
Implementation of GNSS Receiver Hardware
Accelerators in All-Programmable

System-On-Chip Platforms
Marc Majoral, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain.

Carles Fernández-Prades, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain.

Javier Arribas, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain.

BIOGRAPHY

Marc Majoral is a Researcher at the Advanced Signal and Information Processing Department (ASIP), Centre Tecnològic de
Telecomunicacions de Catalunya (CTTC), Barcelona, Spain. He received the M.S. degree in Electrical Engineering from the
Polytechnic 3University of Catalonia (UPC) in 1998. In 1999 he worked in the Signal Theory and Communications department
in the Polytechnic University of Catalonia, where he was involved in DSP programming for mobile communications. From
1999 to 2006 he worked in the Cochlear Technology Centre in Belgium, where he implemented signal processing strategies for
cochlear implants on DSPs. Since 2007 he is working at CTTC, implementing signal processing strategies on DSPs and FPGAs
for telecommunication applications.

Dr. Carles Fernández–Prades holds a position of Senior Researcher and currently serves as Head of the Statistical Inference
for Communications and Positioning (SICP) Department at CTTC. He received a PhD degree in Electrical Engineering from
Universitat Politècnica de Catalunya (UPC) in 2006, Barcelona, Spain. His primary areas of interest include statistical and
multi-sensor signal processing, estimation and detection theory, and Bayesian filtering, with applications to communication
systems, GNSS and software-defined radio technology.

Dr. Javier Arribas holds a position of Senior Researcher at the SICP Department at CTTC. He received the MSc degree in
Telecommunication Engineering from La Salle University in 2004, and the PhD from UPC in 2012. His primary areas of interest
include statistical signal processing, GNSS synchronization, detection and estimation theory, software defined receivers, FPGA
prototyping and the design of RF front-ends. He is the recipient of the 2015 EURASIP Best PhD Thesis Award.

ABSTRACT

This paper reports the design and proof-of-concept implementation of hardware accelerator modules for a low power consump-
tion and small form factor software-defined GNSS receiver using an all-programmable System-On-Chip (SoC) platform. An
all-programmable SoC is a device that integrates the software reprogrammability of a CPU with the hardware reprogrammabil-
ity of an FPGA. The presented approach takes advantage of the flexibility of software-defined radio technology, and the power
efficiency and small form factor of a SoC, to implement a portable fully customizable GNSS receiver with the capability to
process GNSS signals in real-time and to deliver GNSS products in standard formats.

The SoC runs a free and open source software implementation of a multi-band, multi-system GNSS receiver released under
the General Public License v3.0 and available in a public source code repository. However, the most computationally demanding
tasks are offloaded to the FPGA and implemented as hardware acceleration modules. The hardware acceleration modules can
take advantage of the inherent parallelism in the GNSS receiver signal processing functions.

A review of the GNSS receiver architecture is presented, together with an overview of the software and a design description
of the hardware accelerators in the SoC. A dual-band proof of concept GNSS receiver is exposed, together with some results.

1. INTRODUCTION

The advent of a number of new GNSS (Galileo, BeiDou) and the modernization of existing ones (GPS and GLONASS), and
the deployment of augmentation systems depict an unprecedented landscape for receiver designers. Unfortunately there is a
lack of devices that are both cheap and flexible enough to be widely used for scientific research on new GNSS algorithms and
processing methods.

In order to address the lack of flexibility of existing GNSS receivers, we created GNSS-SDR [1], an open source, software-
defined GNSS receiver. The availability of hardware and software whose design and source code are published under open
licenses opens new opportunities and challenges for science [2]. GNSS-SDR takes care of all the digital signal processing,
performing digital acquisition and tracking of the available satellite signals, decoding the navigation message and computing
the observables needed by positioning algorithms, which ultimately compute the navigation solution. The software is designed
to facilitate the inclusion of new signal processing techniques, offering an easy way to measure their impact in the overall
receiver performance. GNSS-SDR can be used on most types of general purpose computers. If the computer executing the
software receiver is powerful enough, GNSS-SDR can be executed in real-time. When GNSS-SDR is executed in real-time,
it can be used together with several popular RF front-ends such as USRP boards [3] using live GNSS signals received from
satellites. Therefore, testing of all the processes is conducted either using real-time signals received by a radio-frequency
front-end or a file containing those raw signal samples.

