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Abstract—We consider a cache network in which a single
server is connected to multiple users via a shared error free link.
The server has access to a database with N files of equal length
F , and serves K users each with a cache memory of MF bits. A
novel centralized coded caching scheme is proposed for scenarios
with more users than files N ≤ K and cache capacities satisfying
1
K

≤ M ≤ N
K

. The proposed scheme outperforms the best rate-
memory region known in the literature if N ≤ K ≤ N2+1

2
.

Index Terms—Coded caching, network coding, index coding.

I. INTRODUCTION

Content caching techniques are recently increasing attention
to combat peak hour traffic in content delivery services. The
basic idea is simple. If contents are made available at user
terminals during low traffic periods, then the peak rate can
be reduced. However, content requests are unknown to the
server and thus content caching at user memories must be
carefully chosen in order to be useful regardless of the contents
requested during peak hours. The simplest caching scheme
consists of storing each file partially at each user memory.
Then, the server transmits the remaining requested data un-
coded [1], [2]. For single user caching systems, this strategy
is optimal. However, for multi-user systems, the seminal work
in [3] by Maddah-Ali and Niesen shows that important gains
can be obtained by a new coded caching strategy. Specifically,
there authors show that, besides the local caching gain that is
obtained by placing contents at user caches before they are
requested, it is possible to obtain a global caching gain by
creating broadcast opportunities. This is, by carefully choosing
the content caches at different users, and using network coding
techniques it is possible to transform the initial multi-cast
network, where every user is requesting a different file, into a
broadcast network, where every user requests exactly the same
“coded” file, obtaining the new global caching gain.

The fundamental caching scheme developed in [3] was latter
extended to more realistic situations. The decentralized setting
was considered in [4], non-uniforms demands in [5]–[7],
and online coded caching in [8], hierarchical cache network
were considered in [9], [10], among others. In addition, new
schemes pushing further the fundamental limits of caching
systems have appeared in [11]–[19]. There have been also
efforts to obtain theoretical lower bounds on the delivery rate.
The cut-set bound was studied in [3]. A tighter lower bound
was obtained in [20]. Through a computational approach a
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lower-bound for the special case N = K = 3 is derived in
[21]. Other lower bounds have appeared in [13], [22], [23].

The work here proposed investigates the fundamental
achievable rate for the particular situation where there are more
users than files, and the caching memories at users are small
compared to the number of files in the system. Besides its
theoretical relevance, this situation can be readily found in
the real world. For instance, global content delivery services
such a Netflix serve a few multimedia contents to millions of
users across the world. In addition, it was shown in [5] that a
near optimal caching strategy consists in dividing the files into
groups with similar popularity, and then applying the coded
caching strategy to each group separately. Since the amount of
users in each groups remains the same, when there are many
groups, the cache size dedicated to each group is small as well
as the number of files per user in each group.

The rest of this paper is organized as follows. Section II,
presents the system model and the relevant previous works.
Section III, summarizes the main results. Section IV describes
the caching scheme proposed. In Section V an example is
developed. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PREVIOUS RESULTS

We consider a communication system with one server
connected to K users, denoted as U1, ..., UK , through a shared,
error-free link. There is a database at the server with N files,
each of length F bits, denoted as W1, ....,WN . Each user
is equipped with a local cache of capacity MF bits and is
assumed to request only one full file. Here, we consider the
special case where M ∈

[
0, N

K

]
and there are more users than

files N ≤ K. For convenience, we define parameter q , N
MK .

We consider the communication model introduced in [3].
The caching system operates in two phases: the placement
phase and the delivery phase. In the placement phase, users
have access to the server database, and each user fills his cache.
As in [15], we allow coding in the prefetching phase. Then,
each user Uk requests a single full file Wd(k) where d =
(d(1), ....,d(K)) denotes the demand vector. We denote the
number of distinct requests in d as Ne(d). In the delivery
phase, only the server has access to the database. After being
informed of the user demands, the server transmits a signal
Y of size RF bits over the shared link to satisfy all user
requests simultaneously. The signal Y is a function of the
demand vector d, all the files in the data base W1, ....,WN ,
and the content in the user caches M = {M1, ....,MK}.
Using the local cache content and the received signal Y , each
user Uk reconstructs its requested file Wd(k).

Let D = {1, ..., N}K , for a caching system (M,N,K),
given a particular prefetching M and a particular demand d,
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we say that communication rate R is achievable if and only if
there exists a message Y of length RF bits such that every user
Uk is able to reconstruct its desired file Wd(k). For a particular
prefetching M and demand d, we denote the achievable rate
as R(d,M). Then, the rate needed for the worst demand is
given by R∗ (M) = maxd∈D R(d,M). Finally, we define
the rate-memory pair (R∗,M), or the rate-memory trade-off
function R∗(M) as the minim rate R∗ for different memory
constraints M , i.e. we aim to find R∗ = minM R∗ (M)
where the minimization is over all caching schemes M
satisfying the memory load constrain M . Observe, that if users
have no caching capacity M = 0, the server needs to send
the full requested files and thus, the worst demand rate is
R∗ = N . Instead, if users can have a complete copy of the
server’s database M = N , then no information needs to be
transmitted from the server R∗ = 0.

A. Previous Results

For the special case considered here M ∈
[
0, N

K

]
and N ≤

K, the best known rate-memory function in the literature can
be obtained by memory sharing between four achievable rate-
memory pairs: the trivial rate-memory pair (N, 0), the rate-
memory pair obtained in [15] for M = 1

K

(R∗
CFL,MCFL) =

(
N − N

K
,
1

K

)
, (1)

the rate-memory pair obtained by the schemes proposed in
[11] and [16] for M = N

K

(R∗
GBC,MGBC) =

(
N − N(N + 1)

2K
,
N

K

)
, (2)

and the rate-memory pairs obtained in [17]

(R∗
MDS,MMDS) =

(
N (K − t)

K
,
t [(N − 1)t+K −N ]

K (K − 1)

)
,

(3)
with t = 0, 1, ...,K. The lower convex envelope of all these
rate-memory pairs, provides the best rate-memory function in
the literature. The scheme in [15] makes use of coded prefetch-
ing at users’ cache. As shown in [15], the scheme achieving
(1) is optimal for M = 1

K . The schemes proposed in [11]
and [16] assume uncoded prefetching. They are essentially the
same at M = N

K . The scheme proposed in [16] was shown to
be optimal among all the uncoded prefetching schemes. The
design of the scheme here proposed was initially motivated
to connect the schemes achieving the rate memory-pairs in
(1) and (2), beyond the simple memory sharing between both
rate-memory points. To achieve the rate memory pair in (2),
the strategy described in [11] and [16] divides each of the N
files into K subfiles of equal size, and stores each subfile in
a different user, requiring a cache load of M = N

