanted to propose a very simple hardware implementation of the
AES-128 algorithm for encryption, that is not meant to be optimized in speed nor in
performance. The aim of this implementation is to get non-experts and developers fa-
miliar with power analysis and hardware implementation. The architecture is a iterative
loop implementation of the AES-128 block cipher (encryption only) with a data-path
width of 32bit, as shown in Fig. 2.
The combinational units implement byte-wise the three basic computation of the AES
Rijndael algorithm: 32 XOR gates for the AddRoundKey, 4 Sboxes implement 1/4 of
the original SubsBytes operation, and a MixCol unit implement 1/4 of the original Mix-
Columns operation. The ShiftRows operation (along with the transposition to compute
the MixColumns) is intrinsically performed in the sequence that the Controller load the
data in the pipeline.
This implementation has not RTL-level optimization to reduce the memory and logic
resources, since it aims at providing an easy-to-analyze example of hardware primitive
for side-channel evaluation. Each round is performed in 8 clock cycles (it can be done
in 4).

3



The clock frequency has been set to 4MHz.

4 How to read the data

As mentioned before, the dataset is divided in 50 files that contain 20k power traces
each. The file has a format that is completely compatible with Matlab 2017, which is
based on the HDF5 format. In the following, the data structure of each file:

• data.traces: 20000×2500, power traces raw data from the oscilloscope. Each row
contains all samples collected on a single encryption (all rounds) of a plaintext.
The data format is int16.

• data.pt: 20000 × 16, plaintext vectors. Each row contain 16 bytes encoded in
uint8.

• data.ct: 20000×16, output ciphertext vectors. Each row contain 16 bytes encoded
in uint8.

• data.key: 1 × 16, the secret key in Eq. 1, encoded in uint8.

• data.Queries: the number of power traces with the .mat file.

• data.meta: metadata and additional information.

An additional file is provided, named Configuration AES128 32bit.mat, which con-
tains experiement parameters reported in Table 1.

5 Acknowledgments

This work has been funded by the European Union (EU) through the H2020 project
731591 (acronym REASSURE).

4