The GNSS-SDR platform implements a very low cost, highly-flexible GNSS receiver equipment. However, this equipment
is not portable because it requires a general purpose computer to run the signal processing algorithms required by the GNSS
signals. In this work, the authors targeted the development of a portable GNSS-SDR-based platform for use in many applica-
tions, for instance high-precision agriculture [4, 5, 6, 7] and spaceborne GNSS receivers [8, 9]. A portable GNSS-SDR-based
platform embodies a low cost real-time flexible GNSS receiver that can be used in the field for researching and testing novel
GNSS algorithms and signal processing methods.

An adequate solution to make a small form factor GNSS-SDR-based platform portable and efficient in terms of energy con-
sumption is to use an all-programmable System-On-Chip (SoC). The SoC runs the most computationally intensive operations in
an FPGA [10]. The SoC also runs the remaining signal processing functions in a general purpose CPU. In this project, we used
the Xilinx Zynq 7000 SoC [11], which combines a dual-core ARM Cortex-A9 processor and an FPGA in a single chip. The
ARM processor runs the GNSS-SDR on a GNU/Linux operating system, in the same way the GNSS-SDR runs on a desktop
computer, but the most computationally demanding tasks are offloaded to the FPGA and implemented as hardware accelera-
tion modules. The hardware acceleration modules can take advantage of the inherent parallelism in the GNSS-SDR receiver
signal processing functions [12]. This paper presents the implementation of hardware accelerator modules for the GNSS-SDR
software platform with the objective of developing a low-cost, small form factor, low power consumption and real-time flexible
GNSS receiver. A GNSS receiver with these characteristics fills the gap between the market segments of professional GNSS
receivers and mass-market GNSS receivers existing today.

The hardware accelerator modules are implemented in the form of FPGA IP cores [13]. The importance of FPGA IPs
has grown over the years. They ease the reusability and the integration of the VHDL modules and they are a common way
of distributing VHDL modules. The hardware accelerators are implemented as IPs that use the IP-XACT specification [14],
which is widely used for packaging, integrating and reusing IP within design tool flows. The use of hardware accelerators are
a way of reducing the overall complexity and the power consumption of the GNSS-SDR platform while keeping the real-time
functionality. By using the numerous FPGA resources simultaneously, we can deliver real-time performance while keeping the
clock frequency of the digital part low, thus reducing power consumption when compared to a laptop computer.

The remainder of this paper is organized as follows: Section 2 summarizes the main objectives of this work. Section 3
describes the system architecture and provides a description of the software and hardware components of the GNSS receiver
with a focus on the GNSS hardware accelerators. Section 4 describes the developed prototype, Section 5 presents some results,
and finally Section 6 wraps up some conclusions.

2. OBJECTIVES

The main motivation for this work is to implement a small form factor portable GNSS receiver that fulfills the list of features
shown below:

• Possibility to either use synthetically generated or real-life GNSS signals.

• Possibility to process signals either in real time or in post-processing time.

• Possibility to use interchangeable RF front-ends.

• Possibility to define custom receiver architectures.

• Possibility to easily define / interchange implementations and parameters for each processing block.

• Availability of operation modes, as combinations of single/multiple frequency bands, single/multiple constellations.

• Testeability: the ability to observe the states, outputs, resource usage and other side effects of the software under test and
the ability to apply inputs to the software under test or place it in specified states.

• Maintainability: The GNSS HW Accelerators shall be easy to maintain in order to isolate and correct bugs or their cause.

• Reliability: ability of a system or component to function under stated conditions for a specified period of time. Reliability
refers to the consistency of the results provided by a system; internal and external reliability are, respectively, the ability
to detect gross errors and the effect of an undetected blunder on the solution.

• Small form factor.

• Low power consumption.

Table 3 in section 5 shows how these requirements are met by the GNSS receiver implemented on a SoC platform.

3. SYSTEM DESIGN

This section explains how the GNSS receiver is designed using an all-programmable System-On-Chip (SoC).

3.1. System Architecture

A simplified block diagram of a Programmable System on Chip (SoC) is shown in Figure 1. The SoC consists of two main
parts: a Processing System (PS) and a Processing Logic (PL). The Processing system contains a CPU and several peripherals
(watchdogs, interrupt controllers, DMA, UART, and many others). The Processing Logic contains FPGA logic, which can
be programmed to implement hardware accelerators for the CPU. The SoC also contains a number of I/O pins which can be
configured to implement various interfaces (access to external DDR memory, GPIO, and many others).

The implementation of the GNSS receiver consists of the GNSS-SDR software running in the PS, where the most compu-
tationally demanding signal processing blocks of the GNSS-SDR software are replaced by hardware accelerators in the PL.