K . Using the
same subfile partition scheme, but storing only the XOR of
the N subfiles at each user, and thus reducing content cached
to one coded cached subfile per user i.e. M = 1

K , it was
shown in [15] that the optimal rate-memory pair in (1) can
be achieved. The strategy here proposed aims at extending
the idea of coding together subfiles of different files at each
user, in order to find intermediate rate-memory points between

(1) and (2). To that end, instead of caching the XOR of all
N subfiles, we XOR q ∈ {1, ..., N} different subfiles. To
keep the system symmetry in the caches, we store a different
coded subfile for each of the

(
N
q

)
possible combinations of q

subfiles at each user. We show that to construct all these coded
subfiles, it is sufficient to split each file into Fq = K

(
N−1
q−1

)
subfiles. As a result, the memory load at each user cache is
M = (Nq )/K(N−1

q−1 ) =
N
Kq . As we show later in Corollary 1.1, if

K ≥ N then the rate-memory points obtained by the caching
scheme proposed is

(R∗,M) =

(
N − N + 1

q + 1

N

K
,
N

Kq

)
(4)

for q ∈ {1, ..., N}. Observe that by memory-sharing between
(2), and (1), we obtain the rate-memory function

RCFL/GBC(M) = N − N

2K
− N

2
M

which particularizing to the memory loads M = N
Kq , returns

RCFL/GBC

(
N

Kq

)
= N − N + q

2q

N

K
(5)

By comparing (4) and (5), we have that our scheme strictly
outperforms the memory sharing between the CFL and GBC
rate-memory points every where in 0 < M < N

K . The price to
pay for these rate reduction is a much higher subpacketization
requirement. Observe that the CFL (q = N) and GBC (q = 1)
rate-memory pairs require F1 = FN = K subfile partitions.
Thus, to obtain the rates in (5) for any q ∈ {2, ..., N − 1}
via memory-sharing between these two schemes, we need to
slip each file into F1−N = F1 + FN = 2K subfiles. Instead,
our scheme requires Fq = K

(
N−1
q−1

)
, which for q = N+1

2
coincides with the Catalan number FN−1

2
= CN−1

2
and thus,

asymptotically grows as K 2N−1

(N−1
2 )

3/2√
π

, i.e. exponentially with

the number of files N .
Finally, the scheme developed in [17] for situations with

more users than files K ≥ N makes use of binary codes, in
particular maximum distant separable (MDS) codes and rank
metric codes to obtain the rate-memory pairs in (3), which
are shown to be optimal at certain points. For small cache
memories M ≤ N

K , our scheme improves [17] for a high-
moderate number of users, i.e. K ≤ N2+1

2 . A method to obtain
new rate-memory points is described in [18]. However no
explicit characterization of these rate-memory pairs is given.

There have been other coded prefetching schemes proposed,
see [14] and [12] but either they do not improve the current
best known rate-memory trade-off or they apply to other
situations. The optimal rate-memory trade-off for a caching
systems remains an open problem. Besides the achievable rate-
memory trade-off described above, there have been efforts
to obtain theoretical lower bounds on the delivery rate. The
cut-set bound was studied in [3]. A tighter lower bound was
obtained in [20]. Through a computational approach a lower-
bound for the special case N = K = 3 is derived in [21].
Other lower bounds have appeared in [13], [22], [23].
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III. MAIN RESULT

The following theorem presents the delivery rate obtained
by the proposed caching scheme for a particular demand d.

Theorem 1. For a caching problem with K users and N
files, local cache size of M files at each user, and parameter
q = N

MK . Given a particular demand d, let Ne(d) be the
number of distinct file requests, then the delivery rate

R =
KNe(d)

(
N−1
q−1

)
−Ne(d)

(
Ne(d)+1

q+1

) (
Ne(d)−1

q−1

)
K
(
N−1
q−1

) (6)

is achievable for q ∈ {1, ..., N}. Furthermore, for q ∈ [1, N ]
the rate-memory pairs in the lower convex envelope of its
values at q ∈ {1, ..., N} are achievable.

We prove this result in the following section by describing
the new caching scheme. The delivery rate presented in
Theorem 1 is valid for any K and N , however, it is particularly
useful for K ≥ N , as we detail in the next corollaries. The
next corollary, establishes the achievable rate memory pair for
the worst case demand. The proof is provided in the Appendix.

Corollary 1.1. For a caching problem with K users and N
files, local cache size of M files at each user, and parameter
q = N

MK , the delivery rate-memory pairs (R∗,M)

(R∗,M) =

(
N̄ − N

K

N̄ + 1

q + 1

(
N̄
q

)(
N
q

) , N

Kq

)
(7)

with N̄ = min (N,K) are achievable for q ∈ {1, ..., N}.
Furthermore, for q ∈ [1, N ] the rate-memory pairs in the lower
convex envelope of its values at q ∈ {1, ..., N} are achievable.

Remark 1.1. The rate-memory function in (7) coincides with
the rate-memory function for the CFL scheme in (1) for q = N
and with the one for the GBC scheme in (2) for q = 1. For
q = 1, M = N

K our scheme is essentially the same as the one
described in [16] and [11]. However, the scheme proposed
in [15] to achieve (1) differs slightly from the one considered
here for K > N . Indeed, while [15] divides each file into
NK subfiles, our scheme requires only K subfiles per file.

The next corollaries compare the proposed scheme with the
scheme presented in [16], the scheme in [17], the cut set bound
derived in [3], and the outer bound in [20]. These results are
proved in the Appendices. First, we show that the scheme
proposed here improves the state of the art also if N ≥ K.

Corollary 1.2. If N ≥ K and M ≤ N
K , the best known rate-

memory function is R∗
YU(M) = K − K

N
K+1
2 M , see [16]. By

evaluating the rate-memory pairs (R∗,M) in (7) at M = N
Kq

for q = 1, ..., N , we have that our scheme outperforms [16],
if q ≤ K and 2q

q+1 ≥
∏q−1

i=1

(
N−i
K−i

)
. In particular, for q = 2,

we require 4K−1
3 ≥ N ≥ K.

Corollary 1.3. For a caching problem with K users and N
files, K ≥ N , and local cache size of 1

K ≤ M ≤ N
K , a

sufficient condition for the proposed scheme to outperform the
rate-memory region obtained by the lower convex envelope of
the rate-memory pairs in (3), is K ≤ N2+1

2 .
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Fig. 1: Rate-memory functions of the proposed scheme in
Corollary 1.1 compared with existing schemes and lower
bounds in the literature for N = 10 and K = 15.