A system block diagram of the GNSS receiver is shown in Figure 2. The Radio Frequency Front-End captures and digitizes
the GNSS signal. The RF Front-end is external to the SoC. The SAMPLE SW, which is implemented in the PL, acts as an
interface between the RF Front-End and the GNSS HW accelerators running in the PL. Using another RF Front-End only
requires changes in the SAMPLE SW. The FPGA SW contains the GNSS hardware accelerator modules implemented in the
PL. The MID SW is the interface between the hardware accelerator modules and the microprocessor in the PS. The uP SW
Microprocessor in the PS running the GNSS-SDR SW. Finally, the results are shown to the user using a Human Machine
Interface (HMI).

3.2. Software Design

The GNSS-SDR software is a software-defined GNSS Receiver [1], which is implemented using GNU Radio libraries [15]. The
GNSS-SDR contains various instances of a channel function, where each instance is assigned to a satellite that is detected by in
the signal coming from the RF Front-End. Each channel contains three software modules: Acquisition, Tracking and Telemetry.
The Acquisition module is responsible for detecting the GNSS satellites. When a satellite is detected by an acquisition function
then the corresponding channel is assigned to it. The results of all the channel processing modules are forwarded to the
Observables module, and finally a Position, Velocity and Time (PVT) result is computed and delivered to the user.

There is an underlying scheduler that moves data from sources to sinks.

Programmable System On Chip (SoC)

Processing System (PS)

CPUPeripherals

Processing Logic (PL)

I/O

Fig. 1. All-Programmable System-On-Chip.

Fig. 2. Architecture of the GNSS Receiver.

In order for the GNSS-SDR software to drive the HW Accelerators, the Signal Source and Signal Conditioning blocks of
the GNSS-SDR software are eliminated, transferring their functionalities to the PL. The acquisition and the tracking blocks are
replaced by HW accelerators in the PL. The GNSS-SDR acquisition blocks become non-GNU Radio Blocks, but controllers
on the Acquisition HW accelerator Modules inside the PL. The HW Accelerator Tracking blocks become signal sources from
the point of view of the SW. These signal sources deliver a stream of data extracted from the signal acquisition and tracking
process.

The HW Accelerator blocks are chained to the rest of the GNSS-SDR processing blocks (extraction of navigation message,
computations of observables and PVT solution), thus directly reusing the existing implementations in the Processing System.
This is shown in Figure 4.

Fig. 3. Architecture of the GNSS-SDR software.

Fig. 4. Interface between the HW Accelerators and the GNSS-SDR Software.

There are two types of HW accelerators in our implementation:

• The acquisition HW accelerator: the acquisition HW accelerator performs a parallel code phase search acquisition [16]

• The multicorrelator HW accelerator (also referred to as tracking HW accelerators): the tracking HW accelerators run a
Doppler wipe-off and a multi-correlator between the received GNSS signal and a local copy of the GNSS codes [16].
They demodulate the GNSS signal and transfer the demodulated symbols to the GNSS-SDR software running in the PS
in order to decode the navigation messages.

The acquisition HW accelerator and the tracking HW accelerators replace the acquisition functions and most of the func-
tionality of the tracking functions in the GNSS-SDR SW shown in Figure 4.

3.3. Hardware Design

Figure 5 shows the architecture of a dual band GNSS receiver in the PL. In our work one frequency band is used to capture
and track the GPS L1 C/A and the Galileo E1 signals. The other frequency band is used to capture the GPS L5 and Galileo E5
signals (see section 4). The Analog Front-End has two A/D converters, one for each frequency band. The signal that is captured
by the A/D converters is temporarily stored in a buffer. There is one buffer for each frequency band. The buffers deliver the
captured signals to the various HW accelerators.

Acquisition

Multicorrelator

25

Multicorrelator

26

Multicorrelator

48

Main FIFO GPS-L5/

Galileo-E5

Downsampling

A/D (GPS-L5/

Galileo-E5

Frequency Band)

Multicorrelator

1

Multicorrelator

2

Multicorrelator

24

Main FIFO GPS-

L1CA/Galileo-E1

Downsampling

A/D (GPS-

L1CA/Galileo-E1

Frequency Band)

PS

(Processing

System,

ARM

Processors)

PL (Processing Logic)

AXI4

Zynq System on ChipAF (Analog Front-

End)

Downsampling

Fig. 5. Block diagram of the HW accelerator blocks in the System-On-Chip’s Programmable Logic.

The receiver contains one acquisition HW accelerator and a large number of tracking HW accelerators. The acquisition
HW accelerator can be used for all the types of GPS and Galileo signals under consideration (GPS L1 C/A, Galileo E1, GPS
L5 and Galileo E5). The GNSS receiver searches for the various GNSS satellites sequentially, using the same acquisition HW
acceleration module.