Corollary 1.4. Let RCB(M) denote the rate-memory function
obtained for the cut set bound. The rate difference between
the cut set rate and the rate-memory pairs in Corollary 1.1 is

RCB (M)−R∗ (M) =
N

K

(
N

q
− N + 1

q + 1

)
.

Observe that, as first reported in [15, Theorems 3 and 4],
for q = N , M = 1

K the cut set lower bound is achieved by
the proposed strategy.

Corollary 1.5. Let RSTC(M) denote the outer bound on the
rate-memory function presented in [20]. For K = N and M =

N
(N−1)K = 1

N−1 , this bound is achievable by the rate-memory

function in Corollary 1.1. This is R∗
(

1
N−1

)
= RSTC

(
1

N−1

)
.

We conclude this section by illustrating in Fig. 1 the
worst demand rate-memory function for the proposed scheme
Corollary 1.1 and for the state of the art (SOTA). We consider
the case N = 10 files and K = 15 users. We provide the rate-
memory regions in [16, Corollary 1], [17, Theorem 1], the rate
memory pairs in [15, Theorem 2], [14, Theorem 1], and [11,
Theorem 1]. We also include in this figure for comparison, the
cut set lower bound [3, Theorem 2], the information-theoretical
lower bound obtained in [20, Theorem 1], and the lower
bounds recently appeared in [23, Theorem 1] and [22, Remark
6]. We observe that, for the special situation considered here,
the new proposed scheme obtains a significant improvement
with respect to the previous best SOTA.

IV. PROPOSED CACHING SCHEME

In this section, we describe the caching scheme proposed.
We provide an example in the next section. Let us define the
set of user indexes as K = {1, ...,K}, and the set of file
indexes as F = {1, ..., N}. Consider a cache capacity at users
of M = N

qK . To achieve the rate R stated in Theorem 1, we
present a prefetching and delivery scheme for q ∈ {1, ..., N},
since for general 1

K ≤ M ≤ N
K , the minimum rate can be

achieved by memory sharing.
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q M Prefetching User Ui

1 1
2

W
(i)
1 ,W (i)

2 ,W (i)
3

2 1
4

W
(i)
1,{1,2} ⊕W

(i)
2,{1,2}

W
(i)
1,{1,3} ⊕W

(i)
3,{1,3}

W
(i)
2,{2,3} ⊕W

(i)
3,{2,3}

3 1
6

W
(i)
1,{1,2,3} ⊕W

(i)
2,{1,2,3} ⊕W

(i)
3,{1,2,3}

TABLE I: Prefetching schemes at user Ui for the proposed
coded caching scheme when K = 6, N = 3, and q ∈ {1, 2, 3}.

T (q) = {(i, f,A) : for all i ∈ K, A ⊆ F , |A| = q and f ∈ A}
R(q,d) = {(i, f,A) ∈ T (q) : for all f ∈ Ne (d)}
RI(q,d) = {(i, f,A) ∈ R(q,d) : A * Ne(d)}
RII(q,d) = {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) ∈ A}
RIII(q,d) ={(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) /∈ A}

TABLE II: 3-tuple sets identifying subfiles W
(i)
f,A .

Prefetching scheme: Given q ∈ {1, ..., N}, consider the
(
N
q

)
possible subsets A ⊆ F of q different files, |A| = q. First,
each file Wf is partitioned into K parts, W (i)

f , one for each
user i ∈ K. Then, each of these parts is further partitioned
into

(
N−1
q−1

)
subfiles W

(i)
f,A, one for each subset A of q files

that satisfies f ∈ A. Thus, we broke each file into a total
of K

(
N−1
q−1

)
subfiles. Finally, user Ui computes and stores the

coded cached subfiles

Z
(i)
A =

⊕
f∈A

W
(i)
f,A

for all subsets A ∈ {A ⊆F : |A| = q}. Because there are
(
N
q

)
subsets A and each subfile has F/K(N−1

q−1 ) bits, the required
cache load at each user equals MF = (Nq )F/K(N−1

q−1 ) =
N
qKF

bits. The coded cached subfiles at user Ui for a scenario with
N = 3 and q ∈ {1, ..., 3} are detailed in Table I.

Delivery scheme: Consider the sets defined in Table II.
Each subfile W

(i)
f,A satisfies f ∈ A and is only XORed

in one coded cached subfile Z
(i)
A . Thus, each subfile W

(i)
f,A

can be identified by a 3-tuple (i, f,A) ∈ T (q). Let Ne(d)
be the set of requested files. Then, the subfiles requested
by some user satisfy f ∈ Ne (d), and are thus, identified
by the 3-tuples (i, f,A) ∈ R(q,d). The delivery scheme
proposed here divides the requested subfiles into three types,
and obtains the requested subfiles in each type, separately.
The requested subfiles Type I, (i, f,A) ∈ RI(q,d), are
those requested subfiles, which are coded in the coded cached
subfiles Z

(i)
A together with at least one subfile not requested

by any user A *Ne(d). The requested subfiles Type II,
(i, f,A) ∈ RII(q,d), include all the requested subfiles coded
in the coded cached subfiles Z(i)

A together with other requested
files A ⊆ Ne(d) and placed in the cache of a user Ui

requesting one of them, i.e. d(i) ∈ A. Finally, the requested
subfiles Type III, (i, f,A) ∈ RIII(q,d), include all the
requested subfiles coded in the coded cached subfiles Z

(i)
A

together with other also requested files A ⊆ Ne(d), different
from the file requested by the user caching them, i.e. d(i) /∈ A.

Delivery of requested subfiles Type I: For these subfiles, the
server simply broadcasts them one by one, i.e. Y (i)

f,A = W
(i)
f,A

for all (i, f,A) ∈ RI(q,d). Given that

RI(q,d) = T (q,d)\ {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d)} .

The total number of requested subfiles Type I, and thus of
broadcasted subfiles Type I is

TI =
∑

(i,f,A)∈T (q,d)

1−
∑

(i,f,A)∈R(q,d):A⊆Ne(d)

1

=
∑
i∈K

∑
f∈Ne(d)

 ∑
A:f∈A

1−
∑

A:{f∈A,A⊆Ne(d)}

1


= KNe(d)

((
N − 1
q − 1

)
−
(

Ne(d)− 1
q − 1

))
. (8)

Although not explicit written for brevity, we require A ⊆ F
and |A| = q. Equality (8) follows since, from right to left,
first, the number of sets A ⊆ F , with |A| = q that include
a particular file f ∈ A is

(
N−1
q−1

)
, whereas the number of sets

satisfying A ⊆ Ne(d) that include a particular file f ∈ A is(
Ne(d)−1

q−1

)
, second, there are Ne(d) files in Ne(d) and, third,

there are K users in K.
Delivery of requested subfiles Type II: First, the server

arbitrarily selects one user leader uf ∈ K(f) for each file
f ∈ F . Let K̄(f) denote the set of users requesting a file
different from Wf . Then, the server broadcasts

Y
(i)
f,A =

{
W

(i)
f,A if i ∈ K̄(f)

W
(i)
f,A ⊕W

(uf )
f,A if i ∈ K(f)\uf

(9)

for all (i, f,A) ∈ RII(q,d) satisfying i∈ K\uf .
The rationale for this broadcasting strategy is the following.

A user Uk requesting file Wd(k) obtains the subfiles Type
II, W

(i)
d(k),A, coded cached at users requesting a different

file i ∈ K̄(d(k)), directly, from Y
(i)
d(k),A = W

(i)
d(k),A. Next,

user Uk obtains the subfile Type II W
(k)
d(k),A coded cached

at Z
(k)
A in its own cache for all sets A with d(k) ∈ A.

To that end, user Uk XORs to Z
(k)
A all the broadcasted

subfiles Y
(k)
f,A = W

(k)
f,A for all files f ∈ A\d(k). After all

users requesting a particular file, Wd(k), obtain the subfiles
Type II coded in their own cache, W(k)

d(k),A, they make use

of the broadcasted subfiles Y
(i)
d(k),A = W

(i)
d(k),A ⊕ W

(ud(k))

d(k),A
for all i ∈ K(d(k))\ud(k) to exchange them. Observe that,
the user leader already has W

(ud(k))

d(k),A since it is coded in

its cache, and thus can use Y
(i)
d(k),A = W

(i)
d(k),A ⊕ W

(ud(k))

d(k),A
for all i ∈ K(d(k))\ud(k) to obtain the remaining subfiles.
Similarly, not user leaders, k ∈ K(d(k))\ud(k), already have
W

(k)
d(k),A and thus, can obtain the subfile cached at the user

leader W
(ud(k))

d(k),A from Y
(k)
d(k),A = W

(k)
d(k),A ⊕ W

(ud(k))

d(k),A , and

then the rest from Y
(i)
d(k),A = W

(i)
d(k),A ⊕ W

(ud(k))

d(k),A for all
if i ∈ K(d(k))\{ud(k), k}.

Next, we detail the decoding of subfiles Type II at user
Uk. This user requests file Wd(k) and, thus, is only interested
in the subfiles W

(i)
d(k),A for all 2-tuples (i,A) such that

(i,d(k),A) ∈ RII(q,d). The decoding process at user k
begins by computing

W
(i)
d(k),A = Z

(i)
A ⊕

⊕
f∈A\d(k)

Y
(i)
f,A (10)
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for all (i,A) such that i = k and (i,d(k),A) ∈ RII(q,d),
and then W

(i)
d(k),A

=



Y
(i)
d(k),A if i ∈ K̄(d(k))

Y
(i)
d(k),A ⊕W

(k)
d(k),A if i ∈ K(d(k)) and k = ud(k)

Y
(k)
d(k),A ⊕W

(k)
d(k),A if i = ud(k) and k ̸= ud(k)

Y
(i)
d(k),A ⊕ Y

(k)
d(k),A

⊕W
(k)
d(k),A

if
i ∈ K(d(k))\ud(k),

and k ̸= ud(k)

(11)

for all 2-tuples (i,A) such that i ̸= k and (i,d(k),A) ∈
RII(q,d). To show this result, observe that for any 2-tuple
(f,A) such that (k, f,A) ∈ RII(q,d) and f ∈ A\d(k), we
have A\d(k) ⊆ K̄(d(k)) and thus, Y (k)

f,A = W
(k)
f,A from (9).

Using the coded cached subfiles, Z(k)
A , user Uk can compute

W
(i)
d(k),A = Z

(k)
A ⊕

⊕
f∈A\d(k)

Y
(k)
f,A

=
⊕
f∈A

W
(k)
f,A ⊕

⊕
f∈A\d(k)

W
(k)
f,A (12)

for all (i,A) such that i = k and (i,d(k),A) ∈ RII(q,d).
Next, consider the decoding of subfiles W

(i)
d(k),A in (11) for

all (i,A) such that i ̸= k and (i,d(k),A) ∈ RII(q,d). User
Uk can obtain, directly, from the broadcasted subfiles Type II
in (9), the subfiles W

(i)
d(k),A = Y

(i)
d(k),A for all i ∈ K̄(d(k)).

Next, if k = ud(k), using W
(k)
d(k),A from (12), he obtains

W
(i)
d(k),A = Y

(i)
d(k),A ⊕W

(k)
d(k),A

= W
(i)
d(k),A ⊕W

(ud(k))

d(k),A ⊕W
(k)
d(k),A

= W
(i)
d(k),A ⊕W

(k)
d(k),A ⊕W

(k)
d(k),A

for all i ∈ K(d(k)). Instead, if k ̸= ud(k), then he first
computes

W
(i)
d(k),A = W

(k)
d(k),A ⊕ Y

(k)
d(k),A

= W
(k)
d(k),A ⊕W

(k)
d(k),A ⊕W

(ud(k))

d(k),A

for i = ud(k), and for all 2-tuples (i,A) such that i ̸= k and
(i,d(k),A) ∈ RII(q,d), and then

W
(i)
d(k),A = W

(ud(k))

d(k),A ⊕ Y
(i)
d(k),A

for all i ∈ K(d(k))\ud(k).
Next, we count the number of broadcasted subfile Type II

required. Observe that, there is a broadcasted subfile Type II,
Y

(i)
f,A, for each subfile Type II except for i = uf . The total

number of subfiles Type II is∑
i∈K

∑
A:d(i)∈A

∑
f∈A

1 = K

(
Ne(d)− 1

q − 1

)
q (13)

here, although not explicitly written for brevity, we require
|A| = q and A ⊆ Ne(d). The result in (13) follow since,
from right to left, first, for any set A with |A| = q, we
have

∑
f∈A 1 = q, second, the number of sets A satisfying

A ⊆ Ne(d) and |A| = q that include a particular file d(i)
is
∑

A:d(i)∈A 1 =
(
Ne(d)−1

q−1

)
, and, third, there are K users.