The receiver uses one tracking HW accelerator module for each detected GNSS satellite. In this work, 12 tracking HW
accelerator modules for GPS L1 C/A, 12 for Galileo E1, 12 for GPS L5 and 12 for Galileo E5 (see section 4) were implemented.

The HW accelerator modules were connected to the PS using a high speed and low latency communication bus. In this way
the microprocessor can control the hardware accelerators in real time.

3.4. Acquisition HW Accelerator

A block diagram of the Acquisition HW Accelerator is shown in figure 6. The Acquisition HW Accelerator performs a Doppler
wipe–off, and a correlation between the PRN of a GNSS satellite and the received GNSS signal. This correlation is done in the
frequency domain. In order to save space in the PS, a reversible FFT module is used. The reversible FFT module performs both
the FFT and the IFFT algorithm. The signal in the frequency domain is routed back to the input of the reversible FFT module
using switches.

Incoming Signal

X

X

90°

Local Oscillator
(CORDIC)

Switch

Fourier
Transform /

Inverse Fourier
Transform

Switch

X

FFT GNSS Code

| |² Output

Fig. 6. Block diagram of the Acquisition HW accelerator.

To run a correlation in the frequency domain, the Acquisition HW accelerator computes the Fourier transform of the received
signal and the Fourier transform of the GNSS code. The GNSS code is previously resampled to match the sampling frequency
of the GNSS signal. The size of the Fourier transform depends on the sampling frequency and the time duration of the PRN
code. In order for the FFT size to be a power of two, the vector of input samples and the PRN code are zero-padded before
running the FFTs. Zero padding consists in adding zeros to the end of a time-domain signal to increase its length. The Fourier
transform is computed as shown in the equations below, where x(n) is the local PRN code and y(n) is the received GNSS
signal after performing zero padding [16]:

X(K) =

N−1∑
n=0

x(n)e−j2πkn/N (1)

Y (K) =

N−1∑
n=0

y(n)e−j2πkn/N (2)

As a second step, the correlation in the frequency domain is computed by multiplying the two FFTs:

Z(k) = X(k)∗Y (k) (3)

Finally, the circular cross-correlation sequence between the zero-padded received signal and the zero-padded GNSS code is
obtained by computing the inverse Fourier transform [16]:

z(n) =
1

N

N−1∑
n=0

x∗(m)y(m+ n) (4)

The Acquisition HW Accelerator also performs a Doppler sweep without any SW intervention. The result of the acquisition
algorithm is an assessment whether the satellite signal is present in the received signal. This result is based on the cross-
correlation sequences obtained for each Doppler value.

3.5. Tracking HW Accelerator

A block diagram of the Tracking HW Accelerator is shown in figure 7. The tracking HW Accelerator is a multicorrelator that
consists of a Dopler wipe–off unit and a number of correlators working in parallel. Each correlator performs a correlation
between the received GNSS signal and the PRN code of the GNSS satellite that is being tracked. This correlation is done in the
time domain [16]. Each correlator also contains a resampler that changes the sampling frequency of the local copy of the PRN
code on the fly, to match the sampling frequency of the received GNSS signal. In order to save space in the FPGA, the GNSS
receiver uses a different type of Tracking HW Accelerator for each GNSS signal under consideration (GPS L1 C/A, Galileo
E1, GPS L5 and Galileo E5). The only difference between these tracking HW accelerators is the number of correlators that are
used:

• The GPS L1 C/A multicorrelator consists of three correlators: Early, Prompt and Late (E, P and L).

• The Galileo E1 multicorrelator consists of six correlators: Five of them are used to obtain the Very Early, Early, Prompt
and Late results (VE, E, P, L and VL). The sixth correlator is used when the pilot signal and the data signal are tracked
simultaneously.

Incoming
Signal

X

X

90°

Local
Oscillator
(CORDIC)

X

Resampler

GNSS Pilot
Code /Data

Code

Pilot / Data
Correlator 1

Output

X

Resampler

GNSS Pilot
Code /Data

Code

 Pilot / Data
Correlator 2

Output

X

Resampler

GNSS Data
Code

Data
Correlator

Output

MultiCorrelator - Resampler
(N correlators for the Pilot or

the Data signal and one
correlator for the Data

signal)

Pilot/Data Code
Correlator 0

Pilot/Data Code
Correlator 1 ...

Data Code Correlator

Fig. 7. Block diagram of the Tracking HW accelerator.

• The GPS L5 C/A multicorrelator consists of four correlators: Three of them are used to obtain the Early, Prompt and Late
(E, P and L). The fourth correlator is used when the pilot signal and the data signal are tracked simultaneously.

• The Galileo E5 multicorrelator consists of four correlators: Three of them are used to obtain the Early, Prompt and Late
(E, P and L). The fourth correlator is used when the pilot signal and the data signal are tracked simultaneously.

The HW accelerator modules are compatible with the IP-XACT specification [14]. Therefore the HW accelerator modules
can easily be reused or replaced by other IP-XACT compliant modules.

4. PROOF-OF-CONCEPT PROTOTYPE IMPLEMENTATION

4.1. Main Features

In order to facilitate the development, debugging and testing of the GNSS receiver, a prototype has been implmented with the
following characteristics:

• Possibility to demodulate and decode combinations of the following signals: GPS L1 C/A, Galileo E1, GPS L5 and
Galileo E5.

• 48 Multicorrelators: 12 multicorrelators for GPS L1 C/A, 12 multicorrelators for Galileo E1, 12 multicorrelators for GPS
L5 and 12 multicorrelators for Galileo E5.

• Sampling Frequency: 12.5 Msps.

• 8 bits per complex sample.

The prototype is based on the Xilinx Zynq-7000 Z7035 SoC, which has the characteristics shown in Table 1. The resource
occupation in the PL is shown in Table 2. The most used resource is the Block RAM memory. The Block RAM memory is
mainly needed to implement the temporary input sample buffers and to store the PRN code and the FFT of the PRN code in the
PL.

The prototype makes use of an ADRV 361-Z7035 System-on-Module (SoM) composed of a dual-channel 70 MHz to 6
GHz front-end AD 9361 IC with integrated 12-bit ADCs attached to a Xilinx Zynq-7000 Z7035 SoC.

Resource Feature
CPU Dual-core ARM Cortex-A9
Logic Cells 275K
Block RAM 17.6 Mb
DSP Slices 900
Maximum IO Pins 362

Table 1. Xilinx Zynq-7000 Z7035 SoC

Resource Utilization Available Utilization %
LUT 103762 171900 60.36
LUTRAM 2580 70400 3.66
FF 116786 343800 33.97
BRAM 484.5 500 96.90
DSP 759 900 84.33

Table 2. Resource Utilization

In order to facilitate the development, debugging and testing of the GNSS receiver, we use the ADRV1CRR-BOB breakout
carrier board, which implements suitable standard connectors for power supply, Ethernet communications, USB and JTAG
programming interfaces, among other debugging features. Figure 8 shows the SoM mounted on the ADRV1CRR-BOB breakout
board. The PS runs on PetaLinux [17]. The PetaLinux Software Development Kit (SDK) is a Xilinx development tool that
contains everything necessary to build, develop, test and deploy Embedded GNU Linux systems.

Fig. 8. Picture of the ADRV9361-Z7035 System-on-Module plugged onto the ADRV1CRR-BOB breakout board.

All the GNSS receiver components were packaged in a 24cm x 16 cm x 5 cm plastic box, as shown in Figure 9, allowing
easier handling and transportation of the prototype. The box was manufactured using a custom design and a 3D printer.

The power consumption of the fully programmed SoC is about 7 W, much less than the power consumption of laptop
computers.

4.2. Sampling Frequency

A timing diagram of the HW accelerators is shown in figure 10. The Acquisition and Tracking HW Accelerators work in a
loop where the following actions are carried out: The baseband software engine in the PL first configures a HW accelerator
(Tconf), then the software activates the HW accelerator, then the HW accelerator captures a number of samples coming from
the A/D converters (Tget samples) and performs some calculations (Tproc). When the HW accelerator finishes its calculations,
the HW accelerator interrupts the CPU. Finally, the software reads and processes the results of the HW accelerator (Tresults)
and the loop starts again. In the actual implementation, the tracking HW accelerators get the samples coming from the ADC
and process them simultaneously.

The Acquisition HW accelerator does not block the flow of samples coming from the A/D converter. However, the Tracking
HW accelerator does block the flow of samples coming from the A/D converter whenever it is waiting for the software to read
the results, process the results and reconfigure the hardware accelerator. The reason for that is that the samples coming from the

Fig. 9. Laboratory prototype.

Fig. 10. Timing diagram of the HW accelerators.

A/D converter can not be lost during tracking, otherwise the receiver would loose the synchronization. Therefore the tracking
HW accelerators exert back pressure to the buffer that contains the samples coming from the A/D converter.