Similarly, we can compute the total number of subfiles Type
II with no broadcasted subfile associated to, as∑

u∈U

∑
A:d(u)∈A

∑
f=d(u)

1 = Ne(d)

(
Ne(d)− 1

q − 1

)
(14)

where the set U contains all user leaders and thus |U| =
Ne(d). Finally, subtracting (14) to (13), we have that the total
number of broadcasted subfiles Type II is

TII = (Kq −Ne(d))

(
Ne(d)− 1

q − 1

)
.

Coded cached subfiles Type III: Finally, we consider the
delivery of the requested subfiles Type III, W

(i)
f,A for all

(i, f,A) ∈ RIII(q,d). Given that for these subfiles d(i) /∈ A,
we can rewrite subfiles Type III, equivalently, as W (i)

f,B\d(i) for
all (i, f,B) ∈ R′

III(q,d) with R′
III(q,d) given in (18). We

show this equivalence in (15)-(17). Equality (16) follows since
A = B\d(i), and d(i) ∈ B imply d(i) /∈ A and B = A∪d(i),
and vice-versa.

First, for each file f ∈ B, we select a user leader
uf ∈ K(f). Next, for each set B ⊆ Ne(d) with |B| = q+1, we
define an arbitrary one to one mapping function gB(f) which
for each file index f ∈ B returns a file index gB(f) ∈ B\f sat-
isfying gB(f1) ̸= gB (f2) if f1 ̸= f2. e.g. if B = {0, 1, ..., q},
then we can use gB(f) = (f − 1) mod (q + 1). Then, the
server first broadcasts

Y
(i)
f,B = W

(ugB(f))

f,B\gB(f) ⊕W
(i)
f,B\d(i) (19)

for each (i, f,B) ∈ RIII(q,d) with i ̸= ugB(f), and then

YB =
⊕
f∈B

W
(ugB(f))

f,B\gB(f) (20)

for each set B ⊆ Ne(d) with |B| = q + 1. Although not
broadcasted, let us set Y (i)

f,B = 0 for i = ugB(f).
The rationale for this broadcasting strategy is the following.

Recall that coded cached subfiles Type III XOR together
subfiles of files different from the requested subfile. Given a set
B, a user Uk, requesting file d(k) ∈ B, XORs to Z

(k)
B\d(k) all

the broadcasted subfiles Y (k)
f,B for all files f ∈ B\d(k) in order

to replace W
(k)
f,B\d(k) by W

(ugB(f))

f,B\gB(f) and thus, transform the

coded cached subfile Z
(k)
B\d(k) =

⊕
f∈B\d(k) W

(k)
f,B\d(k) into

C
(k)
B\d(k) =

⊕
f∈B\d(k) W

(ugB(f))

f,B\gB(f). It then follows that by

XORing YB to C
(k)
B\d(k), user Uk can obtain W

(ugB(d(k)))

d(k),B\gB(d(k)),

which XORed to Y
(i)
d(k),B for all i ̸= ugB(d(k)) returns the rest

of requested subfiles type III.
Next we detail the decoding operations at user Uk to obtain

the requested subfiles Type III, W (i)
d(k),B\d(i) for all (i,B) such

that (i,d(k),B) ∈ R′
III(q,d). The decoding process begins

by computing C
(k)
d(k),B = Z

(k)
B\d(k) ⊕

⊕
f∈B\d(k) Y

(k)
f,B for all

B ⊆ Ne(d) with |B| = q + 1, and d(k) ∈ B, and then

W
(i)
d(k),B\d(i) =

{
C

(k)
d(k),B ⊕ YB if i = ugB(d(k))

C
(k)
d(k),B ⊕ YB ⊕ Y

(i)
d(k),B if i ̸= ugB(d(k)),

(21)
for all (i,B) such that (i,d(k),B) ∈ R′

III(q,d).
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RIII(q,d) = {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) /∈ A} (15)
= {(i, f,A) : |A| = q,A ⊆ Ne(d),d(i) /∈ A, i ∈ K, f ∈ A}
= {(i, f,A) : |A ∪ d(i)| = q + 1,A ∪ d(i) ⊆ Ne(d),d(i) /∈ A, i ∈ K, f ∈ A}
= {(i, f,A) : B = A ∪ d(i), |B| = q + 1,B ⊆ Ne(d), i ∈ K,d(i) /∈ A, f ∈ B\d(i)}
= {(i, f,A) : A = B\d(i),B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B, f ∈ B\d(i)} (16)
= {(i, f,A) : A = B\d(i),B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B\f, f ∈ B}
=

{
(i, f,A) : A = B\d(i), (i, f,B) ∈ R′

III(q,d)
}
. (17)

R′
III(q,d) = {(i, f,B) : B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B\f, f ∈ B} (18)

To show this result, observe that Cd(k),B

= Z
(k)
B\d(k) ⊕

⊕
f∈B\d(k)

Y
(k)
f,B

=
⊕

f∈B\d(k)

W
(k)
f,B\d(k) ⊕

⊕
f∈B\d(k)

W
(ugB(f))

f,B\gB(f) ⊕W
(k)
f,B\d(k) (22)

=
⊕

f∈B\d(k)

W
(ugB(f))

f,B\gB(f) (23)

and, that XORing Cd(k),B and YB, we can obtain

W
(i)
d(k),B\d(i) = Cd(k),B ⊕ YB = W

(ugB(d(k)))

d(k),B\gB(d(k))

for all (i,B) such that i = ugB(d(k)) and (i,d(k),B) ∈
R′

III(q,d). Then, he can obtain the remaining subfiles, as

W
(i)
d(k),B\d(i) = W

(ugB(d(k)))

d(k),B\gB(d(k)) ⊕ Y
(i)
d(k),B

for all (i,B) with i ̸= ugB(d(k)) and (i,d(k),B) ∈ R′
III(q,d).

Next, we compute the total number of broadcasted
subfiles Type III. For brevity, although not explicitly
written, the summations over B require B ⊆ Ne(d) and
|B| = q + 1. Observe that there is one broadcasted subfile
YB for each set B ⊆ Ne(d) with |B| = q + 1, and one
broadcasted subfile Y

(i)
f,B for all (i, f,B) ∈ RIII(q,d)

with i ̸= ugB(f), or more explicitly for all (i, f,B) ∈{
B ⊆ Ne(d), |B| = q + 1, i ∈ K\ugB(f),d(i) ∈ B\f, f ∈ B

}
.

Thus, the total number of broadcasted subfiles Type III is

TIII =
∑
B

∑
f∈B

 ∑
d∈B\f

∑
i∈K(d)\ugB(f)

1

+ 1


=

∑
B

∑
f∈B

 ∑
d∈B\f

K(d)− 1

+ 1

 (24)

=
∑
B

∑
f∈B

∑
d∈B\f

K(d)−
∑
B

∑
f∈B

1 +
∑
B

1

=
∑
B

∑
f∈B

∑
d∈B

K(d)−
∑
B

∑
f∈B

(K(g) + 1) +
∑
B

1

= (qK −Ne(d))

(
Ne(d)− 1

q

)
+

(
Ne(d)

q + 1

)
(25)

=

(
qK −

(
1− 1

q + 1

)
Ne(d)

)(
Ne(d)− 1

q

)
where (24) follow since for each f , ugB(f) is only found in
K(d) for d = gB(f), and (25) follows since, the number of
sets B is ∑

B
1 =

(
Ne(d)

q + 1

)
,

∑
B

∑
f∈B

(K(f) + 1) =
∑

f∈Ne(d)

(K(f) + 1)
∑

B:f∈B,

1

= (K +Ne(d))

(
Ne(d)− 1

q

)
,

∑
B

∑
f∈B

∑
d∈B

K(d) = (q + 1)
∑
B

∑
d∈B

K(d)

= (q + 1)
∑

d∈Ne(d)

K(d)
∑

B:d∈B

1

= (q + 1)K

(
Ne(d)− 1

q

)
Finally, (25) follow since

(
n
k

)
= n

k

(
n−1
k−1

)
.

Finally, adding together the three broadcasted subfiles types,
we obtain

T = KNe(d)

(
N − 1

q − 1

)
−Ne(d)

(
Ne(d) + 1

q + 1

)(
Ne(d)− 1

q − 1

)
(26)

which leads to the rate (6) stated in Theorem 1.

V. EXAMPLE

Consider a caching system with N = 3 files, K = 6
users and a caching capacity of MF bits with M = 1

4 ,
which corresponds to q = 2. For this particular case, the best
known coded caching scheme obtains the rate-memory pair(
28
12 + 1

36 ,
1
4

)
by memory sharing between the rate-memory

pair (R∗
MDS,MMDS) = (R∗

CFL,MCFL) =
(
5
2 ,

1
6

)
from (3) with

t = 1, and the rate-memory pair (R∗
MDS,MMDS) =

(
2, 7

15

)
from (3) with t = 2. Here, we show that the rate-memory
pair

(
28
12 ,

1
4

)
is achievable. The best known lower bounds [20,

Theorem 1], and [23, Theorem 1] and [22, Remark 6] all
obtain the same rate-memory pair

(
27
12 ,

1
4

)
.

For the running example, there are a total of NK
(
N−1
q−1

)
=

36 subfiles W
(i)
f,A with (i, f,A) ∈ T (2) as specified in Table

III. For the prefetching, as shown in Table I, if q = 2 there
are

(
N
q

)
=
(
3
2

)
= 3 coded subfiles Z

(j)
A cached at each user

j ∈ {1, 2, ..., 6}. Recall that all subfiles are coded cached at
one and only one user. Given the above prefetching scheme,
we illustrate our proposed delivery strategy for a represen-
tative demand scenario, where users U1 and U4 request file
W1, users U2 and U5 request file W2, and users U3 and
U6 request file W3. This corresponds to the demand vector
d = [1, 2, 3, 1, 2, 3]. As we know from Corollary 1.1, since all
files are requested, this is a worst case demand.
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(i, f,A) ∈ T (2) = R (2,d)
i f A i f A

1

1 {1, 2}

4

1 {1, 2}
{1, 3} {1, 3}

2 {1, 2} 2 {1, 2}
{2,3} {2, 3}

3 {1, 3} 3 {1, 3}
{2,3} {2, 3}

2

1 {1, 2}

5

1 {1, 2}
{1, 3} {1, 3}

2 {1, 2} 2 {1, 2}
{2, 3} {2, 3}

3 {1, 3} 3 {1, 3}
{2, 3} {2, 3}

3

1 {1, 2}

6

1 {1, 2}
{1, 3} {1, 3}

2 {1, 2} 2 {1, 2}
{2, 3} {2, 3}

3 {1, 3} 3 {1, 3}
{2, 3} {2, 3}

TABLE III: 3-tuples requested Type II RII(2,d) (white), and
Type III RIII(2,d) (gray).

(i, f,A) ∈ RII(2,d) : i ̸= uf

i f A Y
(i)
f,A

1 2 {1, 2} W
(1)
2,{1,2}

3 {1, 3} W
(1)
3,{1,3}

2 1 {1, 3} W
(2)
1,{1,3}

3 {2, 3} W
(2)
3,{2,3}

3 1 {1, 3} W
(3)
1,{1,3}

2 {2, 3} W
(3)
2,{2,3}

4
1 {1, 2} W

(4)
1,{1,2} ⊕W

(1)
1,{1,2}

{1,3} W
(4)
1,{1,3} ⊕W

(1)
1,{1,3}

2 {1, 2} W
(4)
2,{1,2}

3 {1, 3} W
(4)
3,{1,3}

5

1 {1, 2} W
(5)
1,{1,2}

2 {1, 2} W
(5)
2,{1,2} ⊕W

(2)
2,{1,2}

{2, 3} W
(5)
2,{2,3} ⊕W

(2)
2,{2,3}

3 {2, 3} W
(5)
3,{2,3}

6

1 {1, 3} W
(6)
1,{1,3}

2 {2, 3} W
(6)
2,{2,3}

3 {1, 3} W
(6)
3,{1,3} ⊕W

(3)
3,{1,3}

{2, 3} W
(6)
3,{2,3} ⊕W

(3)
3,{2,3}

TABLE IV: Broadcasted subfiles Type II.

First, let us classify subfiles into the three subfile types. For
the particular demand considered, given that all subfiles are
requested, we have T (2) = R(2,d), and thus, there are no
subfiles Type I, i.e. RI(2,d) = ∅. The gray cells in Table III
indicate the subfiles Type III, and the white cells the subfiles
Type II.

For the delivery of subfiles Type II, we first select one user
leader uf for each requested file f ∈ {1, 2, 3}, i.e. u1 =
1, u2 = 2, u3 = 3. Then, the server broadcasts the subfiles
Type II according to (9) as specified in Table IV. There are a
total of 18 broadcasted subfiles Type II.