Fig. 11. Timing diagram of two tracking HW accelerators working simultaneously.

Figure 11 shows the timing diagram of two or more tracking HW accelerators running simultaneously. Whenever one of
the tracking HW accelerators is exerting back pressure to the buffer that contains the samples coming from the A/D converter,
none of the other tracking HW accelerators can get any samples either. If we increase the number of tracking HW accelerators
running simultaneously then the percentage of time the HW accelerators can get samples from the A/D converter decreases.
Thus, the overall throughput of the system decreases when the number of tracking HW accelerators increases. To avoid this
problem there is a buffer at the input of every tracking HW accelerator (these buffers are not shown in figure 2). These buffers
allow the HW tracking accelerators to continue to process samples whenever any of the other HW tracking accelerators is
exerting back pressure to its input buffer. In this way the overall throughput of the GNSS tracking HW accelerators is not
decreased when we increase the number of HW tracking accelerators working in parallel. In this situation the flow of samples
is enabled most of the time, provided that the input buffers are sufficiently large (see figure 12).

The key for the system to work on real time is that the average throughput of the whole system (Hardware and Software)
has to be higher than the sampling frequency itself.

Get Samples ProcConf Results Conf Get Samples Proc Results

Get Samples ProcConf Results Conf Get SamplesGet Samples Proc Results

Proc Results

Enabled

Get
Samples

Time

Channel 1

Channel 2

Sample Flow

Fig. 12. Timing diagram of two tracking HW accelerators working simultaneously using input buffers.

On the hardware side, the HW accelerators work using a clock frequency of 150 MHz. The maximum average throughput of
the tracking HW accelerators is one sample per 1.2 clocks when they are getting and processing samples (during Tget + Tproc
in figure 10) . Therefore the GNSS receiver is designed in a way that the Tracking HW accelerators can be in a waiting state
(i.e. not processing samples) 90% of time for the target sampling frequency of 12.5 Msps to be reached. This gives sufficient
time to the SW to react to the interrupts coming from the HW accelerators.

As shown in Figure 5, apart from the tracking HW accelerator input buffers (not shown in 5), the GNSS receiver contains
large sample buffer for each frequency band. The sample buffers are used to store the received samples temporarily. These
buffers compensate unexpected temporary delays that might be caused by the SW and do not occur on a regular basis, such as
delays caused by the GNU Linux OS running in the PL.

4.3. Communication between the HW Accelerator modules and the PS

The HW accelerator modules and the PS communicate by means of a high speed AXI4 bus [18]. The HW Accelerator modules
are controlled using read/write registers that are accessible to the PS. These registers are mapped to a physical address memory
space within the address space of the AXI4 bus. The PS uses these registers to configure and read the results of the HW
accelerators. On top of that the HW Accelerator modules use interrupts to notify the PS when their tasks are completed. In this
way the PS can control the whole process in real time. There is also a DMA engine (not shown in Figure 2) which is used to
test the receiver in post-processing mode using GNSS signals stored in files.

5. RESULTS

The GNSS-SDR software has a number of flags that allows the user to monitor and log the status of the GNSS receiver at
various points in the signal path. In this way the behavior of the HW accelerator modules can be analyzed.

Figure 13 shows the results obtained when using the Tracking HW accelerators to track the GPS L1 C/A signal. Figure 13
shows the status of various variables at the GNSS receiver for one of the channels. At approximately 1.5 s the GNSS receiver
transitions from acquisition to tracking and the channel shown in figure 13 starts tracking the detected satellite. Figure 13 shows
the following information:

• The decoded bits of the navigation message

• A polar scatter plot of the I and Q signals. This plot is useful to check that the Doppler wipe–off is done correctly.

• The results of the Early, Prompt and Late correlators. We can see that the results of the P correlator have the highest
values, which means that the receiver is correctly synchronized.

• Various plots showing the behavior of the PLL and the DLL, the estimated Doppler frequency, the carrier to noise density
ratio and the estimated code frequency of the received signal.

Fig. 13. Test results of the GNSS receiver using the GPS L1 signal.

Fig. 14. Test results of the GNSS receiver using the Galileo E1 signal.

Figure 14 shows the results obtained when using the Tracking HW accelerators to track the Galileo E1 signal. Figure 14
shows the status of various variables at the GNSS receiver for one of the channels. At approximately 1.3s the GNSS receiver
transitions from acquisition to tracking and the channel shown in figure 14 starts tracking the detected satellite. Figure 14 shows
the following information:

• The decoded bits of the navigation message

• A polar scatter plot of the I and Q signals. This plot is useful to check that the Doppler wipe–off is done correctly. The
points centered around the origin are caused by a false alarm where the channel started tracking a non-existent satellite.

• The results of the Very Early, Early, Prompt, Late and Very Late correlators. We can see that the results of the P correlator
have the highest values, which means that the receiver is correctly synchronized.

• Various plots showing the behavior of the PLL and the DLL.

Table 3 shows how the objectives listed in section 2 are fulfilled.

6. CONCLUSIONS

This work shows that it is feasible to implement a flexible, portable low-cost and low power consumption GNSS-SDR-based
receiver using a programmable System-on-Chip. The inherent parallelism of the PL allows the GNSS receiver to track a large
number of GNSS satellites simultaneously and the internal status of the PL can be monitored for testing and research. By
offloading the most computationally demanding tasks from the PL to the PS, the power consumption used for the digital signal
processing tasks is reduced to 7 W. On top of that the implemented prototype makes use of the ADRV 361-Z7035 System-On-
Module, which can be packaged in a portable-sized box.

In the proposed implementation, the number of GNSS satellites that can be tracked simultaneously is limited by the work-
load in the PS. A way to decrease the workload in the Processing System is to transfer more signal processing functions to the
PL and to reduce the communication between the PS and the PL. The communication can be reduced by implementing extended
tracking integration time in the PL. The GNSS-SDR-based receiver implemented in an all-programmable System-on-Chip also
provides a way to asses the performance of the RF front-end, as the RF front-end can be replaced by modifying the interface
between the RF front-end and the HW accelerators in the PL.

The proposed receiver takes advantage of the GNSS-SDR software features while keeping the flexibility and reprogramma-
bility of a software based design. The System-on-Chip implementation of the GNSS receiver fulfills the requirements for a
real-time portable software-defined GNSS receiver.

ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of Economy and Competitiveness through project TEC2015-69868-C2-2-R
(ADVENTURE).

Requirement Comments
Possibility to either use synthetically generated or real-
life GNSS signals

The GNSS receiver has a connector that can be used with
an antenna, a signal generator, or raw samples stored in
files.

Possibility to process signals either in real time or in post-
processing time

The PL contains a DMA and a switch that can be used to
either process signals coming from the antenna or func-
tion generator, or signals stored as files in a SD card con-
nected to the GNSS receiver.

Possibility to use interchangeable RF front-ends Recompiling the GNSS receiver for another RF Front-
End only requires changes in the SAMPLE SW (see Fig-
ure 2). Minor changes in the SW running in the PL for
the RF Front-End configuration might also be required.

Possibility to define custom receiver architectures The whole GNSS receiver is reprogrammable. The PL
is reprogrammable and the PS is reprogrammable too.
Therefore the signal processing algorithms can easily be
changed using SW.

Possibility to easily define / interchange implementations
and parameters for each processing block

The HW accelerator modules are compatible with the IP-
XACT specification [14]. Therefore the HW accelerator
modules can easily be reused or replaced by other IP-
XACT compliant modules.

Availability of operation modes, as combinations of sin-
gle/multiple frequency bands, single/multiple constella-
tions

The HW Accelerators can decode the followings GNSS
signals: GPS L1 C/A, Galileo E1, GPS L5 and Galileo
E5. Any combination of two GNSS signals can be
tracked simultaneously. Figure 13 and figure 14 show
the test results when the receiver is decoding the GPS L1
C/A and the Galileo E1 signals.

Testeability The states and signals of the HW Accelerator modules
can be monitored using flags in the GNSS-SDR SW [19].
As an example, figure 13 and figure 14 show various in-
ternal states of the GNSS receiver when tracking GPS L1
C/A and Galileo E1 signals

Maintainability The GNSS HW Accelerators are programmed in VHDL
[20], using the standard Xilinx programmable tools [19]

Reliability The HW Accelerators are tested using VHDL simulation
and the whole GNSS receiver is tested to ensure proper
operation. On top of that the HW Accelerators are au-
tomatically verified against design rule checkings (DRC)
by the design tools. The DRC determines whether the
physical layout of the HW Accelerator modules satisfy a
series of recommended parameters

Small Form Factor The GNSS Receiver is packaged in a 24 cm x 16 cm x 5
cm box, which makes it suitable for testing in the field

Low Power Consumption The power consumption of the SOC is about 7 W, which
makes it suitable for testing in the field.

Table 3. Design Requirements.

REFERENCES

[1] C. Fernández-Prades et al., “GNSS-SDR - An open source Global Navigation Satellite Systems software-defined receiver,”
Available online at https://gnss-sdr.org/, Accessed: November 15, 2018.