For the delivery of subfiles Type III, given that the only one
set B satisfying B ⊆ Ne(d) with |B| = q + 1 is {1, 2, 3} ,we

B ⊆ Ne(d) with |B| = q + 1.
B YB

{1,2,3} W
(3)
1,{1,2} ⊕W

(1)
2,{2,3} ⊕W

(2)
3,{1,3}

(i, f,B) ∈ RIII(q,d) with i ̸= ugB(f)

i f gB(f) ugB(f) d(i) Y
(i)
f,B

1 3 2 2 1 W
(2)
3,{1,3} ⊕W

(1)
3,{2,3}

2 1 3 3 2 W
(3)
1,{1,2} ⊕W

(2)
1,{1,3}

3 2 1 1 3 W
(1)
2,{2,3} ⊕W

(3)
2,{1,2}

4 2 1 1 1 W
(1)
2,{2,3} ⊕W

(4)
2,{2,3}

3 2 2 1 W
(2)
3,{1,3} ⊕W

(4)
3,{2,3}

5 1 3 3 2 W
(3)
1,{1,2} ⊕W

(5)
1,{1,3}

3 2 2 2 W
(2)
3,{1,3} ⊕W

(3)
3,{1,3}

6 1 3 3 3 W
(2)
1,{1,3} ⊕W

(6)
1,{1,2}

2 1 1 3 W
(1)
2,{2,3} ⊕W

(6)
2,{1,2}

TABLE V: Broadcasted subfiles Type III.

K(d(k))\k = {4}, K̄(d(k)) = {2, 3, 5, 6}
k = 1 = ud(k),ugB (d(k)) = 3

W1 i Decoding operations
W

(1)
1,{1,2} 1 Z

(1)
{1,2} ⊕ Y

(1)
2,{1,2} i = k

W
(1)
1,{1,3} Z

(1)
{1,3} ⊕ Y

(1)
3,{1,3} i = k

W
(2)
1,{1,2} 2 Y

(2)
1,{1,2} i ∈ K̄(d(k))

W
(2)
1,{1,3} W

(3)
1,{1,2} ⊕ Y

(2)
1,{1,2,3} i ̸= ugB (d(k))

W
(3)
1,{1,2} 3

Z
(1)
{2,3} ⊕ Y

(1)
2,{1,2,3}

⊕Y
(1)
3,{1,2,3} ⊕ Y{1,2,3}

i = ugB (d(k))

W
(3)
1,{1,3} Y

(3)
1,{1,3} i ∈ K̄(d(k))

W
(4)
1,{1,2} 4 Y

(4)
1,{1,2} ⊕W

(1)
1,{1,2} i ∈ K(d(k))\k

W
(4)
1,{1,3} Y

(4)
1,{1,3} ⊕W

(1)
1,{1,3} i ∈ K(d(k))\k

W
(5)
1,{1,2} 5 Y

(5)
1,{1,2} i ∈ K̄(d(k))

W
(5)
1,{1,3} W

(3)
1,{1,2} ⊕ Y

(5)
1,{1,2,3} i ̸= ugB (d(k))

W
(6)
1,{1,2} 6 W

(3)
1,{1,2} ⊕ Y

(6)
1,{1,2,3} i ̸= ugB (d(k))

W
(6)
1,{1,3} Y

(6)
1,{1,3} i ∈ K̄(d(k))

TABLE VI: Decoding of subfiles Type II (white) and Type III
(gray) at user U1.

define the function

g{1,2,3}(f) =


3 if f = 1

1 if f = 2

2 if f = 3

Then, the server broadcasts the subfiles Type III according to
(19) and (20) as specified in Table V. Observe that the total
number of broadcasted subfiles is 28, (18 Type II) and (1+9
Type III).

Given the above broadcasted subfiles, the decoding process
for user U1 (leader) is summarized in Table VI and for user
U3 (not leader) in Table VII. For each subfile, we indicate the
conditions on the user index i, that allow us to identify which
decoding operation is applied according to (10), and (11) for
subfiles Type II, and according to (21) for subfiles Type III.

VI. CONCLUSIONS

In this work, we proposed a novel centralized coded caching
scheme for the case where there are more users than files
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K(d(k))\k = {4}, K̄(d(k)) = {2, 3, 5, 6}
k = 4 ̸= ud(k),ud(k) = 1, ugB (d(k)) = 3

W1 i Decoding operations
W

(1)
1,{1,2} 1 Y

(1)
1,{1,2} ⊕W

(4)
1,{1,2} i = ud(k)

W
(1)
1,{1,3} Y

(1)
1,{1,3} ⊕W

(4)
1,{1,3} i = ud(k)

W
(2)
1,{1,2} 2 Y

(2)
1,{1,2} i ∈ K̄(d(k))

W
(2)
1,{1,3} W

(3)
1,{1,2} ⊕ Y

(2)
1,{1,2,3} i ̸= ugB (d(k))

W
(3)
1,{1,2} 3

Z
(4)
{2,3} ⊕ Y

(4)
2,{1,2,3}

⊕Y
(4)
3,{1,2,3} ⊕ Y{1,2,3}

i = ugB (d(k))

W
(3)
1,{1,3} Y

(3)
1,{1,3} i ∈ K̄(d(k))

W
(4)
1,{1,2} 4 Z

(4)
{1,2} ⊕ Y

(4)
2,{1,2} i = k

W
(4)
1,{1,3} Z

(4)
{1,3} ⊕ Y

(4)
3,{1,3} i = k

W
(5)
1,{1,2} 5 Y

(5)
1,{1,2} i ∈ K̄(d(k))

W
(5)
1,{1,3} W

(3)
1,{1,2} ⊕ Y

(5)
1,{1,2,3} i ̸= ugB (d(k))

W
(6)
1,{1,2} 6 W

(3)
1,{1,2} ⊕ Y

(6)
1,{1,2,3} i ̸= ugB (d(k))

W
(6)
1,{1,3} Y

(6)
1,{1,3} i ∈ K̄(d(k))

TABLE VII: Decoding of subfiles Type II (white) and Type
III (gray) at user U4.

K ≥ N and users are equipped with small memories M ≤ N
K .

The scheme uses coded prefetching and outperforms previ-
ously proposed schemes for moderate-high number of users,
N ≤ K ≤ N2+1

2 . Due to the limited region of applicability,
the practical interest of this scheme might be small. However,
the ideas and strategy here presented may motivate further
developments in the coded caching problem. Our current and
future work is in this direction, and includes the extension of
the proposed coded prefetching technique to larger memories
and scenarios with more users than files.

APPENDIX A
PROOF OF COROLLARY 1.1

To prove this result, we need to show that (26) increases
monotonically as a function of Ne(d). For the easy of notation,
let us substitute Ne(d) by x, and denote (26) as a function of
Ne(d) as T (x). Then, observe that

T (x) = Kx

(
N − 1

q − 1

)
− q

(
x+ 1

q + 1

)
= Kx

(
N − 1

q − 1

)
− q

(
x+ 2

q + 1

)(
1− q + 1

x+ 2

)
(27)

= Kx

(
N − 1

q − 1

)
− q

(
x+ 2

q + 1

)
+ q

q + 1

x+ 2

(
x+ 2

q + 1

)
= Kx

(
N − 1

q − 1

)
− q

(
x+ 2

q + 1

)
+ q

(
x+ 2

q + 1

)
(28)

= T (x+ 1) + (x+ 1)

(
x

q − 1

)
−K

(
N − 1

q − 1

)
where (27) follows from

(
n
k

)
=
(
n+1
k

) (
1− k

n+1

)
and (28)

follows by applying
(
n
k

)
=
(
n−1
k−1

)
n
k twice. Thus, for x = 1 to

x = N − 1, we have

T (x+ 1) = T (x) +K

(
N − 1

q − 1

)
− (x+ 1)

(
x

q − 1

)
≥ T (x)

where the last inequality follows since
(

x
q−1

)
increases mono-

tonically with x, and x ≤ min {N − 1,K − 1}. Finally,
particularizing (26) to Ne(d) = min (N,K), we obtain the
rate-memory function in (7).

APPENDIX B
PROOF OF COROLLARY

If N ≥ K and M ≤ N
K , by memory sharing between the

rate memory pair (K, 0) and the rate-memory pair (K−1
2 , N

K )
in [16], we obtain the rate-memory function

R∗
YU(M) = K − K

N

K + 1

2
M. (29)

Particularizing (29) to the memory points M = N
Kq for q =

1, ..., N , we have

R∗
YU

(
N

Kq

)
= K − K + 1

2q
.

At these memory points, if N > K the scheme here proposed
(7) obtains the rates

R∗
(

N

Kq

)
= K − N

K

K + 1

q + 1

(
K
q

)(
N
q

) .
Thus, our scheme outperforms [16] R∗

YU

(
N
Kq

)
≥ R∗

(
N
Kq

)
,

if q2N
Kq+1 ≥ (Nq )

(Kq )
which finally leads to the condition 2q

q+1 ≥∏q−1
i=1

(
N−i
K−i

)
if q ≤ K.

APPENDIX C
PROOF OF COROLLARY 1.3

To prove this results, we first observe that by isolating
parameter t in the MDS rate points, t = K

N (N −R∗
MDS) and

substituting it into the MMDS memory points, we can obtain
the following memory-rate function

M
(lb)
MDS (R) =

(N −R) ((N −R) (NK −K) +N(K −N))

N2 (K − 1)
.

(30)
Due to the convexity of M

(lb)
MDS (R) with respect to R, we

have that M
(lb)
MDS (R) represents a lower-bound on the MDS

memory-rate region that can be obtained by the lower convex
envelope of the memory-rate pairs (3).

Particularizing (30) to the rate points in (7), we can write
M

(lb)
MDS as a function of q as

M
(lb)
MDS(q) =

N + 1

q + 1

1

K(K − 1)

(
N2 − 1

q + 1
+K −N

)
for q = 1, ..., N . Thus, a sufficient conditions for the new
rate-memory pairs in (7) to improve the MDS rate-memory
region is N

Kq ≤ M
(lb)
MDS(q) which leads us to K ≤ N2q+1

q+1 .

Finally, since N2q+1
q+1 increases monotonically with q, we have

that a sufficient condition for our strategy to improve the MDS
strategy if M ∈

[
0, N

K

]
and N ≤ K, is K ≤ N2+1

2 .
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APPENDIX D
PROOF OF COROLLARY 1.4

The proof of Corollary 1.4 follows the lines of [15]. From
[3], the cut set lower bound is given by

RCB(M) = max
s∈{1,...,min(N,K)}

s− s⌊
N
s

⌋M.

Particularized to the case N ≤ K, we have

RCB(M) ≥ max

(
1− 1⌊

N
s

⌋M, ...., N −NM

)
≥ N −NM

= R∗ (M)− N

K

(
N

q
− N + 1

q + 1

)
= R∗(M)−

(
N
q+1

)
K
(
N−1
q−1

)
where R∗ (M) is the rate-memory tradeoff function presented
in Corollary 1.1 for q ∈ {1, ..., N}.

APPENDIX E
PROOF OF COROLLARY 1.5

The lower bound obtained in [20, Theorem 1] is given by
RSTC(M)

= max
s ∈ {1, ...,K)}
l ∈
{
1, ...,

⌈
N
s

⌉}
1

l

(
N − sM − µ (N − ls)

+

s+ µ
− (N −Kl)

+

)

(31)
where µ = min

(
N−ls

l ,K − s
)
∀s, l. Observe that for l = 1

and s = N − 1, K ≥ N , we have µ = min(N − s,K − s) =
N−s = 1, and the objective in (31) reads N−(N − 1)M− 1

N .
Thus, RSTC(M) ≥ N − (N − 1)M − 1

N , which particularized
to K = N , M = N

(N−1)K , q = N − 1 leads us to

RSTC

(
N

(N − 1)K

)
≥ N − 1− 1

N

= R∗
(

1

N − 1

)
.
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[14] M. M. Amiri and D. Gündüz, “Fundamental limits of coded caching:
Improved delivery rate-cache capacity tradeoff,” IEEE Transactions on
Communications, vol. 65, no. 2, pp. 806–815, Feb 2017.

[15] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:
improved bounds for users with small buffers,” IET Communications,
vol. 10, no. 17, pp. 2315–2318, 2016.

[16] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Transac-
tions on Information Theory, vol. 64, no. 2, pp. 1281–1296, Feb 2018.

[17] C. Tian and J. Chen, “Caching and delivery via interference elimination,”
IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1548–
1560, March 2018.

[18] C. Tian and K. Zhang, “From uncoded prefetching to coded prefetching
in coded caching,” CoRR, vol. abs/1704.07901, 2017. [Online].
Available: http://arxiv.org/abs/1704.07901

[19] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users
than files,” in IEEE ISIT, July 2016, pp. 135–139.

[20] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of
storage-rate tradeoff for caching via new outer bounds,” in IEEE ISIT,
June 2015, pp. 1691–1695.

[21] C. Tian, “A note on the fundamental limits of coded caching,” CoRR,
vol. abs/1503.00010, 2015.

[22] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” in IEEE
ISIT, June 2017, pp. 386–390.

[23] C. Y. Wang, S. S. Bidokhti, and M. Wigger, “Improved converses and
gap-results for coded caching,” pp. 2428–2432, June 2017.
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