[2] C. Fernández-Prades, J. Arribas, M. Majoral, J. Vilà-Valls, and A. Garcı́a-Rigo, “An open path from the antenna to
scientific-grade GNSS products,” in Proc. of the 6th ESA Intl. Colloquium on Scientific and Fundamental Aspects of
GNSS / Galileo, Valencia, Spain, Oct. 2017, pp. 1–8, doi: 10.5281/zenodo.1144104.

[3] Ettus Research, “The leader in Software Defined Radio (SDR),” Website at https://www.ettus.com/, Accessed:
November 15, 2018.

[4] European Global Navigation Satellite Systems Agency, “AUDITOR: Advanced Multi-Constellation EGNSS Augmenta-
tion and Monitoring,” [Online]. Available: https://auditor-project.eu/index.html, Accessed: November
15, 2018.

[5] M. Pérez-Ruiz and S. K. Upadhyaya, GNSS in Precision Agricultural Operations, chapter New approach of indoor and
outdoor localization systems, pp. 3–26, InTech, London, UK, 2012, doi: 10.5772/50448.

[6] A. Ruckelshausen, P. Biber, M. Dorna, H. Gremmes, R. Klose, A. Linz, R. Rahe, R. Resch, M. Thiel, D. Trautz, and
U. Weiss, “BoniRob: An autonomous field robot platform for individual plant phenotyping,” Precision Agriculture, vol.
9, pp. 841–847, Jan. 2009.

[7] P. J. Zarco-Tejada, J. A. J. Berni, L. Suárez, and E. Fereres, “A new era in remote sensing of crops with unmanned robots,”
SPIE Newsroom, pp. 1–3, Jan. 2008, doi: 10.1117/2.1200812.1438.

[8] J. Roselló, P. Silvestrin, R. Weigand, S. d’Addio, A. Garcı́a Rodrı́guez, and G. López Risueño, “Next generation of ESA’s
GNSS receivers for Earth Observation satellites,” in 6th ESA Workshop on Satellite Navigation Technologies (Navitec
2012) & European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, Dec. 2012, pp. 1–8, doi:
10.1109/NAVITEC.2012.6423104.

[9] Y. Fazliani, M. Unwin, and P. Jales, “Satellite-borne remote sensing using space GPS/GNSS receiver for reflectometry,”
in 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and
Signal Processing, Noordwijk, Netherlands, Dec. 2012, pp. 1–4, doi: 10.1109/NAVITEC.2012.6423102.

[10] A. Soghoyan, A. Suleiman, and D. Akopian, “A development and testing instrumentation for GPS software defined
radio with fast FPGA prototyping support,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 8, pp.
2001–2012, August 2014.

[11] Xilinx, Inc., “SoCs, MPSoCs & RFSoCs,” Available online at https://www.xilinx.com/products/
silicon-devices/soc.html, Accessed: November 15, 2018.

[12] C. Fernández–Prades, J. Arribas, and P. Closas, “Accelerating GNSS software receivers,” in Proc. 29th Int. Tech. Meeting
Sat. Div. Inst. Navig., Portland, OR, Sep. 2016, pp. 44–61, ISSN: 2331-5911.

[13] Xilinx, Inc., “Intellectual property,” Available online at https://www.xilinx.com/products/
intellectual-property.html, Accessed: November 15, 2018.

[14] “IEEE standard for IP-XACT, Standard Structure for Packaging, Integrating and Reusing IP within tool flows,” IEEE Std.
1685-2014, pp. 1–510, 2014, doi: 10.1109/IEEESTD.2014.6898803.

[15] GNU Radio, “The Free and Open Software Radio Ecosystem,” Website at https://www.gnuradio.org/, Ac-
cessed: November 15, 2018.

[16] K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, and S.H. Jensen, A Software-Defined GPS and Galileo Receiver, Birkhäuser,
Boston, MA, 2012.

[17] Xilinx Wiki, “Petalinux OS,” Website at http://www.wiki.xilinx.com/PetaLinux, Accessed: November 15,
2018.

[18] Arm Limited, “AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite Doc-
umentation,” Available online at https://developer.arm.com/docs/ihi0022/d, Accessed: November 15,
2018.

[19] Xilinx, Inc., “Hardware Development,” Available online at https://www.xilinx.com/products/
design-tools/hardware-zone.html, Accessed: November 15, 2018.

[20] “IEEE Standard VHDL Language Reference Manual,” IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002), pp. c1–
626, Jan 2009, doi: 10.1109/IEEESTD.2009.4772740.

